高中物理第一章碰撞与动量守恒第一节物体的碰撞教学案粤教选修3-5
2024-2025学年高中物理第一章碰撞与动量守恒第1节物体的碰撞教案粤教版选修3-5

(4)碰撞问题解答:提供一些碰撞问题,要求学生解答并解释所用的物理原理和计算方法。
(5)碰撞现象观察:要求学生观察日常生活中的一些碰撞现象,如体育比赛中的碰撞,并记录下来,分析其中的物理原理。
2.作业反馈
及时对学生的作业进行批改和反馈,指出存在的问题并给出改进建议,以促进学生的学习进步。具体包括:
3.课后拓展应用
教师活动:
-布置作业:根据“物体的碰撞”课题,布置适量的课后作业,巩固学习效果。
-提供拓展资源:提供与“物体的碰撞”课题相关的拓展资源(如书籍、网站、视频等),供学生进一步学习。
-反馈作业情况:及时批改作业,给予学生反馈和指导。
学生活动:
-完成作业:认真完成老师布置的课后作业,巩固学习效果。
(2)研究现实生活中的碰撞案例:鼓励学生观察和分析现实生活中的碰撞现象,如交通事故、体育比赛中的碰撞等,并尝试运用所学的动量守恒定律进行解释。
(3)设计自己的碰撞实验:学生可以在家中或实验室里设计自己的碰撞实验,通过实际操作来验证动量守恒定律。
(4)参与在线讨论和学术研究:学生可以加入相关的在线学术论坛或研究小组,与他人交流碰撞与动量守恒定律的相关问题,或参与相关的研究项目。
-讲解知识点:详细讲解碰撞的基本概念、类型和基本定理,结合实例帮助学生理解。
-组织课堂活动:设计小组讨论、模拟碰撞实验等活动,让学生在实践中掌握动量守恒定律的应用。
-解答疑问:针对学生在学习中产生的疑问,进行及时解答和指导。
学生活动:
-听讲并思考:认真听讲,积极思考老师提出的问题。
-参与课堂活动:积极参与小组讨论、模拟碰撞实验等活动,体验动量守恒定律的应用。
高中物理 第一章 碰撞与动量守恒 1 碰撞教案 教科版选修3-5-教科版高中选修3-5物理教案

1 碰撞一、碰撞1.碰撞的定义做相对运动的两个(或几个)物体相遇而发生相互作用,在很短的时间内,它们的运动状态会发生显著变化,这一过程叫做碰撞.2.碰撞的分类(1)弹性碰撞:碰撞前后两滑块的总动能不变.(2)非弹性碰撞:碰撞后两滑块的总动能减少了.(3)完全非弹性碰撞:两物体碰后粘在一起,以相同的速度运动.3.弹性碰撞和非弹性碰撞的区分(1)从形变的角度:发生弹性碰撞的两物体碰后能够恢复原状,而发生非弹性碰撞的两物体碰后不能恢复原状.(2)从动能的角度:弹性碰撞的两物体碰撞前后动能守恒,非弹性碰撞的两物体碰撞后的动能减少,完全非弹性碰撞中动能损失最多.判断下列说法是否正确(1)两物体碰撞,它们的速度将发生变化.( √)(2)在做探究碰撞中动能如何变化的实验中,气垫导轨应水平放置.( √)(3)任何碰撞的两物体,碰撞后总动能一定减小.( ×)(4)完全非弹性碰撞中动能的减少最多.( √)二、探究碰撞前后物体动能的变化1.实验装置:气垫导轨、数字计时器、导轨上附有滑块和光电门,滑块上装有挡光条和弹簧片,如图所示.2.探究过程(1)先用天平分别测出带弹簧片的滑块1、滑块2的质量m1、m2,然后用手推动滑块1使其获得初速度v1,与静止的滑块2相碰(相碰时,两弹簧片要正对),测定碰撞前、后两滑块的速度大小,算出相关数据,填入表中.(2)再换用不带弹簧片的两滑块按照上面的步骤进行实验,并读取实验数据,填入表中.(3)将滑块上的弹簧片换成橡皮泥,用天平分别测出滑块1、滑块2的质量;使有橡皮泥的两端正对,让滑块1与滑块2相碰,测算出相关数据,并填入表中.碰撞前、后动能的计算某实验小组用课本中“探究碰撞前后物体动能的变化”的实验方案,探究碰撞前后物体动能的变化.探究中分别得到了两组数据,如下表所示 :m 1与静止的m 2碰撞,碰后分开(表一)m 1与静止的m 2碰撞,碰后粘在一起(表二)计算这两个表格中滑块碰撞前后的总动能.通过比较,你有什么发现?提示:从表一的数据可以看出:在实验误差允许范围内,两滑块碰撞前后的总动能几乎相等.从表二的数据可以看出:两滑块碰撞前后的总动能并不相等,碰撞后总动能减少了. 考点一 探究碰撞中的不变量和动能的变化实验原理(1)一维碰撞两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动的碰撞.(2)探究碰撞中的不变量和动能变化在一维碰撞的情况下,设两个物体的质量分别为m 1、m 2,碰撞前的速度分别为v 1、v 2,如果速度的方向与我们规定的方向一致取正值,相反取负值,依次探究以下关系是否成立:①m 1v 1+m 2v 2=m 1v 1′+m 2v 2′②m 1v 21+m 2v 22=m 1v 1′2+m 2v 2′2③v 1m 1+v 2m 2=v 1′m 1+v 2′m 2④ΔE k =12m 1v 1′2+12m 2v 2′2-12m 1v 21-12m 2v 22 (3)实验方案设计利用气垫导轨使两滑块发生一维碰撞.装置如下图.且用以下三种方式分别探究.①如下图所示,用细线将弹簧片拉成弓形,放在两个滑块之间,并使它们静止,然后烧断细线,两滑块随即向相反方向运动.探究烧断细线前后不变的量.②如下图所示,在滑块两端装上弹簧,使两滑块相互碰撞.探究碰撞前后不变的量. ③如下图所示,在两滑块上分别装上撞针和橡皮泥,二者相碰撞后粘在一起.探究碰撞前后不变的量.具体步骤(1)用天平测量两滑块质量m1、m2.(2)调整导轨使之处于水平状态,并使光电计时器系统正常工作.(3)记录光电门挡光片的宽度Δx以及光电计时器显示的挡光时间Δt,利用公式v=Δx,计算出两滑块碰撞前后的速度.探究相互作用前后不变的量.Δt(4)将实验中测得的物理量填入如下表格.(m1=________;m2=________)代入m1v1+m2v2=m1v1′+m2v2′(矢量式),看在误差允许的范围内是否成立.【例1】某同学运用以下实验器材,设计了一个碰撞实验来寻找碰撞前后的不变量:电磁打点计时器、低压交流电源(频率为50 Hz)、纸带、表面光滑的长木板、带撞针的小车A、带橡皮泥的小车B、天平.该同学设计的实验步骤如下:A.用天平测出小车A的质量为m A=0.4 kg,小车B的质量为m B=0.2 kgB.更换纸带重复操作三次C.小车A靠近打点计时器放置,在车后固定纸带,把小车B放在长木板中间D.把长木板平放在桌面上,在一端固定打点计时器,连接电源.E.接通电源,并给小车A一定的初速度v A(1)请将以上步骤按操作的先后顺序排列出来________.(2)打点计时器打下的纸带中,比较理想的一条如图所示,根据这些数据完成表格.(3)根据以上数据猜想碰撞前后不变量的表达式为________.【解析】(1)按照先安装,后实验,最后重复的顺序,该同学正确的实验步骤为ADCEB.(2)碰撞前后均为匀速直线运动,由纸带上的点迹分布求出速度.碰后小车A、B合为一体,求出AB整体的共同速度.注意打点计时器的频率为50 Hz,打点时间间隔为0.02 s,通过计算得下表.(3)由表中数值可看出mv一行中数值相同,可猜想碰撞前后不变量的表达式为m A v A+m B v B=(m A+m B)v.【答案】(1)ADCEB (2)见解析(3)m A v A+m B v B=(m A+m B)v某同学把两个大小不同的物体用细线连接,中间夹一被压缩的弹簧,如图所示,将这一系统置于光滑的水平桌面上,烧断细线,观察两物体的运动情况,进行必要的测量,探究物体间相互作用时的不变量.(1)该同学还必须有的器材是刻度尺、天平;(2)需要直接测量的数据是两物体的质量m1、m2和两物体落地点分别到桌面两侧边缘的水平距离x1、x2;(3)根据课堂探究的不变量,本实验中表示碰撞前后不变量的表达式应为m1x1=m2x2.(用测得的物理量符号表示)解析:物体离开桌面后做平抛运动,取左边物体的初速度方向为正方向,设两物体质量和平抛初速度分别为:m1、m2、v1、v2,平抛运动的水平位移分别为x1、x2,平抛运动的时间为t,需要验证的方程:0=m1v1-m2v2,其中:v1=x1t,v2=x2t,代入得到m1x1=m2x2,故需要测量两物体的质量m1、m2和两物体落地点分别到桌面两侧边缘的水平距离x1、x2,需要的器材为刻度尺、天平.考点二碰撞的特点及分类1.碰撞的特点(1)相互作用时间短.(2)作用力变化快.(3)作用力峰值大.因此其他外力可以忽略不计.2.碰撞中能量的特点碰撞过程中,一般伴随机械能的损失,即:E k1′+E k2′≤E k1+E k2.3.碰撞的类型及区分(1)弹性碰撞:两个物体碰撞后形变能够完全恢复,碰撞后没有动能转化为其他形式的能,即碰撞前后两物体构成的系统的动能相等.(2)非弹性碰撞:两个物体碰撞后形变不能完全恢复,该过程有动能转化为其他形式的能,总动能减少.(3)完全非弹性碰撞:非弹性碰撞的特例:两物体碰撞后粘在一起以共同的速度运动,该碰撞称为完全非弹性碰撞,碰撞过程能量损失最多.【例2】一个质量为2 kg的小球A以v0=3 m/s的速度与一个静止的、质量为1 kg 的小球B正碰,试根据以下数据,分析碰撞性质:(1)碰后小球A、B的速度均为2 m/s;(2)碰后小球A 的速度为1 m/s ,小球B 的速度为4 m/s.【解析】 碰前系统的动能E k0=12m A v 20=9 J. (1)当碰后小球A 、B 速度均为2 m/s 时,碰后系统的动能E k =12m A v 2A +12m B v 2B =(12×2×22+12×1×22) J =6 J<E k0,故该碰撞为非弹性碰撞. (2)当碰后v A ′=1 m/s ,v B ′=4 m/s 时,碰后系统的动能E k ′=12m A v A ′2+12m B v B ′2=(12×2×12+12×1×42) J =9 J =E k0,故该碰撞为弹性碰撞.【答案】 (1)非弹性碰撞 (2)弹性碰撞如图所示,有A 、B 两物体,m 1=3m 2,以相同大小的速度v 相向运动,碰撞后A 静止,B 以2v 的速度反弹,那么A 、B 的碰撞为( A )A .弹性碰撞B .非弹性碰撞C .完全非弹性碰撞D .无法判断解析:设m 1=3m ,m 2=m碰撞前总动能12m 1v 21+12m 2v 22=2mv 2 碰撞后总动能12m 1v 1′2+12m 2v 2′2=0+12×m (2v )2=2mv 2 因为碰撞前后总动能不变,故为弹性碰撞,选项A 正确.重难疑点辨析利用光电门确定速度的原理如图所示,两次挡光时间内物体运动的距离是这样确定的,A 图中是双挡光片,挡光片两次挡光时间内运动的距离为d ,因为当a 边通过光电门时第一次挡光计时,c 边通过光电门时第二次挡光计时,两次挡光时间间隔物体运动的距离应为ac 两边之间的距离,这个距离通常是已知的.B 图为单挡光片,一般是两个单挡光片同时使用,其原理与双挡光片相同.还有一种计时器是专门配合B 类挡光片设计使用的,使用时先清零,而记录的是整个挡光的时间(从a ′边挡光开始到b ′边挡光结束),利用单挡光片的宽度计算物体的运动速度.在求气垫导轨上运动的物体的运动速度v 时,首先通过光电计时装置记录其运动时间,再根据速度的计算公式v =Δx Δt 而求得.要确定物体的运动速度v ,首先要确定物体的运动时间,而时间Δt是运用挡光片通过光电门时挡光计时来测得的.常用的挡光片有单挡光片和双挡光片两种,要达到测量速度的目的必须同时运用两个单挡光片或一个双挡光片,因为每次挡光只能记录一个时刻,而求速度必须知道物体运动一段距离所用的时间.其中Δt=t2-t1即光电计时装置计时的两次记录之差.【典例】某同学利用气垫导轨做“探究碰撞中的不变量”的实验.气垫导轨装置如图所示,所用的气垫导轨装置由导轨、滑块、弹射架、光电门等组成.(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③接通光电计时器;④把滑块2(左侧装有弹性碰撞架,未画出)放在气垫导轨的中间位置使其静止;⑤滑块1(右侧装有弹性碰撞架,未画出)挤压导轨左端弹射架上的橡皮绳;⑥释放滑块1,滑块1通过光电门1后与滑块2碰撞,碰后滑块2和滑块1依次通过光电门2,两滑块通过光电门2后依次被制动;⑦读出滑块通过两个光电门的挡光时间分别为:滑块1通过光电门1的挡光时间Δt1=10.01 ms,通过光电门2的挡光时间Δt2=49.99 ms,滑块2通过光电门2的挡光时间Δt3=8.35 ms;⑧测出挡光片的宽度d=5 mm,测得滑块1(包括弹性碰撞架)的质量为m1=300 g,滑块2(包括弹性碰撞架)的质量为m2=200 g.(2)数据处理与实验结论:①实验中气垫导轨的作用是:A.______________________________________________________________________ __;B.______________________________________________________________________ __.②碰撞前,滑块1的速度v1为________m/s;碰撞后,滑块1的速度v2为________m/s,滑块2的速度v3为________m/s.(结果保留两位有效数字)③在误差允许的范围内,通过本实验,同学们可以探究出哪些物理量是不变的?通过对实验数据的分析说明理由.(至少回答2个不变量)a.________________________________________________________________________;b .________________________________________________________________________.【解析】 (2)①气垫导轨可以大大减小因滑块和导轨之间的摩擦而引起的误差,还可以保证两个滑块的碰撞是一维的.②滑块1碰撞之前的速度v 1=d Δt 1=5×10-310.01×10-3 m/s =0.50 m/s 滑块1碰撞之后的速度v 2=d Δt 2=5×10-349.99×10-3 m/s =0.10 m/s 滑块2碰撞之后的速度v 3=5×10-38.35×10-3 m/s =0.60 m/s ; ③a.滑块1和滑块2碰撞前后质量与速度的乘积之和不变.理由:滑块1和滑块2碰撞之前m 1v 1=0.15 kg·m/s,滑块1和滑块2碰撞之后m 1v 2+m 2v 3=0.15 kg·m/s.b .滑块1和滑块2碰撞前后总动能不变.理由:滑块1和滑块2碰撞之前的总动能 E k1=12m 1v 21=0.037 5 J滑块1和滑块2碰撞之后的总动能E k2=12m 1v 22+12m 2v 23=0.037 5 J 所以滑块1和滑块2碰撞前后总动能相等.【答案】 (2)①A.减小因滑块和导轨之间的摩擦而引起的误差 B .保证两个滑块的碰撞是一维的②0.50 0.10 0.60 ③见解析光电计时器能快速、方便地测量物体的速度,通常与气垫导轨配合使用,能够更精确地完成多个物理实验.随着技术的进步,这种实验方法会越来越多地应用到物理学习中,所以应了解其工作原理.1.(多选)关于碰撞的特点,下列说法正确的是( AC )A.碰撞的过程时间极短B.碰撞时,质量大的物体对质量小的物体作用力大C.碰撞时,质量大的物体对质量小的物体的作用力和质量小的物体对质量大的物体的作用力大小相等D.质量小的物体对质量大的物体作用力大解析:两物体发生碰撞,其碰撞时间极短,碰撞时,质量大的物体对质量小的物体的作用力和质量小的物体对质量大的物体的作用力是一对相互作用力,大小相等,方向相反,故选项A、C正确,B、D错误.2.(多选)两个物体发生碰撞( BD )A.碰撞中一定产生了内能B.碰撞过程中,组成系统的动能可能不变C.碰撞过程中,系统的总动能可能增大D.碰撞过程中,系统的总动能可能减小解析:若两物体发生弹性碰撞,系统的总动能不变;若两物体发生的是非弹性碰撞,系统的总动能会减小,但无论如何,总动能不会增加,所以选项B、D正确.3.(多选)如图所示,两个小球A、B发生碰撞,在满足下列条件时能够发生正碰的是( BD )A.小球A静止,另一个小球B经过A球时刚好能擦到A球的边缘B.小球A静止,另一个小球B沿着A、B两球球心连线去碰A球C.相碰时,相互作用力的方向沿着球心连线时D.相碰时,相互作用力的方向与两球相碰之前的速度方向都在同一条直线上解析:根据牛顿运动定律,如果力的方向与速度方向在同一条直线上,这个力只改变速度的大小,不能改变速度的方向;如果力的方向与速度的方向不在同一直线上,则速度的方向一定发生变化,所以选项B、D正确;选项A不能发生一维碰撞;在任何情况下相碰两球的作用力方向都沿着球心连线,因此满足选项C条件不一定能发生一维碰撞.4.如图所示,一个质量为m的物块A与另一个质量为2m的物块B发生正碰,碰后B物块刚好能落入正前方的沙坑中.假如碰撞过程中无机械能损失,已知物块B 与地面间的动摩擦因数为0.1,与沙坑的距离为0.5 m ,g 取10 m/s 2.物块可视为质点.则A 碰撞前的瞬间速度( C )A .0.5 m/sB .1.0 m/sC .1.5 m/sD .2.0 m/s解析:碰撞后B 做匀减速运动,由动能定理得-μ·2mgx =0-12·2mv 2. 代入数据得v =1 m/s ,A 与B 碰撞的过程中A 与B 组成的系统在水平方向的动量守恒,选取向右为正方向,则mv 0=mv 1+2mv ,由于没有机械能的损失,则12mv 20=12mv 21+12·2mv 2,联立可得,v 0=1.5 m/s ,故选项A 、B 、D 错误,C 正确.5.如图所示,在实验室用两端带竖直挡板C 、D 的气垫导轨和带固定挡板的质量都是M 的滑块A 、B 做探究碰撞中的不变量的实验:(1)把两滑块A 和B 紧贴在一起,在A 上放质量为m 的砝码,置于导轨上,用电动卡销卡住A 和B ,在A 和B 的固定挡板间放一弹簧,使弹簧处于水平方向上的压缩状态.(2)按下电钮使电动卡销放开,同时启动两个记录两滑块运动时间的电子计时器,当A 和B 与挡板C 和D 碰撞同时,电子计时器自动停表,记下A 运动至C 的时间t 1,B 运动至D 的时间t 2.(3)重复几次取t 1、t 2的平均值.请回答以下几个问题:(1)在调整气垫导轨时应注意用水平仪测量并调试使得气垫导轨水平;(2)应测量的数据还有A 至C 的距离L 1、B 至D 的距离L 2;(3)作用前A 、B 两滑块的速度与质量乘积之和为0,作用后A 、B 两滑块的速度与质量乘积之和为(M +m )L 1t 1-M L 2t 2或M L 2t 2-(M +m )L 1t 1.解析:(1)为了保证滑块A 、B 作用后做匀速直线运动,必须使气垫导轨水平,需要用水平仪加以调试.(2)要求出A 、B 两滑块在卡销放开后的速度,需测出A 至C 的时间t 1和B 至D 的时间t 2,并且要测量出两滑块到两挡板的运动距离L 1和L 2,再由公式v =x t求出其速度.(3)设向左为正方向,根据所测数据求得两滑块的速度分别为v A =L 1t 1,v B =-L 2t 2.碰前两滑块静止,v =0,速度与质量乘积之和为0;碰后两滑块的速度与质量乘积之和为(M +m )L 1t 1-M L 2t 2.若设向右为正方向,同理可得碰后两滑块的速度与质量的乘积之和为M L 2t 2-(M +m )L 1t 1.。
高中物理第一章碰撞与动量守恒章末盘点教学案粤教版选修3_5

第一章碰撞与动量守恒碰撞与动量守恒⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧冲量⎩⎪⎨⎪⎧定义式:I =Ft适用于恒力冲量的计算方向:若F 的方向不变,冲量的方向与F 的方向一致物理意义:表示力对时间的累积效应,是过程量运算法则:平行四边形定则动量⎩⎪⎨⎪⎧定义式:p =mv方向:动量的方向与速度的方向一致物理意义:表示物体运动状态的物理量,是状态量动量定理⎩⎪⎨⎪⎧内容:物体所受合力的冲量等于物体动量的变化表达式:F 合t =p 2-p 1=mv 2-mv 1矢量等式:合力的冲量与物体动量的变化大小相等, 方向相同动量守恒定律⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧内容:系统不受外力或所受外力之和为零时,这个 系统的总动量就保持不变研究对象:相互作用的物体组成的系统公式⎩⎪⎨⎪⎧①p ′=p ,作用前后总动量相同②Δp =0,作用前后总动量不变③Δp 1=-Δp 2,相互作用的两个物体动量的变化大小相等,方向相反守恒条件⎩⎪⎨⎪⎧①系统不受外力的作用或系统所受的外力之和 为零②内力远大于外力,且作用时间短,系统动量近似守恒③系统某一方向的外力之和为零,系统在该方向上动量守恒应用⎩⎪⎨⎪⎧碰撞——作用时间短,内力远大于外力,动量守恒反冲——一般合外力不为零,内力远大 于外力,总动量守恒自然界中的守恒定律⎩⎨⎧守恒与不变:守恒对应着某个物理量保持不变守恒与对称⎩⎪⎨⎪⎧ 守恒来源于对称三大守恒定律体现物质世界和谐美1.(1)动量与冲量的区别:(2)动量、动量变化量、动量变化率的区别:2.动量定理的应用(1)应用I=Δp求变力的冲量:如果物体受到变力作用,则不能直接用I=F·t求变力的冲量,这时可以求出该力作用下物体动量的变化Δp,即等效代换为变力的冲量I。
(2)应用Δp=F·t求恒力作用下的曲线运动中物体动量的变化:曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p需要应用矢量运算方法,比较复杂。
2017-2018学年高中物理第一章碰撞与动量守恒第一节物体的碰撞教学案粤教版选修3-5

第一节 物体的碰撞对应学生用书页码P11.碰撞是力学的基本问题之一,著名的科学家伽利略、牛顿等都先后进行了一系列的实验,从最初对一些现象尚无法作出解释,到逐渐归纳成系统的理论,总结出碰撞的规律,直至明确提出运动量守恒的基本思想,都为后来的动量守恒定律奠定了基础。
2.20世纪30年代以后,由于加速器技术和探测技术的发展,通过高能粒子的碰撞,实验物理学家相继发现了许多新粒子。
3.物体间碰撞的形式多种多样。
如图1-1-1甲所示,两小球碰撞时的速度沿着连心线的方向,这种碰撞称为正碰,如图1-1-1乙所示,两球碰撞前的相对速度不在连心线上,这种碰撞称为斜碰。
图1-1-14.碰撞的最主要特点是:相互作用时间短,作用力变化快和作用力峰值大等,因而其他外力可以忽略不计。
碰撞是生活中常见的现象,两节火车车厢之间的挂钩靠碰撞连接,台球由于两球的碰撞而改变运动状态,微观粒子之间更是由于相互碰撞而改变能量,甚至使得一种粒子转化为另一种粒子,物体在碰撞中遵循什么物理规律呢?本章我们将从历史上的碰撞实验出发,认识各种碰撞的形式,探究碰撞的规律—动量守恒定律,从守恒和对称的关系中感受物理学的和谐美。
5.如果碰撞过程中系统动能守恒,这样的碰撞叫做弹性碰撞。
如果碰撞过程中系统动能不守恒,这样的碰撞叫做非弹性碰撞,如果两个物体碰撞后合为一体具有共同的速度,这样的碰撞叫做完全非弹性碰撞。
对应学生用书页码P1对碰撞现象的研究1.碰撞现象两个或两个以上有相对速度的物体相遇时,在很短的时间内它们的运动状态发生显著变化,物体间相互作用的过程叫碰撞。
2.碰撞的特点(1)作用时间极短,相互作用力变化很快,平均作用力很大;相互作用力远大于其他外力,其他外力可以忽略不计。
(2)碰撞过程是在一瞬间发生的,作用时间极短,所以可以忽略物体的位移,可以认为物体在碰撞前后仍在同一位置。
3.碰撞的分类按碰撞过程的能量损失情况可分为完全弹性碰撞、非弹性碰撞、完全非弹性碰撞。
2024-2025学年高中物理第一章碰撞与动量守恒1碰撞教案1教科版选修3-5

3.学生可能遇到的困难和挑战:在学习动量守恒定律及其应用时,学生可能对碰撞类型、动量守恒条件的判断等方面存在困惑。此外,在运用动量守恒定律解决实际问题时,部分学生可能难以将理论运用到实际情境中,对速度、动能等物理量的计算和分析能力有待提高。
(2)在线课程:推荐一些与碰撞与动量守恒相关的在线课程,如Coursera、edX等平台上的物理课程,让学生自主学习。
(3)学术文章:提供一些关于碰撞与动量守恒的学术论文,让学生了解该领域的最新研究动态。
(4)科普读物:推荐一些关于物理学和碰撞现象的科普读物,帮助学生从不同角度理解碰撞与动量守恒。
2.拓展建议:
1.碰撞的基本概念:让学生了解碰撞的定义、类型以及碰撞的基本特点。
2.动量守恒定律:介绍动量守恒定律的内容、适用范围和表达式,并通过实例让学生理解动量守恒定律的原理。
3.碰撞动量守恒的计算:教授学生如何运用动量守恒定律解决实际问题,包括碰撞前后的速度、动能等物理量的计算。
4.实际碰撞问题分析:通过具体案例,让学生学会分析实际碰撞问题,提高解决实际问题的能力。
2024-2025学年高中物理第一章碰撞与动量守恒1碰撞教案1教科版选修3-5
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
2024-2025学年高中物理第一章碰撞与动量守恒1碰撞教案1教科版选修3-5
教学内容
本节课的教学内容来自于教科版选修3-5《物理》2024-2025学年高中物理第一章《碰撞与动量守恒》的1节《碰撞》。本节内容主要包括以下几个部分:
高中物理 第一章 碰撞与动量守恒 实验 验证动量守恒定律同步备课教学案 粤教版选修3-5.doc

实验:验证动量守恒定律[学习目标] 1.掌握验证动量守恒定律的方法和基本思路.2.掌握直线运动物体速度的测量方法.一、实验目的验证碰撞中的动量守恒定律二、实验原理为了使问题简化,这里研究两个物体的碰撞,且碰撞前两物体沿同一直线运动,碰撞后仍沿这一直线运动.设两个物体的质量分别为m1、m2,碰撞前的速度分别为v1、v2,碰撞后的速度分别为v1′、v2′,如果速度与我们规定的正方向相同取正值,相反取负值.根据实验求出两物体碰前动量p=m1v1+m2v2,碰后动量p′=m1v1′+m2v2′,看p与p′是否相等,从而验证动量守恒定律.三、实验设计实验设计需要考虑的问题:(1)如何保证碰撞前后两物体速度在一条直线上.(2)如何测定质量和速度.①测量质量用天平.②测定碰撞前后的速度,这是实验成功的关键.四、实验案例气垫导轨上的实验器材:气垫导轨、气泵、光电计时器、天平等.气垫导轨装置如图1所示,由导轨、滑块、挡光片、光电门等组成,在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上(如图2所示,图中气垫层的厚度放大了很多倍),这样大大减小了由摩擦产生的影响.图1 图2设Δx为滑块(挡光片)的宽度,Δt为数字计时器显示的滑块(挡光片)经过光电门的时间,则v =Δx Δt .五、实验步骤1.调节气垫导轨,使其水平.是否水平可按如下方法检查:打开气泵后,导轨上的滑块应该能保持静止.2.按说明书连接好数字计时器与光电门.3.如图3所示,把中间夹有弯形弹簧片的两滑块置于光电门中间保持静止,烧断拴弹簧片的细线,测出两滑块的质量和速度,将实验结果记入设计好的表格中.图34.如图4所示,在滑块上安装好弹性碰撞架.将两滑块从左、右以适当的速度经过光电门后在两光电门中间发生碰撞,碰撞后分别沿各自碰撞前相反的方向运动再次经过光电门,光电计时器分别测出两滑块碰撞前后的速度.测出它们的质量后,将实验结果记入相应表格中.图45.如图5所示,在滑块上安装好撞针及橡皮泥,将装有橡皮泥的滑块停在两光电门之间,装有撞针的滑块从一侧经过光电门后两滑块碰撞,一起运动经过另一光电门,测出两滑块的质量和速度,将实验结果记入相应表格中.图56.根据上述各次碰撞的实验数据验证碰撞前后的动量是否守恒.实验数据记录表碰撞(烧断)前 碰撞(烧断)后质量m (kg) m 1 m 2 m 1 m 2速度v (m·s -1)v 1v 2v 1′v 2′m1v1+m2v2m1v1′+m2v2′mv(kg·m·s-1)结论例1某同学利用气垫导轨做验证碰撞中的动量守恒的实验;气垫导轨装置如图6所示,所用的气垫导轨装置由导轨、滑块、弹射架、光电门等组成.图6(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③接通光电计时器;④把滑块2静止放在气垫导轨的中间;⑤滑块1挤压导轨左端弹射架上的橡皮绳;⑥释放滑块1,滑块1通过光电门1后与左侧固定弹簧的滑块2碰撞,碰后滑块1和滑块2依次通过光电门2,两滑块通过光电门2后依次被制动;⑦读出滑块通过两个光电门的挡光时间分别为滑块1通过光电门1的挡光时间Δt1=10.01 ms,通过光电门2的挡光时间Δt2=49.99 ms,滑块2通过光电门2的挡光时间Δt3=8.35 ms;⑧测出挡光片的宽度d=5 mm,测得滑块1(包括撞针)的质量为m1=300 g,滑块2(包括弹簧)的质量为m2=200 g;(2)数据处理与实验结论:①实验中气垫导轨的作用是a.________b.________.②碰撞前滑块1的速度v1为________m/s;碰撞后滑块1的速度v2为______m/s;滑块2的速度v3为______m/s;(结果保留两位有效数字)③在误差允许的范围内,通过本实验,同学们可以探究出哪些物理量是不变的?通过对实验数据的分析说明理由.(至少回答2个不变量).a .____________b .____________.答案 ①a.大大减小了因滑块和导轨之间的摩擦而引起的误差.b.保证两个滑块的碰撞是一维的.②0.50 0.10 0.60③a.系统碰撞前后总动量不变.b.碰撞前后总动能不变.(c.碰撞前后质量不变.) 解析 ①a.大大减小了因滑块和导轨之间的摩擦而引起的误差.b.保证两个滑块的碰撞是一维的.②滑块1碰撞之前的速度v 1=d Δt 1=5×10-310.01×10-3 m/s ≈0.50 m/s ;滑块1碰撞之后的速度v 2=d Δt 2=5×10-30.049 9m/s ≈0.10 m/s ;滑块2碰撞后的速度v 3=d Δt 3=5×10-38.35×10-3 m/s ≈0.60 m/s ;③a.系统碰撞前后总动量不变.因为系统碰撞前的动量m 1v 1=0.15 kg·m/s,系统碰撞后的动量m 1v 2+m 2v 3=0.15 kg·m/s b .碰撞前后总动能不变.因为碰撞前的总动能E k1=12m 1v 12=0.037 5 J ,碰撞之后的总动能E k2=12m 1v 22+12m 2v 32=0.037 5J ,所以碰撞前后总动能相等. c .碰撞前后质量不变.例2 某同学设计了一个用打点计时器探究碰撞中动量变化的规律的实验:在小车A 的前端粘有橡皮泥,推动小车A 使之做匀速直线运动.然后与原来静止在前方的小车B 相碰并粘合成一体,继续做匀速直线运动,他设计的具体装置如图7所示.在小车A 后连着纸带,电磁打点计时器电源频率为50 Hz ,长木板下垫着小木片用以平衡摩擦力.图7(1)若已得到打点纸带如图8所示,并测得各计数点间的距离标在图上,A 为运动起始的第一点.则应选________段来计算小车A 的碰前速度,应选______段来计算小车A 和小车B 碰后的共同速度(填“AB ”“BC ”“CD ”或“DE ”).图8(2)已测得小车A 的质量m A =0.40 kg ,小车B 的质量m B =0.20 kg ,由以上的测量结果可得:碰前两小车的总动量为______ kg·m/s,碰后两小车的总动量为______ kg·m/s. 答案 (1)BC DE (2)0.420 0.417解析 (1)因小车做匀速运动,应取纸带上打点均匀的一段来计算速度,碰前BC 段点距相等,碰后DE 段点距相等,故取BC 段、DE 段分别计算碰前小车A 的速度和碰后小车A 和小车B 的共同速度. (2)碰前小车速度v A =x BC T =10.50×10-20.02×5m/s =1.05 m/s其动量p A =m A v A =0.40×1.05 kg·m/s=0.420 kg·m/s碰后小车A 和小车B 的共同速度v AB =x DE T =6.95×10-20.02×5m/s =0.695 m/s碰后总动量p AB =(m A +m B )v AB =(0.40+0.20)×0.695 kg·m/s=0.417 kg·m/s从上面计算可知:在实验误差允许的范围内,碰撞前后总动量不变.例3 某同学用图9甲所示的装置通过半径相同的A 、B 两球的碰撞来探究动量守恒定律.图中SQ 是斜槽,QR 为水平槽.实验时先使A 球从斜槽上某一固定位置G 由静止开始滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球放在水平槽上靠近末端的地方,让A 球仍从位置G 由静止滚下,和B 球碰撞后,A 、B 两球分别在记录纸上留下各自的落点痕迹,重复这种操作10次.图中O 点是水平槽末端R 在记录纸上的垂直投影点.B 球落点痕迹如图乙所示,其中米尺水平放置,且平行于G 、R 、O 所在平面,米尺的零点与O 点对齐. (1)碰撞后B 球的水平射程ON 应取为________ cm.图9(2)该同学实验数据记录如表所示,设两球在空中运动的时间为t ,请根据数据求出两球碰撞前的动量之和是________,两球碰撞后的动量之和是________,由此得出的结论是________________________________________________________________________.m A /gm B /gOM /cmON /cm OP /cm20.010.015.247.9答案 (1)65.2 (2)958.0 g·cm t 956.0 g·cmt误差允许的范围内,碰撞前后动量守恒定律成立解析 (1)水平射程是将10个不同的落点用尽量小的圆圈起来,其圆心即为平均落点,从题图乙上可读出约为65.2 cm.(2)A 、B 两球在碰撞前后都做平抛运动,高度相同,在空中运动的时间相同,而水平方向都做匀速直线运动,其水平射程等于速度与落地时间t 的乘积. 碰撞前A 球的速度为v A =OP t =47.9 cm t,碰撞前质量与速度的乘积之和为m A v A =20.0 g×47.9 cm t =958.0 g·cmt.碰撞后A 球的速度为v A ′=OM t =15.2 cmt,碰撞后B 球的速度为v B ′=ON t =65.2 cm t.碰撞后动量之和为m A v A ′+m B v B ′=20.0 g×15.2 cm t +10.0 g×65.2 cm t =956.0 g·cmt.一、选择题(1题为单选题,2~3题为多选题)1.用气垫导轨进行验证碰撞中的动量守恒的实验时,不需要测量的物理量是( ) A .滑块的质量 B .挡光时间 C .挡光片的宽度 D .光电门的高度答案 D2.在利用气垫导轨探究动量守恒定律实验中,哪些因素可导致实验误差( ) A .导轨安放不水平 B .小车上挡光板倾斜 C .两小车质量不相等 D .两小车碰后粘合在一起 答案 AB解析 导轨不水平,小车速度将受重力影响.挡光板倾斜会导致挡光板宽度不等于挡光阶段小车通过的位移,导致速度计算出现误差.3.若用打点计时器做“探究碰撞中的不变量”的实验,下列操作正确的是( ) A .相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了改变两车的质量 B .相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后粘在一起 C .先接通打点计时器的电源,再释放拖动纸带的小车 D .先释放拖动纸带的小车,再接通打点计时器的电源 答案 BC解析 相互作用的两车上,一个装上撞针,一个装上橡皮泥,是为了碰撞后两车能粘在一起共同运动,这种情况能得到能量损失很大的碰撞,选项A 错,B 正确;应当先接通打点计时器的电源,再释放拖动纸带的小车,否则因运动距离较短,小车释放以后再接通电源,不容易得到实验数据,故选项C 正确,D 错误. 二、非选择题4.在用气垫导轨做“验证碰撞中的动量守恒”实验时,左侧滑块质量m 1=170 g ,右侧滑块质量m 2=110 g ,挡光片宽度d 为3.00 cm ,两滑块之间有一压缩的弹簧片,并用细线连在一起,如图1所示.开始时两滑块静止,烧断细线后,两滑块分别向左、右方向运动.挡光片通过光电门的时间分别为Δt 1=0.32 s ,Δt 2=0.21 s .则两滑块的速度大小分别为v 1′=______m/s ,v 2′=______m/s(保留三位有效数字).烧断细线前m 1v 1+m 2v 2=______kg·m/s,烧断细线后m 1v 1′+m 2v 2′=________kg·m/s.可得到的结论是__________________________.(取向左为速度的正方向)图1答案 0.094 0.143 0 2.5×10-4在实验允许的误差范围内,碰撞前后两滑块的总动量保持不变 解析 两滑块速度v 1′=d Δt 1=3.00×10-20.32m/s ≈0.094 m/s ,v 2′=-d Δt 2=-3.00×10-20.21 m/s ≈-0.143 m/s ,烧断细线前m 1v 1+m 2v 2=0烧断细前后m 1v 1′+m 2v 2′=(0.170×0.094-0.110×0.143) kg·m/s=2.5×10-4kg·m/s, 在实验允许的误差范围内,m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.5.用如图2所示装置验证碰撞中的动量守恒,气垫导轨水平放置,挡光板宽度为9.0 mm ,两滑块被弹簧(图中未画出)弹开后,左侧滑块通过左侧光电计时器,记录时间为0.040 s ,右侧滑块通过右侧光电计时器,记录时间为0.060 s ,左侧滑块质量为100 g ,左侧滑块的m 1v 1=________ g·m/s,右侧滑块质量为150 g ,两滑块的总动量m 1v 1+m 2v 2=________g·m/s.(取向左为速度的正方向)图2答案 22.5 0解析 左侧滑块的速度为:v 1=d 1t 1=9.0×10-30.040m/s =0.225 m/s则左侧滑块的m 1v 1=100 g×0.225 m/s=22.5 g·m/s 右侧滑块的速度为:v 2=-d 2t 2=-9.0×10-30.060m/s =-0.15 m/s则右侧滑块的m 2v 2=150 g×(-0.15 m/s)=-22.5 g·m/s 因m 1v 1与m 2v 2等大、反向,两滑块的总动量m 1v 1+m 2v 2=0.6.如图3所示,在实验室用两端带竖直挡板C 、D 的气垫导轨和带固定挡板的质量都是M 的滑块A 、B ,做探究碰撞中的不变量的实验:图3(1)把两滑块A 和B 紧贴在一起,在A 上放质量为m 的砝码,置于导轨上,用电动卡销卡住A 和B ,在A 和B 的固定挡板间放一弹簧,使弹簧处于水平方向上的压缩状态.(2)按下电钮使电动卡销放开,同时启动两个记录两滑块运动时间的电子计时器,当A 和B 与挡板C 和D 碰撞的同时,电子计时器自动停表,记下A 运动至C 的时间t 1,B 运动至D 的时间t 2.(3)重复几次取t 1、t 2的平均值. 请回答以下几个问题:①在调整气垫导轨时应注意___________________________________________________; ②应测量的数据还有_________________________________________________________; ③作用前A 、B 两滑块的速度与质量乘积之和为________________,作用后A 、B 两滑块的速度与质量乘积之和为________________.(用测量的物理量符号和已知的物理量符号表示) 答案 ①用水平仪测量并调试使得气垫导轨水平 ②A 至C 的距离L 1、B 至D 的距离L 2 ③0 (M +m )L 1t 1-M L 2t 2或M L 2t 2-(M +m )L 1t 1解析 ①为了保证滑块A 、B 作用后做匀速直线运动,必须使气垫导轨水平,需要用水平仪加以调试.②要求出A 、B 两滑块在电动卡销放开后的速度,需测出A 至C 的时间t 1和B 至D 的时间t 2,并且要测量出两滑块到两挡板的运动距离L 1和L 2,再由公式v =xt求出其速度.③设向左为正方向,根据所测数据求得两滑块的速度分别为v A =L 1t 1,v B =-L 2t 2.碰前两滑块静止,v =0,速度与质量乘积之和为0;碰后两滑块的速度与质量乘积之和为(M +m )L 1t 1-M L 2t 2.若设向右为正方向,同理可得碰后两滑块的速度与质量的乘积之和为M L 2t 2-(M +m )L 1t 1. 7.某班物理兴趣小组选用如图4所示装置来“探究碰撞中的动量守恒”.将一段不可伸长的轻质小绳一端与力传感器(可以实时记录绳所受的拉力)相连固定在O 点,另一端连接小钢球A ,把小钢球拉至M 处可使绳水平拉紧.在小钢球最低点N 右侧放置有一水平气垫导轨,气垫导轨上放有小滑块B (B 上安装宽度较小且质量不计的遮光板)、光电门(已连接数字毫秒计).当地的重力加速度为g .图4某同学按上图所示安装气垫导轨、滑块B (调整滑块B 的位置使小钢球自由下垂静止在N 点时与滑块B 接触而无压力)和光电门,调整好气垫导轨高度,确保小钢球A 通过最低点时恰好与滑块B 发生正碰.让小钢球A 从某位置静止释放,摆到最低点N 与滑块B 碰撞,碰撞后小钢球A 并没有立即反向,碰撞时间极短.(1)为完成实验,除了毫秒计读数Δt 、碰撞前瞬间绳的拉力F 1、碰撞结束瞬间绳的拉力F 2、滑块B 的质量m B 和遮光板宽度d 外,还需要测量的物理量有________. A .小钢球A 的质量m A B .绳长LC .小钢球从M 到N 运动的时间(2)滑块B 通过光电门时的瞬时速度v B =________.(用题中已给的物理量符号来表示) (3)实验中需要探究的表达式为________. 答案 (1)AB (2)dΔt(3)F 1m A L -m 2A gL =F 2m A L -m 2A gL +m BdΔt解析 滑块B 通过光电门时的瞬时速度v B =dΔt. 根据牛顿第二定律得:F 1-m A g =m A v21L .F 2-m A g =m A v 22L.由m A v 1=m A v 2+m B v B 得F 1m A L -m 2A gL =F 2m A L -m 2A gL +m BdΔt.所以还需要测量小钢球A 的质量m A 以及绳长L .。
【名校专用】高中物理第一章碰撞与动量守恒1.1物体的碰撞教案粤教版选修3_5

1.1物体的碰撞课堂互动三点剖析一、碰撞碰撞:当两个物体非常接近时,它们的相互作用改变了它们的运动状态,即引起动量和能量的交换,我们就说,它们发生了碰撞.由此可知,发生碰撞必须要满足两个条件:一是这种相互作用在较短的时间内发生,二是使两个质点的运动发生显著的变化.这是广义上的碰撞,例如两个微观粒子的碰撞.在宏观现象中,碰撞意味着两物体直接接触,其特点是:相碰的物体在接触前和分离后没有相互作用,接触的时间很短,接触时发生的相互作用比较强烈,因而在接触过程中可以忽略外力.二、碰撞的形式1.碰撞的研究:最早研究碰撞的是马西尔,随后,伽利略、马略特、牛顿、笛卡尔、惠更斯先后用大量的实验进行了研究,总结了碰撞的规律,形成了动量守恒的思想.并应用到了对微观粒子的研究上,发现了新的粒子.2.碰撞的形式有正碰、斜碰.3.区分正碰和斜碰主要看碰撞前两球的相对速度的方向与连心线的关系,与各小球自身的运动状态无关,与碰撞的位置无关.三、弹性碰撞与非弹性碰撞1.完全弹性碰撞如果两个物体(以两个弹性小球为例)在碰撞过程中,没有机械能的损失,这样的碰撞称为完全弹性碰撞。
此时两个物体之间的力是弹性力,在开始接触后的前一阶段,两球互相压缩,弹性力做负功,这时有一部分动能转化为弹性势能,在两球的速度相等时,压缩停止,此时系统的弹性势能最大,系统的动能最小;然后立即转为互相推开,弹性力做正功,此时弹性势能转化为动能.当全部分开时,弹性势能为零,全部转化为动能.2.非弹性碰撞两球碰撞后形变不能完全恢复.碰撞前后两小球的总动能不相等,有损失,损失的机械能转化为内能.3.完全非弹性碰撞两球碰撞后完全不反弹,动能损失最大.很多情况下表现为两球合为一体,或达到共同速度.各个击破【例1】下列说法正确的是()A.s两小球正碰就是从正面碰撞B.两小球斜碰就是从侧面碰撞C.两小球正碰就是对心碰撞D.两小球斜碰就是非对心碰撞解析:两小球碰撞时的速度沿着连心线方向,称为正碰,即对心碰撞;两小球碰前的相对速度不在连心线上,称为斜碰,即非对心碰撞.答案:CD类题演练1在光滑的水平面上,一个运动的小球去碰撞一个静止的小球,则这个属于()A.正碰B.斜碰C.可能是正碰,也可能是斜碰D.条件不明,无法说明解析:判断正碰还是斜碰与各物体的运动状态无关,只与两球碰前相对速度的方向与两球连心线方向的关系相关.当相对速度的方向和连心线在同一直线上是正碰;当相对速度的方向与连心线不在一直线上是斜碰.则C选项正确.答案:C【例2】如图1-1-2所示,两小球在同一轨道槽内发生了碰撞,两小球都是弹性小球,则它们的碰撞属于()图1-1-2A.正碰B.斜碰C.弹性碰撞D.非弹性碰撞解析:两小球在同一槽内,两球相对运动速度的方向在两球的连心线上,是正碰.则选项A 正确;两小球都是弹性小球,属于弹性碰撞,故选项C正确.答案: AC类题演练2举例说明生活中哪些碰撞是完全非弹性碰撞.解析:完全非弹性碰撞的两物体碰后完全不反弹,动能损失最大,如一块泥巴摔在地上,一把刀插入木头中拔不出来,子弹射入木块中没有射出,火车站里,一列火车以一定的速度碰撞一列静止的车厢后共同前进,实现挂接等.。
高中物理第一章碰撞与动量守恒第一节物体的碰撞学案粤教版选修3-5

第一节物体的碰撞1.知道历史上对碰撞问题的研究和生活中的各种碰撞现象.2。
理解碰撞的特点,明确正碰和斜碰的含义.3.理解弹性碰撞、非弹性碰撞和完全非弹性碰撞的含义.一、历史上对碰撞问题的研究1.最早发表有关碰撞问题研究成果的是物理学教授马尔西.2.近代,由于加速器技术和探测技术的发展,通过高能粒子的碰撞,实验物理学家相继发现了许多新粒子.二、生活中的各种碰撞现象物体间碰撞的形式多种多样.若两个小球的碰撞,作用前后沿同一直线运动,这样的碰撞称为正碰;若两个小球的碰撞,作用前后不沿同一直线运动,则称为斜碰.三、弹性碰撞和非弹性碰撞1.弹性碰撞:任何两个小球碰撞时都会发生形变,若两个小球碰撞后形变能完全恢复,则没有能量损失,碰撞前后两个小球构成的系统的动能相等,我们称这种碰撞为弹性碰撞.2.非弹性碰撞:若两个球碰撞后它们的形变不能完全恢复原状,这时将有一部分动能最终会转变为其他形式的能(如热能),碰撞前后系统的动能不再相等,我们称这种碰撞为非弹性碰撞.自然界中,多数的碰撞实际上都属于非弹性碰撞.3.完全非弹性碰撞:如果碰撞后完全不反弹,比如湿纸或一滴油灰,落地后完全粘在地上,这种碰撞则是完全非弹性碰撞.碰撞是如何分类的?提示:按碰撞过程中机械能是否损失,可分为弹性碰撞和非弹性碰撞;按碰撞前后,物体的速度方向是否沿同一直线可将碰撞分为正碰和斜碰.探究碰撞的特点及形式1.碰撞的特点(1)相互作用力为变力,作用时间短,作用力很大,且远远大于系统所受的外力.(2)根据能的转化和守恒可知:在碰撞过程中,系统的总动能是不可能增加的.(3)由于碰撞作用时间很短,因此作用过程中物体的位移很小,一般可忽略不计,可以认为物体在相互作用前的瞬间位置以新的速度开始运动.2.碰撞的形式(1)正碰:两物体碰撞前的相对速度沿着连心线方向,即碰撞前后两物体的速度方向在同一条直线上.(2)斜碰:两物体碰撞前的相对速度不在连心线上,即碰撞前后两物体的速度方向不在同一条直线上.3.弹性碰撞和非弹性碰撞(1)弹性碰撞:如果碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞.弹性碰撞过程一般可分为两个阶段,即压缩阶段和恢复阶段.弹性碰撞两物体的动能之和完全没有损失,可表示为:错误!m1v错误!+错误!m2v错误!=错误!m1v错误!+错误!m2v错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 物体的碰撞对应学生用书页码P11.碰撞是力学的基本问题之一,著名的科学家伽利略、牛顿等都先后进行了一系列的实验,从最初对一些现象尚无法作出解释,到逐渐归纳成系统的理论,总结出碰撞的规律,直至明确提出运动量守恒的基本思想,都为后来的动量守恒定律奠定了基础。
2.20世纪30年代以后,由于加速器技术和探测技术的发展,通过高能粒子的碰撞,实验物理学家相继发现了许多新粒子。
3.物体间碰撞的形式多种多样。
如图1-1-1甲所示,两小球碰撞时的速度沿着连心线的方向,这种碰撞称为正碰,如图1-1-1乙所示,两球碰撞前的相对速度不在连心线上,这种碰撞称为斜碰。
图1-1-14.碰撞的最主要特点是:相互作用时间短,作用力变化快和作用力峰值大等,因而其他外力可以忽略不计。
碰撞是生活中常见的现象,两节火车车厢之间的挂钩靠碰撞连接,台球由于两球的碰撞而改变运动状态,微观粒子之间更是由于相互碰撞而改变能量,甚至使得一种粒子转化为另一种粒子,物体在碰撞中遵循什么物理规律呢?本章我们将从历史上的碰撞实验出发,认识各种碰撞的形式,探究碰撞的规律—动量守恒定律,从守恒和对称的关系中感受物理学的和谐美。
5.如果碰撞过程中系统动能守恒,这样的碰撞叫做弹性碰撞。
如果碰撞过程中系统动能不守恒,这样的碰撞叫做非弹性碰撞,如果两个物体碰撞后合为一体具有共同的速度,这样的碰撞叫做完全非弹性碰撞。
对应学生用书页码P1对碰撞现象的研究1.碰撞现象两个或两个以上有相对速度的物体相遇时,在很短的时间内它们的运动状态发生显著变化,物体间相互作用的过程叫碰撞。
2.碰撞的特点(1)作用时间极短,相互作用力变化很快,平均作用力很大;相互作用力远大于其他外力,其他外力可以忽略不计。
(2)碰撞过程是在一瞬间发生的,作用时间极短,所以可以忽略物体的位移,可以认为物体在碰撞前后仍在同一位置。
3.碰撞的分类按碰撞过程的能量损失情况可分为完全弹性碰撞、非弹性碰撞、完全非弹性碰撞。
(1)完全弹性碰撞:任何两个小球碰撞时都会发生形变,若两球碰撞后形变能完全恢复,并没有能量损失,碰撞前后两小球构成的系统的动能相等,我们称这种碰撞为完全弹性碰撞。
(2)非弹性碰撞:若两球碰撞后它们的形变不能完全恢复原状,这时将有一部分动能最终会转变为内能,碰撞前后系统的动能不再相等,我们称这种碰撞是非弹性碰撞。
(3)完全非弹性碰撞:如果碰撞后完全不反弹,两球成为一个整体,这种碰撞则是完全非弹性碰撞。
4.对弹性碰撞和非弹性碰撞的理解弹性碰撞和非弹性碰撞可以从形变和动能两个角度进行理解。
(1)若两个物体发生碰撞时形变属于弹性的,碰后能够恢复,碰撞过程中只是发生了动能和弹性势能之间的相互转化,碰撞前后两小球构成的系统的动能不可能损失,则两物体间发生了完全弹性碰撞。
(2)若两个物体发生碰撞时形变属于非弹性的,碰后不能够恢复原状,碰撞过程中除发生动能和弹性势能之间的相互转化外,碰撞前后系统的动能不再相等,则两物体间的碰撞为非弹性碰撞;若两个物体碰撞后合为一体,形变完全不能恢复,此时损失的动能最大。
(1)物理学家所研究的碰撞,并不限于物体直接接触的情况。
分子、原子、基本粒子等微观粒子不直接接触,但相互以力作用着,并影响彼此的运动,这种情况也叫做碰撞。
(2)小到微观粒子,大到生活中宏观物体,再到宇宙天体,碰撞是自然界中最常见的物体相互作用的表现形式之一,因此,对碰撞问题的研究,有助于我们认识和了解物体相互作用的具体规律和丰富的粒子世界。
1.根据碰撞过程中动能的损失情况,物体间的碰撞可分为________碰撞,____________碰撞和______________碰撞,其中________________碰撞的动能损失最大。
解析:在碰撞过程中,若物体的动能无损失,则称这种碰撞为弹性碰撞;若碰撞时物体的形变不能完全恢复,此时将有部分动能转化为热,这种碰撞称为非弹性碰撞,若碰撞时,物体的形变完全不能恢复,此时动能损失最多,这种碰撞称为完全非弹性碰撞。
答案:弹性非弹性完全非弹性完全非弹性碰撞过程的分析以两个质量相同的理想弹性小球相向运动的情况为例,讨论碰撞的具体过程,如图1-1-2所示。
图中小球内部的箭头表示运动的速度方向,箭头的长短表示速度的大小。
两个相向运动的弹性小球开始相碰时(如图Ⅰ),由于它们具有相向运动的速度,开始相互挤压,发生形变,从而产生弹性力。
向右运动的第一个小球受到第二个小球给它的向左的弹性力,开始做减速运动,从而向右运动的速度减小;同时,向左运动的第二个小球受到第一个小球给它的向右的弹性力,开始做减速运动,从而向左运动的速度减小(图Ⅱ)。
这时,虽然相对运动的速度减小了,仍继续相互挤压,继续发生形变,在更大的弹性力作用下,相对速度逐渐减小到0(图Ⅲ),此时形变最大,相互作用的弹性力也最大,完成了所谓的碰撞过程的压缩阶段。
之后,弹性小球开始恢复形变。
在相互作用的弹性力作用下,分别做加速运动,从而又获得速度(图Ⅳ),最后达到图Ⅴ的状态,弹性碰撞结束。
以上对碰撞过程的分析,实际上是近似的,它的前提是:(1)认为物体的形变是局部的形变,只发生在接触面处;(2)认为物体之间的相互作用只是由形变产生的弹力;(3)恢复阶段是在形变达到最大值后开始,到物体分离结束。
实际的碰撞过程是相当复杂的,相撞物体开始接触后,相互作用力以应力波形式传布于整个物体,引起各部分形变。
形变和恢复两个阶段,也是很难严格区分的。
2.(双选)在两个质量相同的物体相向运动发生弹性碰撞过程中,下列说法正确的是图1-1-2( )A .两物体相互压缩过程中,做匀减速运动,直到速度减为零B .两物体相互压缩过程中,速度减小,动能转化为弹性势能C .两物体恢复形变过程中,弹力逐渐变大,速度逐渐变大D .两物体恢复形变过程中,速度变大,弹性势能转化为动能解析:两物体压缩过程中,弹力逐渐变大,加速度逐渐变大,物体做加速度变大的减速运动,物体的动能转化为弹性势能,故A 错B 对。
恢复形变过程中,弹力逐渐减小,物体做加速度减小的加速运动,物体的弹性势能转化为动能,故C 错D 对。
答案:BD对应学生用书页码P2碰撞中的能量问题[例] 质量为B 球发生碰撞,碰后A 球以1 m/s 的速度反向弹回,B 球以2 m/s 的速度向前运动,试分析:(1)碰撞过程中损失了多少动能。
(2)两球的碰撞属于何种类型的碰撞。
[解析] (1)碰撞前物体的动能E k A =12m A v 2A =12×5×32J =22.5 J碰撞后物体的动能E ′k =E k A ′+E ′k B =12m A v A ′2+12m B v 2B=12×5×12 J +12×10×22J =22.5 J 故碰撞过程中无动能损失。
(2)由于碰撞过程中无动能损失,故两球的碰撞属于完全弹性碰撞。
[答案] (1)0 (2)完全弹性碰撞(1)物体间发生完全弹性碰撞后形变能完全恢复,碰撞系统的动能守恒;物体间发生非弹性碰撞后形变不能完全恢复,碰撞系统的动能有损失;物体间发生完全非弹性碰撞后,形变完全不能恢复,碰撞系统的动能损失最大。
(2)质量为m 的运动物体与质量为m 的静止物体发生完全弹性碰撞后,两物体交换速度。
质量为1 kg 的A 球以3 m/s 的速度与质量为2 kg 静止的B 球发生碰撞,碰后两球以1m/s 的速度一起运动。
则两球的碰撞属于________类型的碰撞,碰撞过程中损失了________动能。
解析:由于两球碰后速度相同,没有分离,因此两球的碰撞属于完全非弹性碰撞,在碰撞过程中损失的动能为ΔE k =12m A v 20-12(m A +m B )v 2=12×1×32 J -12×3×12J =3 J 。
答案:完全非弹性碰撞 3 J[对应课时跟踪检测一]1.最早发表有关碰撞问题研究成果的是( ) A .牛顿 B .伽利略 C .惠更斯D .马尔西解析:最早发表有关碰撞问题研究成果的是布拉格大学校长,物理学教授马尔西,故D 对。
答案:D2.下面对于碰撞的理解,正确的是( )A .碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生显著变化的过程B .在碰撞现象中,一般来说物体所受的外力作用不能忽略C .如果碰撞过程中动能不变,则这样的碰撞叫做非弹性碰撞D .根据碰撞过程中动能是否守恒,碰撞可分为正碰和斜碰解析:碰撞的主要特点是:相互作用时间短,作用力峰值大,因而其他外力可以忽略不计,在极短时间内物体的运动状态发生明显变化,故A 对B 错。
根据碰撞过程中动能是否守恒,碰撞分为弹性碰撞和非弹性碰撞,其中动能不变的碰撞称为完全弹性碰撞,故C 、D 错。
答案:A3.如图1所示,P 物体与一个连着弹簧的Q 物体正碰,碰后P 物体静止,Q 物体以P 物体碰前的速度v 离开,已知P 与Q 质量相等,弹簧质量忽略不计,那么当弹簧被压缩至最短时,下列的结论中正确的是( )图1A.P的速度恰好为零B.P与Q具有相同的速度C.Q刚开始运动D.Q的速度等于v解析:弹簧被压缩到最短时,即为两物体相对静止时,此时两物体具有相同的速度,故B对。
答案:B4.碰撞现象在生活中很常见,下列现象不属于碰撞现象的是( )A.打羽毛球时球拍与球的撞击B.小鸟在空中飞翔C.打桩、钉钉子等各种打击现象D.带电粒子对荧光屏的撞击解析:由碰撞的概念可知,此上现象除小鸟的飞翔外均属于碰撞现象。
答案:B5.下列说法正确的是( )A.能量守恒的碰撞是弹性碰撞B.弹性碰撞时机械能守恒C.正碰是弹性碰撞D.斜碰一定是非弹性碰撞解析:能量守恒定律是普遍规律,能量在转化过程中能量也守恒,但不一定动能不变,所以选项A错误。
弹性碰撞时产生弹性形变,碰撞后形变完全消失,碰撞过程没有动能损失,机械能守恒,所以选项B正确。
正碰是对心碰撞,但不一定是弹性碰撞,斜碰也不一定是非弹性碰撞,所以选项C、D错误。
答案:B6.在光滑的水平地面上有两个相同的弹性小球A、B,质量都为m。
现B球静止,A球向B球运动,发生弹性碰撞。
两球压缩最紧时的弹性势能为E p,动能为E k,则碰前A球的速度等于( )A.2E kmB.2E k+E pmC.2E kmD.2E k+E pm解析:物体发生弹性碰撞时,系统的机械能守恒,故12mv 2=E k +E p解得:v =2E k +E pm。
答案:B7.下列说法正确的是( ) A .两钢球碰撞后分开属于弹性碰撞 B .飞鸟撞飞机后一起运动属于弹性碰撞C .“守株待兔”中兔子撞上树桩属于完全非弹性碰撞D .雨滴下落与地面的碰撞属于弹性碰撞解析:碰撞时产生弹性形变,碰撞后形变完全消失的是弹性碰撞,A 正确。