精选-人教版高二物理3-5动量守恒常见模型归类练习

精选-人教版高二物理3-5动量守恒常见模型归类练习
精选-人教版高二物理3-5动量守恒常见模型归类练习

动量守恒常见模型练习

班级:__________ 座号:_______ 姓名:_______________ 一、弹性碰撞

1.如图,一条滑道由一段半径R=0.8 m的1

4圆弧轨道和一段长为L=3.2 m水平轨道MN组

成,在M点处放置一质量为m的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失(取g=10 m/s2).

(1)求A滑块与B滑块碰撞后的速度v A′和v B′;

(2)若A滑块与B滑块碰撞后,B滑块恰能达到N点,则MN段与B滑块间的动摩擦因数μ的大小为多少?

二、非弹性碰撞

2.如图所示,质量m=1.0 kg的小球B静止在光滑平台上,平台高h=0.80 m.一个质量为M=2.0 kg的小球A沿平台自左向右运动,与小球B发生正碰,碰后小球B的速度v B=

6.0 m/s,小球A落在水平地面的C点,DC间距离s=1.2 m.求:

(1)碰撞结束时小球A的速度v A;

(2)小球A与小球B碰撞前的速度v0的大小.

三、完全非弹性碰撞

3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:

(1)粘合后的两球从飞出轨道到落地的时间t;

(2)小球A冲进轨道时速度v的大小.

1、碰撞

2、爆炸

4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。求:

(1) v0的大小

(2)爆炸过程炮弹所增加的动能

5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动()

A.一定沿v0的方向飞去

B.一定沿v0的反方向飞去

C.可能做自由落体运动

D.以上说法都不对

3、反冲

6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s的水平速度从船跳上岸时,不计阻力,求船速度大小v2

7.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上?

4、弹簧模型

8.(双选)光滑水平地面上,A、B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时

A.A、B系统总动量仍然为mv

B.A的动量变为零

C.B的动量达到最大值

D.A、B的速度相等

9.

5、子弹射木块模型

10.一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平飞来打进木块并留在其中,设相互作用力为f.试求从木块开始运动到子弹与木块相对静止的过程中:

(1)子弹、木块相对静止时的速度v?

(2)子弹、木块发生的位移s1、s2以及子弹打进木块的深度l相分别为多少?

(3)系统损失的机械能、系统增加的内能分别为多少?

11.如图所示,一大小可忽略不计、质量为 m 1的小物体放在质量为 m 2 的长木板的左端,

长木板放在光滑的水平面上.现让 m 1 获得向右的速度 v 0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ.求长木板的长度至少是多少?

12.如图 所示,长为 l 、质量为 M 的小船停在静水中,一个质量为 m 的人站在船头,若

不计水的阻力,当人从船头走到船尾的过程中,船和人相对地面的位移各是多少?

13.如图所示,有光滑弧形轨道的小车静止于光滑的水平面上,其总质量为M ,有一质量也为M 的铁块以水平速度v 沿轨道的水平部分滑上小车.若轨道足够高,铁块不会滑出,则铁块沿圆弧形轨道上升的最大高度为

A.v 24g

B.v 2

2g C.v 28g D.v 26g

14.一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示.图中ab 为粗糙的水

8、只有水平方向动量守恒

7、人船模型 6、板块模型

平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 和bc 均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h .重力加速度为g .求木块在ab 段受到的摩擦力f

15.(单选)一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A 、B 用一根弹性良

好的轻质弹簧连在一起,如图所示.则在子弹打击木块A 及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统 A .动量守恒,机械能守恒 B .动量不守恒,机械能守恒 C .动量守恒,机械能不守恒

D .无法判定动量、机械能是否守恒

16.(单选)如图所示,A 、B 两个木块用轻弹簧相连接,它们静止在光滑水平面上,A 和B

的质量分别是99m 和100m ,一颗质量为m 的子弹以速度v 0水平射入木块A 内没有穿出,则在以后的过程中弹簧弹性势能的最大值为 A.mv 20400

B.mv 20200

C.99mv 20200

D.199mv 20400

17.如图所示,固定在地面上的光滑圆弧面与车 C 的上表面平滑相接,在圆弧面上有一个

滑块A ,其质量为m A =2kg ,在距车的水平面高h =1.25 m 处由静止下滑,车 C 的质量为m C =6kg ,在车C 的左端有一个质量m B =2kg 的滑块B ,滑块A 与B 均可看做质点,滑块A 与B 碰撞后黏合在一起共同运动,最终没有从车C 上滑出,已知滑块 A 、B 与车C 的动摩擦因数均为μ=0.5,车 C 与水平地面的摩擦忽略不计.取 g =10 m/s 2.求:

(1)滑块A 滑到圆弧面末端时的速度大小.

(2)滑块A 与B 碰撞后瞬间的共同速度的大小. (3)车C 的最短长度.

9、多物模型

动量守恒常见模型练习(参考答案)

1、解:

(1)设A 与B 相碰前的速度为v A ,A 从圆弧轨道上滑下时机械能守恒,有 12mv 2

A

=mgR ① A 与B 相碰时,动量、机械能守恒 mv A =mv A ′+mv B ′② 12mv 2A =12mv A ′2+1

2

mv B ′2③ 由①②③式得v A ′ =0,v B ′=4 m/s.

(2)B 碰撞后到达N 点时速度为0,由动能定理得

-fL =0-1

2

mv B ′2⑤

其中f =μmg ⑥ 由⑤⑥得μ=0.25.

2.解:(1)碰撞结束后小球A 做平抛运动

h =12gt 2 s =v A t

解得v A =3 m/s.

(2)两球碰撞前后动量守恒,有 Mv 0=mv B +Mv A 解得v 0=6 m/s.

3.解析:

(1)粘合后的两球飞出轨道后做平抛运动,有

2R =12gt 2 解得t =2R g

.

(2)设球A 的质量为m ,碰撞前速度大小为v 1,由机械能守恒定律知

12mv 2=12

mv 2

1+2mgR 设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律知 mv 1=2mv 2

飞出轨道后做平抛运动,有 2R =v 2t

联立以上各式得v =22gR . 4.解:

(1)爆炸过程动量守恒

210)(v m M mv Mv --= 解得:s m v /100= (2)增加的动能J Mv v m M mv E k 27002

1)(2121203221=--+=

? 5.C

6.解:设小孩的运动方向为正方向. 小孩跳离船的过程,由动量守恒定律得

mv 1-Mv 2=0

解得:v 2=1.5m/s 7.

8.AD

9.B 提示:共mv mv 2=

p E mv mv +?=2222

121共 10.解:

(1)由动量守恒得mv 0=(M +m )v …(2分)

子弹与木块的共同速度v =m

M +m v 0

.(1分)

(2)对子弹利用动能定理得

-fs 1=12mv 2-12

mv 2

0①(2分)

所以s 1=Mm M +2m v 20

2f M +m 2

.(1分)

同理对木块有:fs 2=1

2

Mv 2②(2分)

故木块发生的位移为s 2=Mm 2v 20

2f M +m 2

(1分)

子弹打进木块的深度为:l 相=s 1-s 2=Mmv 20

2f M +m

.③(2分)

(3)系统损失的机械能

ΔE k =12mv 20-12(M +m )v 2

=Mmv 202M +m

④(2分)

系统增加的内能:Q =ΔE k =Mmv 20

2M +m

.(2分)

11.解:设共同速度的大小为v ,长木板的长度为L ,由动量守恒定律有

m 1v 0=(m 1+m 2)v ① 由能的转化和守恒定律有 12m 1v 20-1

2(m 1

+m 2)v 2=μm 1gL ② 由①②式联立解得L =m 2v 20

2μm 1+m 2g

.

12.解:系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则 mv 2-Mv 1=0 在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故

mv 2t -Mv 1t =0,

即 ms 2-Ms 1=0, 而s 1+s 2=L

解得:L M m m S +=

1,L M

m M

S +=2

13.解析:选A.由水平方向动量守恒定律得Mv =(M +M )v ′,

v ′=v 2

由机械能守恒定律得 12Mv 2=12

×(2M )v ′2+Mgh ② 由①②联立解得h =v 2

4g

.

14.解析:(1)从开始到木块到达最大高度过程:

由动量守恒:mv 0=3mv 1

由能的转化及守恒:12mv 20=12

(3m )v 2

1+mgh +fL 解得:f =mv 20-3mgh

3L

.

15.B 16.A

17.解:(1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律有m A gh =1

2

m A v 21 代入数据解得v 1=2gh =5 m/s.

(2)设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,有 m A v 1=(m A +m B )v 2

代入数据解得v 2=2.5 m/s.

(3)设车C 的最短长度为L ,滑块A 与B 最终没有从车C 上滑出,三者最终速度相同令其为v 3,根据动量守恒定律有

(m A +m B )v 2=(m A +m B +m C )v 3 ① 根据能量守恒定律有

μ(m A +m B )gL =12(m A +m B )v 22-12

(m A +m B +m C )v 2

3 ② 联立① ② 式代入数据解得L =0.375 m.

高中物理-专题 动量

动量 动量守恒定律 基础热身 1.2012?佛山质检如图K18-1所示,两个同学穿旱冰鞋,面对面站立不动,互推后向相反的方向运动,不计 图K18-2 A .7 m/s ,向右 B .7 m/s ,向左 C .1 m/s ,向左 D .1 m/s ,向右 4.如图K18-3所示,在光滑的水平直线导轨上,有质量分别为2m 和m 、带电荷量分别为2q 和q 的两个小球A 、B 正相向运动,某时刻A 、B 两球的速度大小分别为v A 、v B .由于静电斥力作用,A 球先开始反向运动,最终两球都反向运动且它们不会相碰.下列判断正确的是( ) 图K18-3 A .v A >v B B .v A <1 2v B 图K18-1 摩擦阻力.下列判断正确的是( ) A .互推后两个同学的总动量增加 B .互推后两个同学的动量大小相等,方向相反 C .分离时质量大的同学的速度小一些 D .互推过程中机械能守恒 2.2012?泉州质检甲、乙两物体在光滑的水平面上沿同一直线相向运动,两物体的速度大小分别为3 m/s 和1 m/s ;碰撞后甲、乙两物体都反向运动,速度大小均为2 m/s ,则甲、乙两物体的质量之比为( ) A .2∶3 B .2∶5 C .3∶5 D .5∶3 3.在光滑的水平面上有两个在同一直线上相向运动的小球,其中甲球的质量m 1=2 kg ,乙球的质量m 2=1 kg ,规定向右为正方向,碰撞前后甲球的速度随时间变化的情况如图K18-2所示.已知两球发生正碰后粘在一起,则碰前乙球速度的大小和方向分别为( )

C .v A =13v B D .v B >v A >1 2v B 5.2012?福州质检某人站在平板车上,与车一起在光滑的水平面上做直线运动,当人相对于车竖直向上跳起时,车的速度大小将( ) A .增大 B .减小 C .不变 D .无法判断 6.如图K18-4所示,质量M =20 kg 的空箱子放在光滑的水平面上,箱子中有一个质量m =30 kg 的铁块,铁块与箱子的左端ab 壁相距d =1 m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计.用F =10 N 水平向右的恒力作用于箱子,2 s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( ) A.25 m/s B.1 4 m/s C.23 m/s D.5 32 m/s K18-4 K18-5 技能强化 7.2012?厦门质检如图K18-5所示,a 、b 两辆质量相同的平板小车成一直线排列,静止在光滑的水平地面上,a 车上一个小孩跳到b 车上,接着又立即从b 车上跳回a 车,他跳回a 车并相对a 车保持静止,此后( ) A .a 、b 两车的速率相等 B .a 车的速率大于b 车的速率 C .a 车的速率小于b 车的速率 D .a 、b 两车均静止 8.如图K18-6所示,A 、B 两物体用轻质弹簧相连,静止在光滑的水平面上.现同时对A 、B 两物体施加等大反向的水平恒力F 1、F 2,使A 、B 同时由静止开始运动.在弹簧由原长伸到最长的过程中,对A 、B 两物体及弹簧组成的系统,下列说法不正确的是( ) 图K18-6 A .A 、 B 先做变加速运动,当F 1、F 2和弹簧弹力相等时,A 、B 的速度最大;之后,A 、B 做变减速运动,直至速度减为零 B .A 、B 做变减速运动,速度减为零时,弹簧伸长最长,系统的机械能最大 C .A 、B 、弹簧组成的系统的机械能在这一过程中先增大后减小

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习 一、弹性碰撞 1.如图,一条滑道由一段半径R =0.8 m 的14 圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因数 μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN 为直径且与水 平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 2、爆炸 1、碰撞

高中物理-动量守恒定律教案

高中物理-动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。 师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生

的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论: 如图所示,子弹打进与固定于墙壁的弹簧相连的木块, 此系统从子弹开始入射木块到弹簧压缩到最短的过程中,

高中物理动量大题(含答案)

高中物理动量大题与解析1.(2017?平顶山模拟)如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b 两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求: (1)物块a与b碰后的速度大小; (2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.解:(1)对物块a,由动能定理得:,代入数据解得a与b碰前速度:v1=2m/s; ^ a、b 碰撞过程系统动量守恒,以a的初速度方向为正方向, 由动量守恒定律得:mv1=2mv2,代入数据解得:v2=1m/s; (2)当弹簧恢复到原长时两物块分离,a以v2=1m/s在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:mv2=(M+m)v3,代入数据解得:v3=s, 对小车,由动能定理得:, 代入数据解得,同速时车B端距挡板的距离:=; (3)由能量守恒得:, 解得滑块a与车相对静止时与O点距离:; ) 答:(1))物块a与b碰后的速度大小为1m/s; (2)当物块a相对小车静止时小车右端B到挡板的距离为 (3)当物块a相对小车静止时在小车上的位置到O点的距离为.

2.(2017?肇庆二模)如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V0滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求: (1)木板B上表面的动摩擦因素μ; (2)圆弧槽C的半径R ; (3)当A滑离C时,C的速度. > 解:(1)当A在B上滑动时,A与BC整体发生作用,规定向左为正方向,由于水平面光滑,A与BC组成的系统动量守恒,有:mv0=m×v0+2mv1 得:v 1=v0 由能量守恒得知系统动能的减小量等于滑动过程中产生的内能,有: Q=μmgL=m﹣m﹣×2m 得:μ= (2)当A滑上C,B与C分离,A 与C发生作用,设到达最高点时速度相等为V2,规定向左为正方向,由于水平面光滑,A与C 组成的系统动量守恒,有: m×v0+mv1=(m+m)V2, ^ 得:V 2= A与C组成的系统机械能守恒,有: m+m=×(2m)+mgR 得:R= (3)当A滑下C时,设A的速度为V A,C的速度为V C,规定向

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习一、弹性碰撞 1.如图,一条滑道由一段半径R=0.8 m的1 4圆弧轨道和一段长为L=3.2 m水平轨道MN组 成,在M点处放置一质量为m的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失(取g=10 m/s2). (1)求A滑块与B滑块碰撞后的速度v A′和v B′; (2)若A滑块与B滑块碰撞后,B滑块恰能达到N点,则MN段与B滑块间的动摩擦因数μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m=1.0 kg的小球B静止在光滑平台上,平台高h=0.80 m.一个质量为M=2.0 kg的小球A沿平台自左向右运动,与小球B发生正碰,碰后小球B的速度v B= 6.0 m/s,小球A落在水平地面的C点,DC间距离s=1.2 m.求: (1)碰撞结束时小球A的速度v A; (2)小球A与小球B碰撞前的速度v0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t; (2)小球A冲进轨道时速度v的大小. 1、碰撞

2、爆炸 4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。求: (1) v0的大小 (2)爆炸过程炮弹所增加的动能 5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动() A.一定沿v0的方向飞去 B.一定沿v0的反方向飞去 C.可能做自由落体运动 D.以上说法都不对 3、反冲 6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s的水平速度从船跳上岸时,不计阻力,求船速度大小v2 7.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上?

高中物理动量守恒专题训练

1.在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向 射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统, 则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中() A. 动量守恒,机械能守恒 B. 动量守恒,机械能不守恒 C. 动量不守恒,机械能不守恒 D. 动量不守恒,机械能守恒 2.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为() A. mv/M,向前 B. mv/M,向后 C. mv/(m M),向前 D. 0 3.质量为m、速度为v的A球与质量为3m的静止B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.碰撞后B球的速度大小可能是( ). A. 0.6v B. 0.4v C. 0.3v D. v 4.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg·m/s,B球的动量是6kg·m/s,A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能为 A. p A=0,p B=l4kg·m/s B. p A=4kg·m/s,p B=10kg·m/s C. p A=6kg·m/s,p B=8kg·m/s D. p A=7kg·m/s,p B=8kg·m/s 5.如图所示,在光滑水平面上停放质量为m装有弧形槽的小车.现有一质量也为m的小 球以v0的水平速度沿切线水平的槽口向小车滑去,不计一切摩擦,则() A. 在相互作用的过程中,小车和小球组成的系统总动量守恒 B. 小球离车后,可能做竖直上抛运动 C. 小球离车后,可能做自由落体运动 D. 小球离车后,小车的速度有可能大于v0 6.如图甲所示,光滑水平面上放着长木板B,质量为m=2kg的木块A以速度v0=2m/s滑上原来静止的长木板B的上表面,由于A、B之间存在有摩擦,之后,A、B的速度随时间变化情况如乙图所示,重力加速度g=10m/s2。则下列说法正确的是() A. A、B之间动摩擦因数为0.1 B. 长木板的质量M=2kg C. 长木板长度至少为2m D. A、B组成系统损失机械能为4J 7.长为L、质量为M的木块在粗糙的水平面上处于静止状态,有 一质量为m的子弹(可视为质点)以水平速度v0击中木块并恰好未穿出。设子弹射入木块过程时间极短,子弹受到木块的阻力恒定,木块运动的最大距离为s,重力加速度为g,(其中M=3m)求: (1)木块与水平面间的动摩擦因数μ; (2)子弹受到的阻力大小f。(结果用m ,v0,L表示) 8.如图所示,A、B两点分别为四分之一光滑圆弧轨道的最高点和最低点,O为圆心,OA连线水平,OB连线竖直,圆弧轨道半径R=1.8m,圆弧轨道与水平地面BC平滑连接。质量m1=1kg的物体P由A点无初速度下滑后,与静止在B点的质量m2=2kg的物体Q发生弹性碰撞。已知P、Q两物体与水平地面间的动摩擦因数均为0.4,P、Q两物体均可视为质点,当地重力加速度g=10m/s2。求P、Q两物体都停止运动时二者之间的距离。

人教版高中物理《动量》精选典型习题集(含答案)

人教版高中物理《动量》精选练习题 1. 一个运动的物体,受到恒定摩擦力而减速至静止,若其位移为s,速度为v,加速度为a,动量为p,则在下列图象中能正确描述这一运动过程的图象是( ) 2.从同一高度由静止落下的玻璃杯,掉在水泥地上易碎,掉在棉花上不易碎,这是因为玻璃杯掉在棉花上时( ) A.受到冲量小 B.受到作用力小 C.动量改变量小 D.动量变化率小 3. 关于动量、冲量,下列说法正确的是( ) A.物体动量越大,表明它受到的冲量越大 B.物体受到合外力的冲量等于它的动量的变化量 C.物体的速度大小没有变化,则它受到的冲量大小等于零 D.物体动量的方向就是它受到的冲量的方向 4.物体在恒力F作用下做直线运动,在时间△t 1内速度由0增至v,在时间△t 2 内速度由2v 增至3v,设F在时间△t 1内冲量为I 1 ,在时间△t 2 内冲量为I 2 ,则有( ) A.I 1=I 2 B.I 1

典型物理模型 动量守恒

动量守恒典型物理模型 典型物理模型: 连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。 解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体考虑分受力情况,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 一起加速运动的物体 N= 2 1 2 m m m + F(N为物体间相互作用力),与有无摩擦(μ相同)无关,平面斜面竖直都一样。 两木块的相互作用力N= 2 1 2 1 1 2 m m F m F m + + 讨论:①F1≠0;F2=0 N=F m m m 2 1 2 + (与运动方向和接触面是否光滑无关)保持相对静止 ②F1≠0;F2≠0 N= 2 1 2 1 1 2 m m F m F m + + F= 2 1 1 2 2 1 m m g) (m m g) (m m + + F1>F2m1>m2N1

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

2020年高考物理专题训练十二 动量守恒多种模型的解题思路

2020年高考物理专题训练十二 动量守恒多种模型的解题思路 1.(碰撞模型)甲、乙两球在光滑水平面上沿同一直线、同一方向运动,甲球的动量是p 1=5 kg·m/s ,乙球的动量是p 2=7 kg·m/s ,当甲球追上乙球发生碰撞后,乙球的动量变为p 2′=10 kg·m/s ,设甲球的质量为m 1,乙球的质量为m 2,则m 1、m 2的关系可能是( ) A .m 1=m 2 B .2m 1=m 2 C .4m 1=m 2 D .6m 1=m 2 【答案】 C 【解析】碰撞过程中动量守恒,可知碰后甲球的动量p 1′=2 kg·m/s 。由于是甲追碰乙,碰撞前甲的速度大于乙的速度,有 p 1m 1>p 2m 2,可得m 2>75m 1;碰撞后甲的速度不大于乙的速度,有p 1′m 1 ≤p 2′m 2,可得m 2≤5m 1。碰撞后系统的动能不大于碰前系统的动能,由E k =p 22m 可知p 1′22m 1+p 2′22m 2≤p 21 2m 1+p 222m 2,解得m 2≥177m 1,联立得177 m 1≤m 2≤5m 1,C 正确。 2.(碰撞模型综合)如图所示,在粗糙水平面上A 点固定一半径R =0.2 m 的竖直光滑圆弧轨道,底端有一小孔。在水平面上距A 点s =1 m 的B 点正上方O 处,用长为L =0.9 m 的轻绳悬挂一质量M =0.1 kg 的小球甲,现将小球甲拉至图中C 位置,绳与竖直方向夹角θ=60°。静止释放小球甲,摆到最低点B 点时与另一质量m =0.05 kg 的静止小滑块乙(可视为质点)发生完全弹性碰撞。碰后小滑块乙在水平面上运动到A 点,并无碰撞地经过小孔进入圆轨道,当小滑块乙进入圆轨道后立即关闭小孔,g =10 m/s 2。 (1)求甲、乙碰前瞬间小球甲的速度大小; (2)若小滑块乙进入圆轨道后的运动过程中恰好不脱离圆轨道,求小滑块乙与水平面的动摩

高二物理 动量定理

【例1】钉钉子时为什么要用铁锤而不用橡皮锤,而铺地砖时却用橡皮锤 而不用铁锤? 解析:钉钉子时用铁锤是因为铁锤形变很小,铁锤和钉子之间的相互作用 时间很短,对于动量变化一定的铁锤,受到钉子的作用力很大,根据牛顿第三 定律,铁锤对钉子的作用力也很大,所以能把钉子钉进去.橡皮锤形变较大,它和钉子之间的作用时间较长,同理可知橡皮锤对钉子的作用力较小,不容易 把钉子钉进去.但在铺地砖时,需要较小的作用力,否则容易把地砖敲碎,因 此铺地砖时用橡皮锤,不用铁锤. 点拨:根据动量定理,利用对作用时间的调整来控制作用力的大小. 【例2】如图50-1所示,质量为m的小球以速度v碰到墙壁上,被反弹 回来的速度大小为2v/3,若球与墙的作用时间为t,求小球与墙相碰过程中所 受的墙壁给它的作用力. 解析:取向左为正方向,根据动量定理,对小球有=--=,由于此过程中小球在竖直方向受力平衡,墙给它的作用力 等于它所受的合外力,所以墙给它的作用力为=,方向向左. Ft m 2 3 v( mv)mv F 5 3 5 3 mv t 点拨:动量定理是矢量式,解题要选取正方向,动量定理中的F是合外力.【例3】下列说法正确的是 [ ] A.动量的方向与受力方向相同 B.动量的方向与冲量的方向相同 C.动量的增量的方向与受力方向相同 D.动量变化率的方向与速度方向相同 点拨:冲量的方向与力的方向相同,动量的方向与速度方向相同,动量增量的方向与冲量的方向相同,动量方向与冲量方向间无必然的联系.动量变化率(Δp/Δt)的方向与力的方向相同,力的方向与速度方向间无必然的联系.参考答案 C 【例4】在空间某处以相等的速率分别竖直上抛、竖直下抛、水平抛出质量相等三个小球,不计空气阻力,经相同的时间t(设小球均未落地),下列有关动量变化的判断正确的是

物理-第62讲-动量定理、动量守恒——斜面模型

动量定理、动量守恒—斜面模型 一、学习目标 (1)理解动量守恒是有条件有维度的; (2)斜面问题中熟练应用动量定理和动量守恒知识。 二、例题解析 【例1】物体沿粗糙的斜面上滑,到最高点后又滑回原处,则() A.上滑时重力的冲量比下滑时小 B.上滑时摩擦力冲量比下滑时大 C.支持力的冲量为0 D.整个过程中合外力的冲量为零 【例2】将物体P从置于光滑水平面上的斜面体Q的顶端以一定的初速度沿斜面往下滑,如图所示。在下滑过程中,P的速度越来越小,最后相对斜面静止,那么由P和Q组成的系统() A. 动量守恒 B. 水平方向动量守恒 C. 最后P和Q以一定的速度共同向左运动 D. 最后P和Q以一定的速度共同向右运动

【例3】(2016,全国新课标II 卷)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其前面的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m /s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为 0.3m h =(h 小于斜面体的高度).已知小孩与滑板的总质量为130kg m =,冰块的质量为 210kg m =,小孩与滑板始终无相对运动.取重力加速度的大小2 10m /s g =. (ⅰ)求斜面体的质量; (ⅱ)通过计算判断,冰块与斜面体分离后能否追上小孩? 三、课后习题 1.一小球获得一定初速度后,沿粗糙的上表面斜面上滑,斜面与水平面间则不存在摩擦,则小球在上滑过程中,物体和斜面组成的系统( ) A .机械能不守恒 B .机械能守恒 C .动量守恒 D .动量不守恒 2.某物体沿粗糙斜面上滑,达到最高点后又返回原处,下列分析正确的是 ( ) A .上滑、下滑两过程中摩擦力的冲量大小相等 B .上滑、下滑两过程中合外力的冲量相等 C .上滑、下滑两过程中动量变化的方向相同 D .整个运动过程中动量变化的方向沿斜面向下

高二物理 动量守恒定律的应用 典型例题解析

动量守恒定律的应用 典型例题解析 【例1】 如图53-1所示,质量相同的两木块从同一高度同时开始自由下落,至某一位置时A 被水平飞来的子弹击中(未穿出),则A 、B 两木块的落地时间t A 、t B 的比较,正确的是 [ ] A .t A =t B B .t A >t B C .t A <t B D .无法判断 解析:正确答案为B 点拨:子弹与木块A 作用过程中,在水平方向的总动量守恒,在竖直方向上由于满足子弹与木块作用力的冲量远大于重力的冲量,所以在竖直方向上总动量也守恒,取向下为正有:m A v A =(m A +m)v ′A y ,显 然′=<,即由于子弹的射入,使木块在极短的时间v y v v A A A A m m m A A 内竖直方向的速度由v A 减小到v ′A y ,因而使得它比木块 B 迟到达地面. 【例2】 A 、B 两辆车在光滑的水平面上相向滑行,A 车的总质量m A

=1000kg,B车的总质量m B=500kg,当各自从对方的侧旁相遇而过时,各自把m=50kg的重物转移到对方的车上,结果A车停止运动,B车以v B′=8.5m/s的速度继续按原方向前进,求A、B两车原来的速度大小. 解析:设A、B两车原来的速度大小为v A和v B,以B车的运动方向为正.对A、B两车这一系统,总动量守恒,m B v B-m A v A=m A·0+m B v B′,500v B -1000v A=500×8.5. 对B车(除要移动的50kg)和从A车上移入的重物为系统,总动量守恒(m B-m)v B-mv A=m B v B′,(500-50)v B-50v A=500×8.5.解得v A=0.5m/s,v B=9.5m/s. 点拨:应用动量守恒定律时,灵活地选取研究对象作为系统是解题必须具备的能力,本例若选取A车(不包括要移动的50kg)和从B车上移入的重物为系统,则有mv B-(m A-m)v A=0,50v B-(1000-50)v A=0,在这三次选取的系统中,只要选取三次中的任意两次便可得到问题的解.【例3】将质量为m的铅球以大小为v0,沿仰角为θ的方向抛入一个装着砂子的总质量为M的静止砂车中,如图53-2所示,设车与地面间的摩擦可忽略,则球落入砂车后,车的速度多大? 点拨:对铅球和砂车所组成的系统,在相互作用过程中,总动量不守恒,因为铅球进入砂车后竖直方向的动量减为零,但系统在水平方向不受外力作用,在水平方向总动量守恒.

高二物理动量守恒定律

课题:16、3动量守恒定律(二) 学习目标: (一)知识与技能 掌握运用动量守恒定律的一般步骤 (二)过程与方法 知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。 (三)情感、态度与价值观 学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。 重点:运用动量守恒定律的一般步骤 难点:动量守恒定律的应用. 知识链接: 1、写出动量守恒定律的内容。 2、动量守恒定律的条件有哪些? 学法指导: 1、仔细看书把书本中的知识点掌握到位 2、做各种类型的习题,在做题中强化知识 学习过程: 1、阅读课本p10第二段,用牛顿定律自己推导出动量守恒定律的表达式,写出详细过程。

2、动量守恒定律的普适性 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。 3、例1、见教材11页。分析题意,分析物理情景,规范答题过程,详细过程见教材 (总结动量守恒定律解决问题的思路) 4、例2:质量为M的小船以速度v0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾.现在小孩a沿水平方向以速率v(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率v(相对于静止水面)向后跃入水中.求小孩b跃出后小船的速度. 5、例3、如图所示,甲车的质量是2 kg,静止在光滑水平面上,上表面光滑,右端放一个质量为1 kg的小物体.乙车质量为4 kg,以5 m/s的速度向左运动,与甲车碰撞以后甲车获得8 m/s的速度,物体滑到乙车上.若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止?(g取10 m/s2)

动量守恒定律中的典型模型.doc

动量守恒定律中的典型模型 1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。 例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。设木块对子弹的阻力F恒定。求: (1)子弹穿过木块的过程中木块的位移 (2)若木块固定在传送带上,使木块随传送带始终以恒定速度u

3、弹簧木块模型 例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。则( ) A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量 不守恒 B .当两物块相距最近时,甲物块的速率为零 C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0 D .甲物块的速率可能达到5m/s 例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? 例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m. (1)求弹簧第一次最短时的弹性势能 (2)何时B 的速度最大,最大速度是多少? 4、碰撞、爆炸、反冲 Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零) (1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ② 222211222211'2 1'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,② 2 2202 12121B B A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=, C B A mv o B A

高二物理《动量和动量定理》教案分析

高二物理《动量和动量定理》教案分析 【课前四问】 问:我打算这节课让学生获得什么? 一、教材分析 本节课是人教版选修3-5第十六章第二节内容,本节的内容为“动量和动量定理”,本节分两课时来完成,这节课为课时。也是本章的重点内容,是节“实验:探究碰撞中的守恒量”的继续,同时又为第三节“动量守恒定律”奠定了基础,所以“动量定理”有承前启后的作用。“动量定理”是牛顿第二定律的进一步展开。它侧重于力在时间上的累积效果,为解决力学问题开辟了新途径,尤其是打击和碰撞类的问题。动量定理的知识与人们的日常生活,生产技术和科学研究有着密切的关系,因此学习这部分知识有着广泛的现实意义。 二、学情分析 学生已经掌握了动量概念,会运用牛顿第二定律和运动学公式等,为本节课的学习打下了坚实的基础。高中生思维方式逐步由形象思维向抽象思维过渡,因此在教学中需要以一些感性认识为依托,加强直观性和形象性,以便学生理解,因此在教学中多让学生参与利用动量定理解释生活中的有关现象,加强学生思维由形象到抽象的过渡。

三、教学目标 知识与技能: .理解动量的变化和冲量的定义; .理解动量定理的含义和表达式,理解其矢量性; .会用动量定理解释有关物理现象,并能掌握动量定理的简单计算 过程与方法: 通过运用牛顿运动定律和运动学公式推导出动量定理表达式,培养学生逻辑运算能力。 情感态度与价值观: 通过运用所学知识推导新的规律,培养学生学习的兴趣,激发学生探索新知识的欲望。 通过用动量定理解释有关物理现象,培养学生用所学物理知识应用于生活实践中去,体现物理学在生活中的指导作用。 四、教学重难点 教学重点:理解动量的变化、冲量、动量定理的表达式和矢量性 教学难点:用动量定理解释有关物理现象,针对动量定理进行简单的计算 第二问:我打算让学生怎样获得? 五、教学策略

精选-人教版高二物理3-5动量守恒常见模型归类练习

动量守恒常见模型练习 班级:__________ 座号:_______ 姓名:_______________ 一、弹性碰撞 1.如图,一条滑道由一段半径R=0.8 m的1 4圆弧轨道和一段长为L=3.2 m水平轨道MN组 成,在M点处放置一质量为m的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失(取g=10 m/s2). (1)求A滑块与B滑块碰撞后的速度v A′和v B′; (2)若A滑块与B滑块碰撞后,B滑块恰能达到N点,则MN段与B滑块间的动摩擦因数μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m=1.0 kg的小球B静止在光滑平台上,平台高h=0.80 m.一个质量为M=2.0 kg的小球A沿平台自左向右运动,与小球B发生正碰,碰后小球B的速度v B= 6.0 m/s,小球A落在水平地面的C点,DC间距离s=1.2 m.求: (1)碰撞结束时小球A的速度v A; (2)小球A与小球B碰撞前的速度v0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t; (2)小球A冲进轨道时速度v的大小. 1、碰撞

2、爆炸 4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。求: (1) v0的大小 (2)爆炸过程炮弹所增加的动能 5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动() A.一定沿v0的方向飞去 B.一定沿v0的反方向飞去 C.可能做自由落体运动 D.以上说法都不对 3、反冲 6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s的水平速度从船跳上岸时,不计阻力,求船速度大小v2 7.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上?

相关文档
最新文档