七年级奥数题1
初一数学奥数竞赛题

初一数学奥数竞赛题近年来,数学奥数竞赛在中小学生中越来越受欢迎。
这些竞赛要求学生具备扎实的数学基础知识和灵活的解题能力,提高他们的逻辑思维和问题解决能力。
今天,我们来看几个适合初一学生的数学奥数竞赛题。
题目1:小美在她家门口卖冰淇淋,一支冰淇淋卖5元,两支冰淇淋卖9元。
小美今天一共卖出了30支冰淇淋,她一共赚了多少钱?解析:我们可以设冰淇淋的单价为x元,因为一支冰淇淋卖5元,所以我们可以得到一个方程:5 = x。
两支冰淇淋卖9元,所以我们可以得到另一个方程:9 = 2x。
解这个方程组,我们可以得到x = 4.5。
小美一共卖出30支冰淇淋,所以她赚的总钱数为30 * 4.5 = 135元。
题目2:小明的爸爸今年40岁,小明今年12岁。
假设小明的爸爸每年的年龄都是相同的增长,他几年后的年龄和小明的年龄之和是100岁。
请问那时小明的年龄是多少岁?解析:设小明的爸爸从现在开始每年的年龄增长为x岁。
那么,小明几年后的年龄就是12 + x岁,小明的爸爸几年后的年龄就是40 + x岁。
根据题意,小明几年后的年龄和小明的爸爸几年后的年龄之和是100岁,所以我们可以得到一个方程:(12 + x)+(40 + x)= 100。
解这个方程,我们可以得到x = 18。
所以,几年后小明的年龄就是12 + 18 = 30岁。
题目3:一个长方形花坛周长是20米,其中一条边的长度是4米。
我们要在长方形花坛的周围建一道宽度相等的砖墙,这道砖墙的长度是花坛周长的一半。
问这道砖墙的长度是多少米?解析:设砖墙的宽度为x米,花坛的长度为L米,宽度为W米。
花坛周长是20米,所以我们可以得到一个方程:2L + 2W = 20。
其中一条边的长度是4米,所以我们可以得到另一个方程:2L + W = 4。
将两个方程联立,我们可以解得L = 4,W = 6。
砖墙的长度是花坛周长的一半,所以砖墙的长度是20 / 2 = 10米。
通过解这些数学奥数竞赛题,可以让初一学生锻炼他们的数学思维和解题能力。
七年级数学奥数题[五篇模版]
![七年级数学奥数题[五篇模版]](https://img.taocdn.com/s3/m/9af0a847f342336c1eb91a37f111f18582d00c5c.png)
七年级数学奥数题[五篇模版]第一篇:七年级数学奥数题数学奥数1.下列判断正确的是()A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关3.下列哪个角不能由一副三角板作出()A.105° B.12° C.175°D.135°4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是()A.互补B.互余 C.和为钝角 D.和为周角5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为()6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.1/2∠1B.1/2∠2C.1/2(∠1-∠2)D.1/2(∠1+∠2)8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的度数是9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为度15.如果∠a=26°,那么∠a余角的补角等于16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票(1)在A,B两站之间最多共有种不同的票价;共有种不同的车票(2)如果共有n(n≥3)个站点,则需要种不同的车票19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE 的反向延长线(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。
七年级数学奥数题

七年级数学奥数题七年级数学奥数题一、问题类型1、一元二次不等式给定一元二次不等式,求不等式的解的个数及其解的集合。
例:求解不等式x²-2x+2>0的解集合。
解:设ax²+bx+c>0,其中a≠0。
不等式的解的个数:对不等式ax²+bx+c>0的两端取对数,得ln(ax²+bx+c)>0,因lnx>0(x>0),得ax²+bx+c>0。
解的集合:利用二次不等式ax²+bx+c>0的一般形式x=(-b±√(b²-4ac))/2a,求得x=(-2±2√2)/2,即x=-1±√2,故解集合为x=-1±√2。
2、概率给出概率问题,求出概率大小及对应情况。
例:一个骰子投掷两次,求出和为六的概率。
解:由于一个骰子投掷两次,求和为六的概率,因此投掷一次的点数分别是(1,5)、(2,4)、(3,3)、(4,2)、(5,1),每种组合概率都为1/36,由此得出和为六的概率为1/36+1/36=2/36=1/18。
3、函数求解给出函数,利用函数的定义域求出函数的值。
例:求函数y=|x|+2x+3的定义域及其在定义域上的值。
解:函数y=|x|+2x+3在x>=0时,y=x+2x+3=3x+3;在x<0时,y=-x+2x+3=x+3,故定义域为R及(3x+3,x+3),在定义域上的值为3x+3或x+3。
二、应用题1、已知函数f(x)={2x-1,x<-1;3x+2,-1≤x≤2;x²+3,x>2,求函数f(x)的反函数。
解:设y=f(x),当y>=0,则x>2,即x=√(y-3);当y<0,则-1≤x≤2,即x=-(y-2)/3;当y=-1,即x=-1。
故反函数为x=√y+3(y>=-1)或x=-(y-2)/3(y<-1)。
7年级奥数题及答案数学奥数题七年级

7年级奥数题及答案数学奥数题七年级7年级奥数题及答案7年级奥数题及答案刚步入7年级的学生对于自己的基础知识要求扎实之外,也要多做奥数题为自己铺一个垫脚石,下面是WTT为你们准备的7年级的相关奥数题目以及相关的奥数答案,希望能帮助你们。
7年级奥数题1:把1至205这205个自然数依次写下来得到一个多位数 123456789..205,这个多位数除以9余数是多少解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9 整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除 10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少2021__022******** 从1000~1999千位上一共999个“1”的和是999,也能整除;2021__022********的各位数字之和是27,也刚好整除。
最后答案为余数为0。
7年级奥数题2:A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2B/(A+B) 前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是:98 / 100 7年级奥数题3:已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少答案为6.375或6.4375 因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
初一奥数测试题及答案

初一奥数测试题及答案一、选择题(每题5分,共20分)1. 一个数的平方等于它本身,这个数是()。
A. 0B. 1C. 0和1D. 以上都不是2. 已知一个等差数列的首项是2,公差是3,那么这个数列的第5项是()。
A. 17B. 14C. 11D. 83. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是十位上的数字的三倍,这个三位数是()。
A. 123B. 234C. 456D. 6784. 一个长方体的长、宽、高分别为3cm、4cm、5cm,那么这个长方体的表面积是()。
A. 94cm²B. 62cm²C. 74cm²D. 84cm²二、填空题(每题5分,共20分)5. 一个数的立方等于它本身,这个数是______。
6. 一个等比数列的首项是1,公比是2,那么这个数列的第4项是______。
7. 一个两位数,十位上的数字比个位上的数字大3,且这个两位数的数字之和为9,这个两位数是______。
8. 一个正方体的棱长为a,那么这个正方体的体积是______。
三、解答题(每题15分,共60分)9. 已知一个等差数列的首项是5,公差是2,求这个数列的前10项的和。
10. 一个长方体的长、宽、高分别为6cm、8cm、10cm,求这个长方体的体积。
11. 一个三位数,百位上的数字是十位上的数字的两倍,个位上的数字是百位上的数字的三倍,求这个三位数。
12. 一个等比数列的首项是3,公比是4,求这个数列的前5项的和。
答案:一、选择题1. C2. A3. B4. C二、填空题5. 0、1、-16. 167. 458. a³三、解答题9. 解:等差数列的前n项和公式为S_n = n/2 * (2a_1 + (n-1)d),其中a_1为首项,d为公差,n为项数。
将已知条件代入公式,得S_10 = 10/2 * (2*5 + (10-1)*2) = 5 * (10 + 18) = 5 * 28 = 140。
七年级经典的奥数题三篇

七年级经典的奥数题三篇七年级经典的奥数题篇一1、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟乙相遇?2、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?3、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?4、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?5、甲每小时行驶9千米,乙每小时行驶7千米。
两者在相距6千米的两地同时向背而行,几小时后相距150千米?七年级经典的奥数题篇二1、甲、乙两队挖一条水渠,甲队单独挖要8天完成,乙队单独挖要12天完成,现在两队同时挖了几天后,乙队调走,余下的甲队在3天内完成,乙队挖了多少天?2、某工程队预计30天修完一条水渠,先由18人修12天后完成工程的1/3,如果要提前6天完成,还要增加多少人?3、一项工程,甲2小时完成了1/5,乙5小时完成了剩下的1/4,余下的部分由甲、乙合作完成,甲共工作了多少小时?4、一个水池,甲、乙两管同时打开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能灌满(这时乙管关闭),那么乙管单独开灌满水池需多少小时?5、师、徒两人共同加工一批零件,师傅每小时加工9个,徒弟每小时加工个,完成任务时,徒弟比师傅少加工120个,这批零件共有多少个?七年级经典的奥数题篇三1、甲、乙两人同时分别从两地骑车相向而行。
甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米。
问全程长多少米?2、两地相距900千米,甲走需15天,乙走需12天。
精选初一奥数题五篇

精选初一奥数题五篇1.精选初一奥数题篇一1.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.2.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?3.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).4.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?5.求不定方程49x-56y+14z=35的整数解.6.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.问各有多少种不同情况?2.精选初一奥数题篇二1.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?2.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.3.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?4.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.5.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?3.精选初一奥数题篇三1.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?2.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。
初一奥数竞赛试题及答案

初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。
从第四个数字开始,每个数字都是前三个数字的和。
请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。
然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。
将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。
所以,斜边的长度是5厘米。
试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。
问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。
我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。
这相当于在4个球之间插入2个隔板来形成3个部分。
我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。
但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。
因此,最终的放球方法有\[ 6 - 3 = 3 \]种。
试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。
求这个数列的第10项。
答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥林匹克数学
考考你:
1、2002)1(-的值 ( ) A. 2000 B.1 C.-1 D.-2000
2、a 为有理数,则2000
11
+a 的值不能是 ( )
A.1
B.-1 C .0 D.-2000 3、()[]}{20072006200720062007----的值等于 ( ) A.-2007 B.2009
C.-2009
D.2007 4、)1()1()1()1()1(-÷-⨯---+-的结果是 ( ) A.-1 B.1 C.0 D.2 5、2008
200720061
)1()1(-÷-+-的结果是 ( )
A.0
B.1
C.-1
D.2
6、计算)2()2
1
(22-+-÷-的结果是 ( )
A.2
B.1
C.-1
D.0
7、计算:.2
1
825.3825.325.0825.141825.3⨯+⨯+-⨯
8、计算:.3
1
1212311999212000212001212002-++-+-
9、计算:).13
8
(113)521()75.0(5.2117-⨯÷-÷-⨯÷-
11、计算:.363531998199992000⨯+⨯-
练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6
12、计算: )98
97983981()656361()4341(21++++++++++ 13、计算:.2007
20061
431321211⨯++⨯+⨯+⨯ 应用:
)111(1)1(+-=+n n d n n d 练习:.105
1011
171311391951⨯++⨯+⨯+⨯
13、计算: 35
217106253121
147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯.
14、求21-++x x 的最小值及取最小值时x 的取值范围.
练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.
练习:
1、计算2007200619991998)1()1()1()1(-+-++-+- 的值为 ( ) A.1 B.-1 C.0 D.10
2、若m 为正整数,那么()[]
)1(114
12---m m
的值 ( )
A.一定是零
B.一定是偶数
C.是整数但不一定是偶数
D.不能确定
3、若n 是大于1的整数,则2
)(12
)
1(n n n p ---+=的值是 ( )
A.一定是偶数
B.一定是奇数
C.是偶数但不是2
D.可以是奇数或偶数
4、观察以下数表,第10行的各数之和为 ( ) 1 4 3 6 7 8
13 12 11 10
15 16 17 18 19
26 25 24 23 22 21 …
A.980
B.1190
C.595
D.490
5、已知,200220012002200120022001200220012⨯++⨯+⨯+= a 20022002=b ,则a 与b 满足的关系是 ( C ) A.2001+=b a B.2002+=b a C.b a = D.2002-=b a
6、计算: .35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯5
2
7、计算:.561742163015201412136121++++++8
3
28
8、计算:.100
321132112111+++++++++++
9、计算: .999999999999999999999+++++ 10、计算
)
1000
11)(99911)(99811()411)(311)(211(10
201970198019992000-------++-+- .610
11、已知,911,999909
999==Q p 比较Q P ,的大小.
Q p ==⨯⨯=⨯⨯=90
9
9909999099119991199)911(
12、设n 为正整数,计算:4
3424131323332312122211+++++++++++
.1112141424344n
n n n n n n n n ++-++-+++++++++ 2
)
1(21+=
+++n n n
13、2007加上它的21得到一个数,再加上所得的数的3
1
又得到一个数,再加上这
次得到的41又得到一个数,… ,依次类推,一直加到上一次得数的2007
1
,最后得
到的数是多少?
2005003)2002
1
1()311()211(2002=+⨯⨯+⨯+⨯
14、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间
的 自然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++⨯应视作相同方法的运算,现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24,运算式: (1)_______________________; (2)________________________; (3)________________________;
15.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添上0,等等。
如果经过998次操作后,发现黑板上剩下两个数,一个是25,求另一个数.
奥数探究。