七年级奥数题及答案
(完整word)七年级奥数题20道和答案

七年级奥数题20道和答案补充几道:在车站开始检查票时,有A(A>0)位旅客在等候。
检票开始后,仍有旅客继续前来排队。
设旅客按固定的速度增加,检票口检票的速度也是固定的。
若开放一个口,则要30分钟才能将排队检票的旅客全部检票完毕;若开放两个检票口,则要10分钟。
如果要在5分钟内将排队检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口上述题大致解法为:设1个检票口1分钟检票1人。
1个检票口30分的检票量为1×30分=30人,这既包括原有A人,也包括30分内增加的人。
2个检票口10分的检票量为2×10分=20人,这既包括原有A人,也包括10分内增加的人。
因为原有A人一定,所以上面两式的差30-20=10人正好是30分增加的人数与10分增加的人数的差。
由此可以求出每分人数增加量是10÷(30-10)=0.5人。
车站原有A人是30-0.5×30=15人,或20-0.5×10= 15人。
前面已假定每个口每分钟的检票量为1,而每分钟增加的人数为0.5,因此新增加的人需0.5个口。
今要5分内完成,1个口5分检5人,原有的15人需3个口,再加上新增加的人需0.5个口(即1个口).共4个口.所以在5分钟内检票完毕,至少要同时开放4个检票口.2008年夏季奥运会的主办国即将于2001年7月揭晓,为了支持北京申奥,红、绿两支宣传北京申奥万里行车队在距北京3000km处会合,并同时向北京进发,绿队走完2000km 时,红队走完1800km,随后,红队的速度比原来的提高20%,两车队继续同时向北京进发。
(1)求红队提速前红、绿两队的速度比;(2)问红、绿两支车队是否同时到达了北京?说明理由;(3)若红、绿两支车队不能同时到达北京,那么,哪支车队先到达北京?求出第一支车队到达北京时两车队的距离(单位:km)。
(1)V红:V绿=1800:2000=9:10(2)设提速前时间为t则提速前V绿=2000/t,V红=1800/t提速后V红后=1800*120%/t=2160/t,V绿不变,所以t绿总=3000/V绿=3t/2,t红总=t+(3000-1800)/V红后=14t/9,因为t红总不等于t绿总所以不同时到达(3)因为3t/2<5t/9所以绿队先到达。
初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
七年级奥数测试卷(七份及答案)

七年级奥数测试卷一 姓名 班别一.选择题1.a --是( )(A )正数 (B )负数 (C )非正数 (D )0 2.在下面的数轴上(图1)表示数(—2)—(—5)的点是 ( )(A )M (B )N . (C )P. (D )Q. 3.49914991+-----的值的负倒数是( )(A )314. (B )133-(C )1. (D )—1 4.)9187()8176()7165()6154()5143(+++++++++)10198(-+ ( ) (A )0. (B )5.65. (C )6.05 (D )5.855.22)34(34⨯--⨯-等于( )(A )0 (B )72 (C )—180 (D )1086.x 的54与31的差是( )(A )x x 3154- (B )3154-x (C ))31(54-x (D )345+x 7.n 是整数,那么被3整除并且商恰为n 的那个数是( )(A )3n (B )3+n (C )n 3 (D )3n8.如果2:3:=y x 并且273=+y x ,则y x ,中较小的是(A )3 (B )6(C )9(D )129.20°角的余角的141等于( )(A )ο)731( (B )ο)7311( (C )ο)767( (D )5°10.7)71()7(71⨯-÷-⨯等于( )(A )1 (B )49 (C )—7 (D )7二、A 组填空题11.绝对值比2大并且比6小的整数共有__________________个。
12.在一次英语考试中,某八位同学的成绩分别是93,99,89,91,87.81,100,95,则他们的平均分数是__________________。
13.||||1992-1993|-1994|-1995|-1996|=__________________。
14.数:-1.1,-1.01,-1.001,-1.0101,-1.00101中最大的一个数与最小的一个数的比值是__________。
奥数初一试题及答案

奥数初一试题及答案一、选择题(每题3分,共15分)1. 若a、b、c为任意实数,且a+b+c=0,则下列等式中正确的是()。
A. ab+bc+ca=0B. a^2+b^2+c^2=ab+bc+caC. a^2+b^2+c^2=0D. a^3+b^3+c^3=02. 一个数列,首项为1,公差为2,那么第10项的值是()。
A. 19B. 20C. 21D. 223. 下列哪个图形的面积最大?()A. 边长为4的正方形B. 半径为4的圆C. 底为4,高为4的等腰三角形D. 长为8,宽为4的矩形4. 一个正整数n,使得n^2-2n-35能被5整除,n的最小值是()。
A. 7B. 8C. 9D. 105. 一个等差数列的前三项和为6,后三项和为24,那么这个等差数列的中间项是()。
A. 3B. 4C. 5D. 6二、填空题(每题4分,共20分)6. 若x+y=5,xy=3,则x^2+y^2的值为______。
7. 一个等比数列的前三项分别为2,6,18,那么第四项的值为______。
8. 一个圆的半径为r,那么这个圆的周长为______。
9. 一个正整数n,使得n^2+3n+2能被6整除,n的最小值是______。
10. 一个等差数列的首项为a,公差为d,前n项和为S_n,那么S_n的表达式为______。
三、解答题(每题10分,共40分)11. 已知一个等差数列的首项为3,公差为2,求这个等差数列的前10项和。
12. 已知一个等比数列的首项为3,公比为2,求这个等比数列的前5项和。
13. 已知一个二次函数y=ax^2+bx+c,其中a、b、c为常数,且当x=1时,y=0;当x=-1时,y=4;当x=2时,y=5,求a、b、c 的值。
14. 已知一个三角形的三边长分别为a、b、c,且满足a^2+b^2=c^2,求证这个三角形是直角三角形。
四、附加题(15分)15. 一个正整数n,使得n^3-2n能被3整除,求n的最小值。
初一奥数竞赛考试题及答案

初一奥数竞赛考试题及答案一、选择题1. 一个数列的前三项为 2, 3, 5,每一项都是前两项的和,那么第10项是多少?A. 144B. 145C. 146D. 147答案:D2. 一个正整数,如果加上100后是一个完全平方数,那么这个数最小是多少?A. 49B. 50C. 51D. 52答案:B3. 一个长方体的长、宽、高分别为 a, b, c,且 a < b < c,如果长方体的体积是 216 立方厘米,那么 a 的可能值是?A. 3B. 4C. 6D. 8答案:C二、填空题1. 一个数的平方比它本身大 40,这个数是 _______。
答案:7 或 -72. 一个数列的前三项为 1, 2, 3,每一项都是前一项的两倍加上 1,那么第 5 项是多少?答案:11三、解答题1. 一个水池有一个进水管和一个出水管,单独开进水管 5 小时可以注满水池,单独开出水管 3 小时可以放空水池。
现在同时打开进水管和出水管,需要多少时间才能注满水池?解答:设水池的容量为 V 升。
进水管的流量为 V/5 升/小时,出水管的流量为 V/3 升/小时。
设同时打开两个水管需要 t 小时注满水池,则有:(V/5 - V/3) * t = V解得 t = 15/2 = 7.5 小时。
2. 一个班级有 40 名学生,其中 1/4 喜欢数学,1/3 喜欢英语,1/6 喜欢历史,剩下的学生喜欢科学。
问喜欢科学的有几人?解答:喜欢数学的学生有 40 * 1/4 = 10 人,喜欢英语的学生有40 * 1/3 ≈ 13.33,取整数为 13 人,喜欢历史的学生有 40 * 1/6 ≈ 6.67,取整数为 7 人。
喜欢科学的人数为:40 - 10 - 13 - 7 = 10 人。
结束语:以上是初一奥数竞赛考试题及答案,希望同学们能够通过这些题目,锻炼自己的逻辑思维能力和数学解题技巧,为未来的学习打下坚实的基础。
初一奥数测试题及答案

初一奥数测试题及答案一、选择题(每题5分,共20分)1. 一个数的平方等于它本身,这个数是()。
A. 0B. 1C. 0和1D. 以上都不是2. 已知一个等差数列的首项是2,公差是3,那么这个数列的第5项是()。
A. 17B. 14C. 11D. 83. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是十位上的数字的三倍,这个三位数是()。
A. 123B. 234C. 456D. 6784. 一个长方体的长、宽、高分别为3cm、4cm、5cm,那么这个长方体的表面积是()。
A. 94cm²B. 62cm²C. 74cm²D. 84cm²二、填空题(每题5分,共20分)5. 一个数的立方等于它本身,这个数是______。
6. 一个等比数列的首项是1,公比是2,那么这个数列的第4项是______。
7. 一个两位数,十位上的数字比个位上的数字大3,且这个两位数的数字之和为9,这个两位数是______。
8. 一个正方体的棱长为a,那么这个正方体的体积是______。
三、解答题(每题15分,共60分)9. 已知一个等差数列的首项是5,公差是2,求这个数列的前10项的和。
10. 一个长方体的长、宽、高分别为6cm、8cm、10cm,求这个长方体的体积。
11. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是百位上的数字的三倍,求这个三位数。
12. 一个等比数列的首项是3,公比是4,求这个数列的前5项的和。
答案:一、选择题1. C2. A3. B4. C二、填空题5. 0、1、-16. 167. 458. a³三、解答题9. 解:等差数列的前n项和公式为S_n = n/2 * (2a_1 + (n-1)d),其中a_1为首项,d为公差,n为项数。
将已知条件代入公式,得S_10 = 10/2 * (2*5 + (10-1)*2) = 5 * (10 + 18) = 5 * 28 = 140。
初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD=S△CND+S△CNP+S△DNP.因此只需证明S△AND=S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP=S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP=S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,②AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m=19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,②BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
初一奥数题(附答案

初一奥数题(附答案)【1 】1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值规模.3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.4.解方程2|x+1|+|x-3|=6.5.解不等式||x+3|-|x-1||>2.6.x,y,z均长短负实数,且知足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.7.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.12.如图1-88所示.小柱住在甲村,奶奶住在乙村,礼拜日小柱去探望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应当选择如何的路线才干使旅程最短?13.如图1-89所示.AOB是一条直线,OC,OE分离是∠AOD和∠DOB的等分线,∠COD=55°.求∠DOE的补角.14.如图1-90所示.BE等分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.18.如图1-94所示.四边形ABCD两组对边延伸订交于K及L,对角线AC‖KL,BD延伸线交KL于F.求证:KF=FL.19.随意率性转变某三位数数码次序所得之数与原数之和可否为999?解释来由.20.设有一张8行.8列的方格纸,随意把个中32个方格涂上黑色,剩下的32个方格涂上白色.下面临涂了色的方格纸施行“操纵”,每次操纵是把随意率性横行或者竖列上的各个方格同时转变色彩.问可否最终得到恰有一个黑色方格的方格纸?21.假如正整数p和p+2都是大于3的素数,求证:6|(p+1).22.设n是知足下列前提的最小正整数,它们是75的倍数,且恰有23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包含每小我的两条腿),问房间里有几小我?24.求不定方程49x-56y+14z=35的整数解.25.男.女各8人跳集体舞.(1)假如男女分站两列;(2)假如男女分站两列,不斟酌先后次序,只斟酌男女若何结成舞伴.问各有若干种不合情形?26.由1,2,3,4,5这5个数字构成的没有反复数字的五位数中,有若干个大于34152?27.甲火车长92米,乙火车长84米,若相向而行,相遇后经由1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.28.甲乙两临盆小队配合种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全体义务快3天.求甲乙单独完成各用若干天?29.一船向相距240海里的某港动身,到达目标地前48海里处,速度每小时削减10海里,到达后所用的全体时光与原速度每小时削减4海里航行全程所用的时光相等,求本来的速度.30.某工场甲乙两个车间,客岁筹划完成税利750万元,成果甲车间超额15%完成筹划,乙车间超额10%完成筹划,两车间配合完成税利845万元,求客岁这两个车间分离完成税利若干万元?甲:460万乙:290万31.已知甲乙两种商品的原价之和为150元.因市场变更,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和下降了1%,求甲乙两种商品原单价各是若干?甲:105 乙:4532.小红客岁暑假在市肆买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,本年暑假她又带同样的钱去该市肆买同样的牙刷和牙膏,因为本年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,成果找回4角钱.试问客岁暑假每把牙刷若干钱?每支牙膏若干钱?33.某商场假如将进货单价为8元的商品,按每件12元卖出,天天可售出400件,据经验,若每件少卖1元,则天天可多卖出200件,问每件应减价若干元才可获得最好的效益?11元34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇动身驶向B镇,25分钟今后,乙骑自行车,用0.6千米/分钟的速度追甲,试问若干分钟后追上甲?50分钟后35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜2 0%,含锰50%,含镍30%.现各取恰当重量的这三种合金,构成一块含镍45%的新合金,重量为1千克.(1)试用新合金中第一种合金的重量暗示第二种合金的重量;0.9+0.25x(2)求新合金中含第二种合金的重量规模;最大:1.035 最小:0.905(3)求新合金中含锰的重量规模.参考答案2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以原式=-b+(a+b)-(c-b)-(a-c)=b.3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变成m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.4.分离令x=1,x=-1,代入已知等式中,得a0+a2+a4+a6=-8128.10.由已知可解出y和z因为y,z为非负实数,所以有u=3x-2y+4z11. 所以商式为x2-3x+3,余式为2x-412.小柱的路线是由三条线段构成的折线(如图1-97所示).我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡算作一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,衔接甲′乙′,设甲′乙′所连得的线段分离与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)显然,路线甲→A→B→乙的长度正好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,应用上面的对称办法,都可以化成一条衔接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的旅程最短.13.如图1-98所示.因为OC,OE分离是∠AOD,∠DOB的角等分线,又∠AOD+∠DOB=∠AOB=180°,所以∠COE=90°.因为∠COD=55°,所以∠DOE=90°-55°=35°.是以,∠DOE的补角为180°-35°=145°.14.如图1-99所示.因为BE等分∠ABC,所以∠CBF=∠ABF,又因为∠CBF=∠CFB,所以∠ABF=∠CF B.从而AB‖CD(内错角相等,两直线平行).由∠CBF=55°及BE等分∠ABC,所以∠ABC=2×55°=110°.①由上证知AB‖CD,所以∠EDF=∠A=70°,②由①,②知BC‖AE(同侧内角互补,两直线平行).15.如图1-100所示.EF⊥AB,CD⊥AB,所以∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以∠BEF=∠BCD(两直线平行,同位角相等).①又由已知∠CDG=∠BEF.②由①,②∠BCD=∠CDG.所以BC‖DG(内错角相等,两直线平行).所以∠AGD=∠ACB(两直线平行,同位角相等).16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),①又在△ABC中,∠B=∠C,所以∠A+∠B+∠C=∠A+2∠C=180°,所以由①,②17.如图1-101,设DC的中点为G,衔接GE.在△ADC中,G,E分离是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.贯穿连接FG.所以又S△EFD=S△BFG-SEFDG=4S△BFD-SEF DG,所以S△EFGD=3S△BFD.设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以S△CEG=S△BCEE,从而所以SEFDC=3x+2x=5x,所以S△BFD∶SEFDC=1∶5.18.如图1-102所示.由已知AC‖KL,所以S△ACK=S△ACL,所以即KF=FL.+b1=9,a+a1=9,于是a+b +c+a1+b1+c1=9+9+9,即2(a十b+c)=27,抵触!20.答案是否认的.设横行或竖列上包含k个黑色方格及8-k个白色方格,个中0≤k≤8.当转变方格的色彩时,得到8-k个黑色方格及k个白色方格.是以,操纵一次后,黑色方格的数量“增长了”(8-k)-k=8-2k个,即增长了一个偶数.于是无论若何操纵,方格纸上黑色方格数量标奇偶性不变.所以,从原有的32个黑色方格(偶数个),经由操纵,最后老是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.21.大于3的质数p只能具有6k+1,6k+5的情势.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6 k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).22.由题设前提知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75.于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25.所以故(α,β)=(0,24),或(α,β)=(4, 4),即n=20•324•5223.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,即5x+6y=43.所以x=5,y=3是独一的非负整数解.从而房间里有8小我.24.原方程可化为7x-8y+2z=5.令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全体整数解是而t= 1,z=2是t+2z=5的一组整数解.它的全体整数解是把t的表达式代到x,y的表达式中,得到原方程的全体整数解是25.(1)第一个地位有8种选择办法,第二个地位只有7种选择办法,…,由乘法道理,男.女各有8×7×6×5×4×3×2×1=40320种不合分列.又两列间有一相对地位关系,所以共有2×403202种不合情形.(2)逐个斟酌结对问题.与男甲结对有8种可能情形,与男乙结对有7种不合情形,…,且两列可对调,所以共有2×8×7×6×5×4×3×2×1=80640 种不合情形.26.万位是5的有4×3×2×1=24(个).万位是4的有4×3×2×1=24(个).万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:34215,34251,34512,34521.所以,总共有24+24+6+4=58个数大于34152.27.两车错过所走过的距离为两车长之总和,即92+84=176(米).设甲火车速度为x米/秒,乙火车速度为y 米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有解之得解之得x=9(天),x+3= 12(天).解之得x=16(海里/小时).经磨练,x=16海里/小时为所求之原速.30.设甲乙两车间客岁筹划完成税利分离为x万元和y万元.依题意得解之得故甲车间超额完成税利乙车间超额完成税利所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).31.设甲乙两种商品的原单价分离为x元和y元,依题意可得由②有0.9x+1.2y=148.5,③由①得x=150-y,代入③有0. 9(150-y)+1.2y=148. 5,解之得y=45(元),因而,x=105(元).32.设客岁每把牙刷x元,依题意得2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即2×1.68+2×1.3+2×1.3x=5x+2.6,即2.4x=2×1.68,所以x=1.4 (元).若y为客岁每支牙膏价钱,则y=1.4+1=2.4(元).33.本来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,个中0<x<4.因为减价后,天天可卖出(400+200x)件,若设天天获利y元,则y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)=-200(x2-2x+1)+200+1600=-200(x-1)2+1800.所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比本来多卖出200件,是以多获利200元.34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的旅程分离是0.4(25+ x)千米和0.6x千米.因为两人走的旅程相等,所以0.4(25+x)=0.6x,解之得x=50分钟.于是左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才干追上甲.但A,B两镇之间只有28千米.是以,到B镇为止,乙追不上甲.35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的规模是:最小250克,最而0≤x≤500,所以新合金中锰的重量规模是:最小250克,最大400克.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级奥数题及答案
七年级奥数题及答案?
1. 将自然数1,2,3,4,5...一次写下去组成一个数:12345678910111213.....,如果写到某一个自然数,所组成的数恰好第一次能被72整除,那么这个自然数是多少??解:要能被72整除,即被8,9整除。
被8整除的条件:最后三位数可以被8整除;
被9整除的条件:这个数每一位的数字相加所得的数能被9整除。
一个数字,被9除的余数等于这个数各位数字之和被9除的余数。
这个数为1234567891112131415 (313233343536)
即为写到36
2.雪龙”号科学考察船到南极进行科学考察活动,从上海出发以最快速度19节(1节=1海里/小时)航行抵达南极需要30多天时间。
该船以16节的速度从上海出发,若干天后,顺利抵达目的地。
在极地工作了若干天,以12节的速度返回,从上海出发后第83天由于天气原因航行速度为2节,2天后以14节的速度继续航行4天返回上海,那么“雪龙”号在南极工作了多少天?
1.解:设AB距离为S,甲,丙相遇时间为T1,甲,乙为T2。
后来3人同时到B的时间为T3!丙速度为X 得(24+X)
T1=S ①
(24+4)T2=(24-4)T1 ②
4(T1+T2)88+T3=S ③
X(T2+T3)=XT1 ④
由②得,T2=5/7T1 ⑤
由④得,T3=2/7T1 ⑥
把⑤和⑥代入③,得224/7T1=S ⑦
把⑦代入①,得X=8
3.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
解:因为|a|=-a,
所以a≤0,
又因为|ab|=ab,
所以b≤0,
因为|c|=c,
所以c≥0.
所以a+b≤0,c-b≥0,a-c≤0.
所以原式=-b+(a+b)-(c-b)-(a-c)=b.。