高中物理-动量守恒常见模型练习

合集下载

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

高中物理-动量守恒定律常见模型

高中物理-动量守恒定律常见模型

§动量守恒定律常见模型子弹打击木块类模型例题1:设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,设木块对子弹的阻力恒为f ,求:(1)木块至少多长子弹才不会穿出?(2)子弹在木块中运动了多长时间?变式:若不固定木块时,子弹穿透木块后的速度为v 0/3,现固定木块,其它条件相同,则子弹穿过木块时的而速度为多少?例题2:如图质量为M 的模板B 静止在光滑的水平面上,一质量为m 的长度可忽略的小木块A 以速度v 0水平地沿模板的表面滑行,已知小木块与木板间的动摩擦因数为µ,求:(1)木板至少多长小木块才不会掉下来?(2)小木块在木板上滑行了多长时间?拓展1:上题中,如果已知木板长为L ,(端点为A 、B ,中点为O),问v 0在什么范围内才能使小木块滑到OB 之间相对木块静止?v 0拓展2:如图所示,一辆质量m=2kg 的平板车左端放有质量M=3kg 的小滑块,滑块与平板车之间的动摩擦因数µ=0。

4。

开始时平板车和滑块共同以2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短、且碰撞后平板车速度大小保持不变,但方向与原来相反。

平板车足够长,以至滑块不会滑出平板车右端(g=10m/s 2).求:(1)平板车第一次与墙壁碰撞后想做运动的最大距离。

(2)平板车第二次与墙壁碰撞前瞬间的速度.(3)为使滑块始终不会滑到平板车右端,平板车至少多长?拓展3:两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L.导轨上面横放着两根导体棒ab 和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0。

若两导体棒在运动中始终不接触,求: (1)在运动中产生的较耳热最多是多少?(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?人船模型动量守恒定律的两个推论:推论1:当系统的动量守恒时,任意一段时间内的平均动量也守恒;推论2:当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。

人教版高中物理选择性必修第一册第一章动量守恒定律1-3动量守恒定律练习含答案

人教版高中物理选择性必修第一册第一章动量守恒定律1-3动量守恒定律练习含答案

第一章动量守恒定律3 动量守恒定律基础过关练题组一动量守恒的判断1.(经典题)(2024江苏无锡期中联考)如图所示,A、B两物体的质量比m A∶m B=4∶3,它们原来静止在足够长的平板车C上,A、B间有一根被压缩了的弹簧,地面光滑。

当弹簧被突然释放后,A、B组成的系统动量守恒。

则有()A.A、B与C间的动摩擦因数相等B.A、B与C间的动摩擦因数是否相等不确定C.最终稳定时小车向右运动D.A、B、C组成的系统动量守恒2.(2024江苏苏州期中)如图所示,小车放在光滑的水平面上,将系着绳的小球拉开到一定的角度,然后同时放开小球和小车,那么在以后的过程中()A.小球向左摆动时,小车也向左运动,且系统动量守恒B.小球向左摆动时,小车向右运动,且系统动量守恒C.小球向左摆到最高点时,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反(或都为零)3.(2024山东济南普高联考)如图所示,A、B两木块紧靠在一起且静止于光滑水平面上,一颗子弹C以一定的速度v0向右从A的左端射入,穿过木块A后进入木块B,最后从B的右端射出,在此过程中,下列叙述正确的是()A.当子弹C在木块A中运动时,A、C组成的系统动量守恒B.当子弹C在木块B中运动时,B、C组成的系统动量守恒C.当子弹C在木块A中运动时,A、B、C组成的系统动量不守恒D.当子弹C在木块B中运动时,A、B、C组成的系统动量不守恒4.(2024广东深圳期中)建筑工地上常用打桩机把桩打入地下。

电动机先把重锤吊起一定的高度,然后由静止释放,重锤打在桩上,接着随桩一起向下运动直到停止。

不计空气阻力,则下列说法中正确的是()A.重锤与桩的撞击过程中,重锤和桩组成的系统机械能守恒B.重锤随桩一起向下运动过程中,重锤和桩组成的系统机械能守恒C.整个运动过程中,重锤和桩组成的系统动量守恒D.整个运动过程中,重锤所受合外力冲量为零题组二两物体组成的系统动量守恒5.(2024河北邢台四校联考)如图所示,现有一个质量为m的小孩站在一辆质量为km的滑板车上,小孩与滑板车一起在光滑的水平路面上以速度v0匀速运动,突然小孩相对地面以速度1110v0向前跳离滑板车,滑板车速度大小变为原来的110,但方向不变,则k为()A.15B.16C.19D.1116.(2024浙江温州期中)如图所示,光滑的水平面上有大小相同、质量不等的小球A、B,小球A以速度v0向右运动时与静止的小球B发生碰撞,碰后A球速度反向,大小为v04,B球的速率为v02,A、B两球的质量之比为()A.3∶8B.8∶3C.2∶5D.5∶27.(教材习题改编)甲、乙两人静止在水平冰面上,突然两人掌心相碰互推对方,互推过程中两人相互作用力远大于冰面对人的摩擦力,若两人与冰面间的动摩擦因数相等,则以下正确的是() A.若m甲>m乙,则在互推的过程中,甲对乙的冲量大于乙对甲的冲量B.无论甲、乙质量关系如何,在互推过程中,甲、乙两人动量变化量大小相等C.若m甲>m乙,则分开瞬间甲的速率比乙的大D.若m甲>m乙,则分开后乙先停下来8.(多选题)如图所示,在水平面上有一质量为M的长木板,其右端固定有一立柱。

高中物理模块六动量与动量守恒定律考点2.2.1类碰撞模型之“滑块+弹簧+滑块”试题

高中物理模块六动量与动量守恒定律考点2.2.1类碰撞模型之“滑块+弹簧+滑块”试题

考点2.2.1 类碰撞模型之“滑块+弹簧+滑块〞1.对于弹簧类问题,在作用过程中,系统合外力为零,满足动量守恒.2.整个过程涉及到弹性势能、动能、内能、重力势能转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短时,弹簧连接两物体速度相等,此时弹簧弹性势能最大.例4 两物块A 、B 用轻弹簧相连,质量均为2kg ,初始时弹簧处于原长,A 、B 两物块都以v =6m/s 速度在光滑水平地面上运动,质量为4kg 物块C 静止在前方,如图4所示.B 与C 碰撞后二者会粘在一起运动.那么在以后运动中:(1)当弹簧弹性势能最大时,物块A 速度为多大?(2)系统中弹性势能最大值是多少?【解析】(1)当A 、B 、C 三者速度相等时弹簧弹性势能最大.由A 、B 、C 三者组成系统动量守恒,(m A +m B )v =(m A +m B +m C )·v ABC ,解得v ABC =2+2×62+2+4m/s =3 m/s. (2)B 、C 碰撞时B 、C 组成系统动量守恒,设碰后瞬间B 、C 两者速度为v BC ,那么m B v =(m B +m C )v BC ,v BC =2×62+4m/s =2 m/s ,设物块A 、B 、C 速度一样时弹簧弹性势能最大为E p ,根据能量守恒E p =12(m B +m C )v 2BC +12m A v 2-12(m A +m B +m C )v 2ABC =12×(2+4)×22J +12×2×62J -12×(2+2+4)×32J =12J. 【答案】(1)3m/s (2)12J1. (多项选择)光滑水平地面上,A 、B 两物体质量都为m ,A 以速度v 向右运动,B 原来静止,左端有一轻弹簧,如下图,当A 撞上弹簧,弹簧被压缩最短时( AD )A .A 、B 系统总动量仍然为mvB .A 动量变为零C .B 动量到达最大值D .A 、B 速度相等2. 如下图,质量相等两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止滑块N 与挡板P 相连接,弹簧与挡板质量均不计;滑块M 以初速度v 0向右运动,它与档板P 碰撞〔不粘连〕后开场压缩弹簧,最后滑块N 以速度v 0向右运动。

高中物理动量守恒定律题20套(带答案)含解析

高中物理动量守恒定律题20套(带答案)含解析

高中物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rr α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得2.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)【答案】25m/s【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:()20120M v M m M v +=++共,解得5m /s v =共以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得25m /s v =考点:考查了动量守恒定律的应用【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解3.28.如图所示,质量为m a=2kg的木块A静止在光滑水平面上。

一质量为m b= lkg的木块B以初速度v0=l0m/s沿水平方向向右运动,与A碰撞后都向右运动。

木块A与挡板碰撞后立即反弹(设木块A与挡板碰撞过程无机械能损失)。

高中物理专题:动量守恒经典题目

高中物理专题:动量守恒经典题目

高中物理专题:动量守恒经典题目1:小车置于光滑水平面上,一个人站在车上练习打靶,如图,除了子弹外,车、人、靶、枪的总质量为M。

n发子弹每发质量为m。

枪口和靶的距离为d。

子弹沿水平方向射出。

射中靶后即留在靶内。

待前一发打入靶中,再打下一发,n发子弹全部打完后,小车移动的总距离是多少?2:一辆平板车停在光滑水平面上,车上一人(原来也静止)用锤子敲打车的左端,在锤子连续敲打下,这辆板车将()A.左右振动B.向左运动C.向右运动D.静止不动3:质量为M的滑块带有半径为R的圆周的圆弧面,滑块静止在光滑水平面上,如图所示,质量为m的小球从离圆弧面上端h高处由静止开始落下,恰好从圆弧面最上端落入圆周内。

不计各处摩擦,试求小球从圆弧面最下端离开滑块时,滑块的速度多大?4:向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块速度方向仍沿原来方向,则()A.b的速度方向一定与原速度方向相反B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b大C.a、b一定同时到达水平地面D.在炸裂过程中,a、b受到的冲量一定相同5:运送人造地球卫星的火箭开始工作后,火箭做加速运动的原因是()A.燃料推动空气,空气反作用力推动火箭B.火箭发动机用力将燃料燃烧产生的气体向后推出,气体的反作用力推动火箭C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭D.火箭燃料燃烧发热,加热周围空气,空气膨胀推动火箭6:如图所示,质量为m、半径为r的小球,放在内半径为R,质量为3m的大空心球内,大球开始静止在光滑水平面上,当小球由图中位置无初速度释放沿内壁滚到最低点时,大球移动的距离为多少?7:如图所示,一质量为m的玩具蛙蹲在质量为M的小车的细杆上,小车放在光滑的水平面上,若车长为L,细杆高为h且位于小车的中央,试问玩具蛙对地最小以多大的水平速度跳出才能落到地面上?专题:动量守恒之碰撞8:半径相等的两个小球甲和乙,在光滑水平面上沿同一直线相向运动。

高中物理-动量守恒定律经典例题详解

高中物理-动量守恒定律经典例题详解

高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X29­1甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X29­1答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X29­2是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X29­2A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X29­6所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X29­6答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理-动量守恒常见模型练习一、弹性碰撞1.如图,一条滑道由一段半径R =0.8 m 的14圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2).(1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′;(2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因数μ的大小为多少?二、非弹性碰撞2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M=2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求:(1)碰撞结束时小球A 的速度v A ;(2)小球A 与小球B 碰撞前的速度v 0的大小.三、完全非弹性碰撞3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:(1)粘合后的两球从飞出轨道到落地的时间t ;(2)小球A 冲进轨道时速度v 的大小.2、爆炸 1、碰撞4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。

求:(1) v0的大小(2)爆炸过程炮弹所增加的动能5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动()A.一定沿v0的方向飞去B.一定沿v0的反方向飞去C.可能做自由落体运动D.以上说法都不对3、反冲6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s 的水平速度从船跳上岸时,不计阻力,求船速度大小v27.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上?4、弹簧模型8.(双选)光滑水平地面上,A、B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时A.A、B系统总动量仍然为mvB.A的动量变为零C.B的动量达到最大值D.A、B的速度相等9.10.一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平飞来打进木块并留在其中,设相互作用力为f.试求从木块开始运动到子弹与木块相对静止的过程中:(1)子弹、木块相对静止时的速度v?(2)子弹、木块发生的位移s1、s2以及子弹打进木块的深度l相分别为多少?(3)系统损失的机械能、系统增加的内能分别为多少?6、板块模型5、子弹射木块模型11.如图所示,一大小可忽略不计、质量为m1的小物体放在质量为m 2 的长木板的左端,长木板放在光滑的水平面上.现让 m 1 获得向右的速度 v 0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ.求长木板的长度至少是多少?12.如图 所示,长为 l 、质量为 M 的小船停在静水中,一个质量为 m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人相对地面的位移各是多少?13.如图所示,有光滑弧形轨道的小车静止于光滑的水平面上,其总质量为M ,有一质量也为M的铁块以水平速度v 沿轨道的水平部分滑上小车.若轨道足够高,铁块不会滑出,则铁块沿圆弧形轨道上升的最大高度为A.v 24gB.v 22gC.v 28gD.v 26g14.一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示.图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h .重力加速度为g .求木块在ab 段受到的摩擦力f15.(单选)一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A 、B 用一根弹性良好9、多物模型8、只有水平方向动量守恒7、人船模型的轻质弹簧连在一起,如图所示.则在子弹打击木块A 及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统A .动量守恒,机械能守恒B .动量不守恒,机械能守恒C .动量守恒,机械能不守恒D .无法判定动量、机械能是否守恒16.(单选)如图所示,A 、B 两个木块用轻弹簧相连接,它们静止在光滑水平面上,A 和B 的质量分别是99m 和100m ,一颗质量为m 的子弹以速度v 0水平射入木块A 内没有穿出,则在以后的过程中弹簧弹性势能的最大值为A.mv 20400B.mv 20200C.99mv 20200D.199mv 2040017.如图所示,固定在地面上的光滑圆弧面与车 C 的上表面平滑相接,在圆弧面上有一个滑块A ,其质量为m A =2kg,在距车的水平面高h =1.25 m 处由静止下滑,车 C 的质量为m C =6kg,在车C 的左端有一个质量m B =2kg 的滑块B ,滑块A 与B 均可看做质点,滑块A 与B 碰撞后黏合在一起共同运动,最终没有从车C 上滑出,已知滑块 A 、B 与车C 的动摩擦因数均为μ=0.5,车 C 与水平地面的摩擦忽略不计.取 g =10 m/s 2.求:(1)滑块A 滑到圆弧面末端时的速度大小.(2)滑块A 与B 碰撞后瞬间的共同速度的大小.(3)车C 的最短长度.动量守恒常见模型练习(参考答案)1、解:(1)设A 与B 相碰前的速度为v A ,A 从圆弧轨道上滑下时机械能守恒,有12mv 2A=mgR ① A 与B 相碰时,动量、机械能守恒mv A =mv A ′+mv B ′②12mv 2A =12mv A ′2+12mv B ′2③ 由①②③式得v A ′ =0,v B ′=4 m/s.(2)B 碰撞后到达N 点时速度为0,由动能定理得-fL =0-12mv B ′2⑤ 其中f =μmg ⑥由⑤⑥得μ=0.25.2.解:(1)碰撞结束后小球A 做平抛运动h =12gt 2 s =v A t解得v A =3 m/s.(2)两球碰撞前后动量守恒,有Mv 0=mv B +Mv A解得v 0=6 m/s.3.解析:(1)粘合后的两球飞出轨道后做平抛运动,有2R =12gt 2 解得t =2R g. (2)设球A 的质量为m ,碰撞前速度大小为v 1,由机械能守恒定律知12mv 2=12mv 21+2mgR 设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律知mv 1=2mv 2飞出轨道后做平抛运动,有2R =v 2t联立以上各式得v =22gR .4.解:(1)爆炸过程动量守恒210)(v m M mv Mv --=解得:s m v /100= (2)增加的动能J Mv v m M mv E k 270021)(2121203221=--+=∆ 5.C6.解:设小孩的运动方向为正方向.小孩跳离船的过程,由动量守恒定律得mv 1-Mv 2=0解得:v 2=1.5m/s7.8.AD 9.B 提示:共mv mv 2= p E mv mv +⨯=2222121共 10.解:(1)由动量守恒得mv 0=(M +m )v …(2分)子弹与木块的共同速度v =m M +m v 0.(1分) (2)对子弹利用动能定理得-fs 1=12mv 2-12mv 20①(2分) 所以s 1=Mm M +2m v 202f M +m 2.(1分) 同理对木块有:fs 2=12Mv 2②(2分) 故木块发生的位移为s 2=Mm 2v 202f M +m 2(1分) 子弹打进木块的深度为:l 相=s 1-s 2=Mmv 202f M +m.③(2分) (3)系统损失的机械能ΔE k =12mv 20-12(M +m )v 2=Mmv 202M +m④(2分) 系统增加的内能:Q =ΔE k =Mmv 202M +m.(2分)11.解:设共同速度的大小为v ,长木板的长度为L ,由动量守恒定律有m 1v 0=(m 1+m 2)v ①由能的转化和守恒定律有12m 1v 20-12(m 1+m 2)v 2=μm 1gL ②由①②式联立解得L =m 2v 202μm 1+m 2g. 12.解:系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则 mv 2-Mv 1=0在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t =0,即 ms 2-Ms 1=0, 而s 1+s 2=L解得:L M m m S +=1,L Mm M S +=2 13.解析:选A.由水平方向动量守恒定律得Mv =(M +M )v ′,v ′=v 2① 由机械能守恒定律得12Mv 2=12×(2M )v ′2+Mgh ② 由①②联立解得h =v 24g. 14.解析:(1)从开始到木块到达最大高度过程:由动量守恒:mv 0=3mv 1由能的转化及守恒:12mv 20=12(3m )v 21+mgh +fL 解得:f =mv 20-3mgh 3L. 15.B16.A17.解:(1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律有m A gh =12m A v 21 代入数据解得v 1=2gh =5 m/s.(2)设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,有m A v 1=(m A +m B )v 2代入数据解得v 2=2.5 m/s.(3)设车C 的最短长度为L ,滑块A 与B 最终没有从车C 上滑出,三者最终速度相同令其为v 3,根据动量守恒定律有(m A +m B )v 2=(m A +m B +m C )v 3 ①根据能量守恒定律有μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 23 ② 联立① ② 式代入数据解得L =0.375 m.。

相关文档
最新文档