动量守恒常见模型归类练习

合集下载

动量守恒定律题型总结

动量守恒定律题型总结

2
2
R L1 L2
位移关系:
0 m L1 M L2
t
t
L1 L2 R
速度关系:水平方向动量守恒
0 mv MV
mgR 1 mv2 1 MV 2
2
2
ML2 L1 600 m
位移关系:
0 m L1 M L2
t
t
L1 L2 Lcos60o L
速度关系
0 mvsin600 MV
题型五、相对运动问题 定参考系、定速度
(1)每次射击(一发):设艇的速度为V,
则子弹速度为-(800-v)
P25——3T
0 (M m)V m(800V )
V m 800 0.01800 0.067m / s
M
120
(2)连续射击(10发):设艇的速度为V,
则子弹速度为-(800-v)
0 (M 10m)V 10m(800 V )
v0
AB
AB
v
AB
vA
AB
vA vB=2vA
mv0 = 2MvA+mv= MvA+(M+m)vB
题型四、系统含有两个以上的物体——如6T 19 3
3明确系统的选取
v


M
M
0= (M+m)v1 - (M-m)v2
讨论:球在两车之间抛了若干次,最终落在甲 车上,求两车速度之比。 最终落在乙车上,之比是多少?
研究对象(系统),则此系统在从子弹开始射入木块
到弹簧压缩至最短的整个过程中:( A、动量守恒、机械能守恒
B)
B、动量不守恒、机械能不守恒
C、动量守恒、机械能不守恒
D、动量不守恒、机械能守恒

(完整版)分方向(水平方向)动量守恒的应用常见例题全带

(完整版)分方向(水平方向)动量守恒的应用常见例题全带

【例1】如图所示,在光滑的水平面上有一物体M,物体上有一光滑的半圆弧轨道,最低点为C,两端A、B一样高.现让小滑块m从A点静止下滑,则()A.m不能到达小车上的B点B.M与m组成的系统机械能守恒,动量守恒C.m从A到B的过程中小车一直向左运动,m到达B的瞬间,M速度为零D.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动变式1:如图所示,在光滑的水平面上放有一物体M,物体上有一光滑的半圆弧轨道,轨道半径为R,最低点为C,两端A、B等高,现让小滑块m从A点静止下滑,在此后的过程中,则A.M和m组成的系统机械能守恒,动量守恒B.M和m组成的系统机械能守恒,动量不守恒C.m从A到B的过程中,M运动的位移为mRM+mD.m从A到C的过程中M向左运动,m从C到B的过程中M向右运动例2、(多选)如下图(左)所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度) ( )A.若地面粗糙且小车能够静止不动,当小球滑到圆弧最低点时速度为√2gRB.若地面粗糙且小车能够静止不动,则小球对小车的压力最大3mgC.若地面光滑,当小球滑到圆弧最低点时,小车速度为m2gRM(M+m)D.若地面光滑,当小球滑到圆弧最低点时,小车速度为M2gRm(M+m)变式1(多选)如上图(右)所示,将一个内、外侧均光滑的半圆形槽,置于光滑的水平面上,槽的左侧有一个竖直墙壁.现让一个小球自左端槽口A的正上方从静止开始下落,与半圆形槽相切从A点进入槽内,则以下说法正确的是()A.小球在半圆形槽内运动的全过程中,小球与槽组成的系统机械能守恒B.小球在半圆形槽内运动的全过程中,小球与槽组成的系统机械能不守恒C.小球从最低点向右侧最高点运动过程中,小球与槽组成的系统在水平方向动量守恒D.小球离开槽右侧最高点以后,将做竖直上抛运动例3 如图所示,AB 为一光滑水平横杆,杆上套一质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当线绳与A B 成θ角时,圆环移动的距离是多少?变式1 如图所示,光滑水平面上有一小车,小车上固定一杆,总质量为M ;杆顶系一长为L 的轻绳,轻绳另一端系一质量为m 的小球.绳被水平拉直处于静止状态(小球处于最左端).将小球由静止释放,小球从最左端摆下并继续摆至最右端的过程中,小车运动的距离是多少?变式2 质量为M 的气球上有一质量为m 的人,共同静止在距地面高为h 的空中,现在从气球中放下一根不计质量的软绳,人沿着软绳下滑到地面,软绳至少为多长,人才能安全到达地面?(忽略空气阻力)例4 如图所示,光滑水平面上有一质量为2M 、半径为R (R 足够大)的圆弧曲面C ,质量为M 的小球B 置于其底端,另一个小球A 质量为M 2,以v 0=6 m/s 的速度向B 运动,并与B 发生弹性碰撞,不计一切摩擦,小球均视为质点,求:(1)小球B 的最大速率;(2)小球B 运动到圆弧曲面最高点时的速率;(3)通过计算判断小球B 能否与小球A 再次发生碰撞。

动量守恒-板块模型习题课

动量守恒-板块模型习题课

动量守恒定律———板块模型专题训练一1、如图所示,一质量M =3.0kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0kg 的小木块A 。

现以地面为参照系,给A 和B 以大小均为4.0m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,但最后A 并没有滑离B 板。

站在地面的观察者看到在一段时间内小木块A 正在做加速运动,则在这段时间内的某时刻木板对地面的速度大小可能是( ) A.1.8m/s B.2.4m/ C.2.6m/s D.3.0m/s2、质量为2kg 、长度为2.5m 的长木板B 在光滑的水平地面上以4m/s 的速度向右运动,将一可视为质点的物体A 轻放在B 的右端,若A 与B 之间的动摩擦因数为0.2,A 的质量为m=1kg 。

2/10s m g 求:(1)说明此后A 、B 的运动性质 (2)分别求出A 、B 的加速度 (3)经过多少时间A 从B 上滑下(4)A 滑离B 时,A 、B 的速度分别为多大?A 、B 的位移分别为多大? (5)若木板B 足够长,最后A 、B 的共同速度(6)当木板B 为多长时,A 恰好没从B 上滑下(木板B 至少为多长,A 才不会从B 上滑下?)v 3、质量为mB=m 的长木板B 静止在光滑水平面上,现有质量为mA=2m 的可视为质点的物块,以水平向右的速度大小v0从左端滑上长木板,物块和长木板间的动摩擦因数为μ。

求:(1)要使物块不从长木板右端滑出,长木板的长度L 至少为多少?(至少用两种方法求解)(2)若开始时长木板向左运动,速度大小也为v0,其它条件不变,再求第(1)问中的L 。

4、如图所示,在光滑水平面上放有质量为2m 的木板,木板左端放一质量为m 的可视为质点的木块。

两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。

求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离Lv 0 动量守恒定律———板块模型专题训练二1、如图所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为 ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。

A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。

同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。

A 、B 均视为质点,取重力加速度210m/s g =。

求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。

的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。

A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。

现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。

2动量守恒定律的应用-四种模型

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2)练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少?例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C 发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。

例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求:(1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .O C Ba b AB v A v B C例题参考答案例3:因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量定恒定律得m A v0=m A v A+m C v CA与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立①②③式,代入数据得v A=2 m/s.例4:P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得m v 0=2m v 1 解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2m v 1+2m v 0=4m v 2 解得v 2=34v 0,方向向右. (2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2m v 21+12×2m v 20=12×4m v 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点 12×2m v 21+12×2m v 20=12×4m v 22+2Q 联立以上两式解得E p =116m v 20,Q =116m v 20根据功能关系有Q =μ·2mg (L +x ) 解得x =v 2032μg-L .练4:(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 m v 0=2m v 1此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得 m v 1=2m v 2 12m v 21=ΔE +12(2m )v 22 联立解得ΔE =116m v 20. (ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得m v 0=3m v 3 12m v 20-ΔE =12(3m )v 23+E p联立④⑤⑥式得E p =1348m v 20.课后作业:1.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 2.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为 =0.2.求:(1)小车的最终的速度; AB v A v B(2)小车至少多长(物体A 、B 的大小可以忽略).3.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .4.如图所示,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧部分与水平部分相切于P ,水平部分PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧部分上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)若B 最终停在A 的水平部分上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的内能.(3)若圆弧部分光滑,且除v 0不确定外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值范围.(取g =10 m/s 2,结果可以保留根号)课后作业参考答案1解析:(1)设弹簧刚好恢复原长时,A 和B 物块速度的大小分别为v A 、v B ,由题意可知:m A v A -m B v B =0 12m A v A 2+12m B v B 2=E p 联立解得v A =6 m/s v B =12 m/s(2)当弹簧第二次被压缩到最短时,弹簧具有的弹性势能最大,此时A 、B 、C 具有相同的速度,设此速度为vm C v C =(m A +m B +m C )v 所以v =1 m/sC 与B 碰撞,设碰后B 、C 粘连时的速度为v ′ m B v B -m C v C =(m B +m C )v ′ 解得v ′=4 m/s故弹簧第二次被压缩到最短时,弹簧具有的最大弹性势能为:E p ′=12m A v A 2+12(m B +m C )v ′2-12(m A +m B+m C )v 2=50 J.2解析:(1)由于A 、B 、C 组成的系统水平方向动量守恒,且三者最后保持相对静止,设最终共同速度为v ,则()A A B B A B C m v m v m m m v -=++,v =0.4m/s(2)A 、B 始终没有相碰,若板长为L ,A 、B 相对板的位移分别为s AC 、s BC ,则AC BC s s L +≤O C a b系统的动能损失全部用于在相对位移上克服摩擦力做功,有222111()()222A A B A B C A AC B BC m v mv m m m v m gS m gS μ+-++=+ 故板长至少为L =4.8m .3解析:⑴系统的动量守恒可得m a v a =m b v b ,① 又m a =2m b =2 kg , v a =4.5m/s 解得:v b =9.0m/s ② 设滑块b 到达B 点时的速度为B v ,由动能定理得,222121bb B b b v m v m gL m -=-μ ③ 刚进入圆轨道时,设滑块b 受到的支持力为F N ,由牛顿第二定律得,R v m g m F Bb b N 2=- ④由牛顿第三定律'N N F F -= ⑤ 由③④⑤得滑块b 对轨道的压力N F N 95'-=,方向竖直向下⑵若小滑块b 能到达圆轨道最高点,速度为v C 则由机械能守恒,2221221Cb b B b v m R g m v m += ⑥ 解得s m v C 0.3= ⑦小物块b 恰能过最高点的速度为v ,则Rv m g m b b 2= ⑧解得,s m gR v 10==⑨因v v C 〈,故小滑块b 不能到达圆轨道最高点C .4【解析】(1)根据动量守恒得:m B v 0=(m B +m A )v解得:v =25v 0=2 m/s .(2)设B 在A 的圆弧部分产生的热量为Q 1,在A 的水平部分产生的热量为Q 2.则有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 又Q 2=μm B g (L QP +L PR ) 联立解得:Q 1=0.75 J .(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A12m B v 02=12m B v B 2+12m A v A 2+μm B gL 代入数据得:v B 2-0.8v 0v B +6.75-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9 m/s ,故B 有可能相对地面向右运动.若要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2得:v 0≤6.1 m/s故v 0的取值范围为:5.9 m/s <v 0≤6.1 m/s .。

动量守恒常见模型习题

动量守恒常见模型习题

动量守恒中的常见模型考点一、碰撞(1)定义:相对运动的物体相遇,在极短时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。

(2)碰撞的特点①作用时间极短,内力远大于外力,总动量总是守恒的.②碰撞过程中,总动能不增.因为没有其它形式的能量转化为动能.<③碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大.④碰撞过程中,两物体产生的位移可忽略.(3)碰撞的分类①弹性碰撞(或称完全弹性碰撞)如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞).此类碰撞过程中,系统动量和机械能同时守恒.②非弹性碰撞如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞.此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒.③完全非弹性碰撞\如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞.碰撞物体粘合在一起,具有同一速度.此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大.(4)判定碰撞可能性问题的分析思路①判定系统动量是否守恒.②判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度.③判定碰撞前后动能是不增加.练习题:1、甲乙两球在水平光滑轨道上同方向运动,已知它们的动量分别是P1=5kg .m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s,则二球质量m1与m2间的关系可能是下面的哪几种()!A、m1=m2B、2m1=m2C、4m1=m2D、6m1=m2.2、如图所示,半径和动能都相等的两个小球相向而行.甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况()A.甲球速度为零,乙球速度不为零B.两球速度都不为零C.乙球速度为零,甲球速度不为零D.两球都以各自原来的速率反向运动—A HO/OBLP}2L3、有两个完全相同的小滑块A和B,A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失.碰后B运动的轨迹为OD曲线,如图所示.(1)已知滑块质量为m,碰撞时间为t ,求碰撞过程中A对B平均冲力的大小.(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B平抛轨道完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道).a.分析A沿轨道下滑到任意一点的动量pA与B平抛经过该点的动量pB的大小关系;b.在OD曲线上有一M点,O和M两点连线与竖直方向的夹角为45°.求A通过M点时的水平分速度和竖直分速度.@4、如图所示,在同一竖直面上,质量为2m的小球A静止在光滑斜面的底部,斜面高度为H=2L。

2动量守恒定律的应用-四种模型

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2)练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少?例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小.练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。

例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能.练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求:(1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略).2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .O C Ba b AB v A v B C例题参考答案例3:因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量定恒定律得m A v0=m A v A+m C v CA与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C联立①②③式,代入数据得 v A =2 m/s.例4:P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得mv 0=2mv 1 解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2mv 1+2mv 0=4mv 2 解得v 2=34v 0,方向向右.(2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2mv 21+12×2mv 20=12×4mv 22+Q +E p从P 1与P 2碰撞后到P 停在A 点 12×2mv 21+12×2mv 20=12×4mv 22+2Q联立以上两式解得E p =116mv 20,Q =116mv 2根据功能关系有Q =μ·2mg (L +x ) 解得x =v 2032μg-L .练4:(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 mv 0=2mv 1此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得 mv 1=2mv 2 12mv 21=ΔE +12(2m )v 22 联立解得ΔE =116mv 20.(ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得mv 0=3mv 3 12mv 20-ΔE =12(3m )v 23+E p联立④⑤⑥式得E p =1348mv 20.课后作业:1.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求:(1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能.2.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=0.2.求: (1)小车的最终的速度;(2)小车至少多长(物体A 、B 的大小可以忽略).3.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则(1)小滑块b 经过圆形轨道的B 点时对轨道的压力.(2)通过计算说明小滑块b 能否到达圆形轨道的最高点C .4.如图所示,一个带有14圆弧的粗糙滑板A 的总质量m A =3 kg ,其圆弧部分与水平部分相切于P ,水平部分PQ 长L =3.75 m .开始时,A 静止在光滑水平面上.现有一质量m B =2 kg 的小木块B 从滑块A 的右端以水平初速度v 0=5 m/s 滑上A ,小木块B 与滑板A 之间的动摩擦因数μ=0.15,小木块B 滑到滑板A 的左端并沿着圆弧部分上滑一段弧长后返回,最终停止在滑板A 上.(1)求A 、B 相对静止时的速度大小.(2)若B 最终停在A 的水平部分上的R 点,P 、R 相距 1 m ,求B 在圆弧上运动的过程中因摩擦而产生的内能.(3)若圆弧部分光滑,且除v 0不确定外其他条件不变,讨论小木块B 在整个运动过程中,是否有可能在某段时间里相对地面向右运动?如不可能,说明理由;如可能,试求出B 既向右滑动,又不滑离木板A 的v 0取值范围.(取g =10 m/s 2,结果可以保留根号)课后作业参考答案1解析:(1)设弹簧刚好恢复原长时,A 和B 物块速度的大小分别为v A 、v B ,由题意可知:m A v A -m B v B =0 12m A v A 2+12m B v B 2=E p 联立解得v A =6 m/s v B =12 m/s(2)当弹簧第二次被压缩到最短时,弹簧具有的弹性势能最大,此时A 、B 、C 具有相同的速度,设此速度为vm C v C =(m A +m B +m C )v 所以v =1 m/sC 与B 碰撞,设碰后B 、C 粘连时的速度为v ′ m B v B -m C v C =(m B +m C )v ′ 解得v ′=4 m/s故弹簧第二次被压缩到最短时,弹簧具有的最大弹性势能为:E p ′=12m A v A 2+12(m B +m C )v ′2-12(m A +m B+m C )v 2=50 J.2解析:(1)由于A 、B 、C 组成的系统水平方向动量守恒,且三者最后保持相对静止,设最终共同速度O C B a b为v ,则()A A B B A B C m v m v m m m v -=++,v =0.4m/s(2)A 、B 始终没有相碰,若板长为L ,A 、B 相对板的位移分别为s AC 、s BC ,则AC BC s s L +≤ 系统的动能损失全部用于在相对位移上克服摩擦力做功,有222111()()222A A B A B C A AC B BC m v mv m m m v m gS m gS μ+-++=+ 故板长至少为L =4.8m .3解析:⑴系统的动量守恒可得m a v a =m b v b ,① 又m a =2m b =2 kg , v a =4.5m/s 解得:v b =9.0m/s ② 设滑块b 到达B 点时的速度为B v ,由动能定理得,222121bb B b b v m v m gL m -=-μ ③ 刚进入圆轨道时,设滑块b 受到的支持力为F N ,由牛顿第二定律得,R v m g m F Bb b N 2=- ④由牛顿第三定律'N N F F -= ⑤ 由③④⑤得滑块b 对轨道的压力N F N 95'-=,方向竖直向下⑵若小滑块b 能到达圆轨道最高点,速度为v C 则由机械能守恒,2221221Cb b B b v m R g m v m += ⑥ 解得s m v C 0.3= ⑦小物块b 恰能过最高点的速度为v ,则Rv m g m b b 2= ⑧解得,s m gR v 10==⑨因v v C 〈,故小滑块b 不能到达圆轨道最高点C .4【解析】(1)根据动量守恒得:m B v 0=(m B +m A )v解得:v =25v 0=2 m/s .(2)设B 在A 的圆弧部分产生的热量为Q 1,在A 的水平部分产生的热量为Q 2.则有: 12m B v 02=12(m B +m A )v 2+Q 1+Q 2 又Q 2=μm B g (L QP +L PR ) 联立解得:Q 1=0.75 J .(3)当B 滑上圆弧再返回至P 点时最有可能速度向右,设木块滑至P 的速度为v B ,此时A 的速度为v A ,有:m B v 0=m B v B +m A v A12m B v 02=12m B v B 2+12m A v A 2+μm B gL 代入数据得:v B 2-0.8v 0v B +6.75-0.2v 02=0当v B 的两个解一正一负时,表示B 从圆弧滑下的速度向右.即需:v 0>5.9 m/s ,故B 有可能相对地面向右运动.若要B 最终不滑离A ,有:μm B g ·2L ≥12m B v 02-12(m B +m A )(25v 0)2得:v 0≤6.1 m/s故v 0的取值范围为:5.9 m/s <v 0≤6.1 m/s .如有侵权请联系告知删除,感谢你们的配合!。

动量守恒定律10个模型最新模拟题精选训练

动量守恒定律10个模型最新模拟题精选训练

动量守恒的十种模型精选训练动量守恒定律是自然界中最普遍、最根本的规律之一,它不仅适用于宏观、低速领域,而且适用于微观、高速领域。

通过对最新高考题和模拟题研究,可归纳出命题的十种模型。

一.碰撞模型【模型解读】碰撞的特点是:在碰撞的瞬间,相互作用力很大,作用时间很短,作用瞬间位移为零,碰撞前后系统的动量守恒。

无机械能损失的弹性碰撞,碰撞后系统的动能之和等于碰撞前系统动能之和,碰撞后合为一体的完全非弹性碰撞,机械能损失最大。

例1. 如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间。

A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态。

现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞。

设物体间的碰撞都是弹性的。

针对训练题1.如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m 。

两物块与地面间的动摩擦因数均相同。

现使a 以初速度v 0向右滑动。

此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞。

重力加速度大小为g 。

求物块与地面间的动摩擦因数满足的条件。

2. 如下列图,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。

现让A 球以v 0=2 m/s 的速度向B 球运动,A 、B 两球碰撞后粘在一起继续向右运动并与C 球碰撞,C 球的最终速度v C =1 m/s 。

问:3.如图,小球a 、b 用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:4.水平光滑轨道AB 与半径为R=2m 竖直面内的光滑圆弧轨道平滑相接,质量为m=0.2kg 的小球从图示位置C(C 点与圆弧圆心的连线与竖直方向的夹角为60°)自静止开始滑下,与放在圆弧末端B 点的质量为M =13kg 的物体M 相碰时,每次碰撞后反弹速率都是碰撞前速率的11/12,设AB 足够长,那么m 与M 能够发生多少次碰撞?5.如下列图,质量均为M =lkg 的A 、B 小车放在光滑水平地面上,A 车上用轻质细线悬挂质量m =0.5kg 的小球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒常见模型练习班级:__________ 座号:_______ 姓名:_______________ 一、弹性碰撞1.如图,一条滑道由一段半径R=0.8 m的14圆弧轨道和一段长为L=3.2 m水平轨道MN组成,在M点处放置一质量为m的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失(取g=10 m/s2).(1)求A滑块与B滑块碰撞后的速度v A′和v B′;(2)若A滑块与B滑块碰撞后,B滑块恰能达到N点,则MN段与B滑块间的动摩擦因数μ的大小为多少二、非弹性碰撞2.如图所示,质量m=1.0 kg的小球B静止在光滑平台上,平台高h=0.80 m.一个质量为M=2.0 kg的小球A沿平台自左向右运动,与小球B发生正碰,碰后小球B的速度v B=6.0 m/s,小球A落在水平地面的C点,DC间距离s=1.2 m.求:(1)碰撞结束时小球A的速度v A;(2)小球A与小球B碰撞前的速度v0的大小.三、完全非弹性碰撞3.(2011·高考天津卷)如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:(1)粘合后的两球从飞出轨道到落地的时间t;(2)小球A冲进轨道时速度v的大小.4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。

求:(1) v0的大小(2)爆炸过程炮弹所增加的动能5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动( )A.一定沿v 0的方向飞去B.一定沿v0的反方向飞去C.可能做自由落体运动D.以上说法都不对6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s的水平速度从船跳上岸时,不计阻力,求船速度大小v27.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上8.(双选)光滑水平地面上,A、B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时A.A、B系统总动量仍然为mvB.A的动量变为零C.B的动量达到最大值D.A、B的速度相等9.10.一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平飞来打进木块并留在其中,设相互作用力为f.试求从木块开始运动到子弹与木块相对静止的过程中:(1)子弹、木块相对静止时的速度v(2)子弹、木块发生的位移s1、s2以及子弹打进木块的深度l相分别为多少(3)系统损失的机械能、系统增加的内能分别为多少11.如图所示,一大小可忽略不计、质量为m1的小物体放在质量为m2的长木板的左端,长木板放在光滑的水平面上.现让m1 获得向右的速度v0,若小物体最终没有从长木板上滑落,两者间的动摩擦因数为μ.求长木板的长度至少是多少12.如图所示,长为l、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人相对地面的位移各是多少13.(2013·龙山中学高三月考)如图所示,有光滑弧形轨道的小车静止于光滑的水平面上,其总质量为M,有一质量也为M的铁块以水平速度v沿轨道的水平部分滑上小车.若轨道足够高,铁块不会滑出,则铁块沿圆弧形轨道上升的最大高度为14.(2011·高考海南卷改编)一质量为2m的物体P静止于光滑水平地面上,其截面如图所示.图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接.现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h.重力加速度为g.求木块在ab段受到的摩擦力f15.(单选)一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒16.(单选)如图所示,A、B两个木块用轻弹簧相连接,它们静止在光滑水平面上,A和B的质量分别是99m和100m,一颗质量为m的子弹以速度v0水平射入木块A内没有穿出,则在以后的过程中弹簧弹性势能的最大值为17.(2010 年湛江二模)如图所示,固定在地面上的光滑圆弧面与车C的上表面平滑相接,在圆弧面上有一个滑块A,其质量为m A=2kg,在距车的水平面高h=1.25 m 处由静止下滑,车C的质量为m C =6kg,在车C的左端有一个质量m B=2kg的滑块B,滑块A与B 均可看做质点,滑块A与B碰撞后黏合在一起共同运动,最终没有从车C上滑出,已知滑块A、B 与车C的动摩擦因数均为μ=,车C与水平地面的摩擦忽略不计.取g=10 m/s2.求:(1)滑块A滑到圆弧面末端时的速度大小.(2)滑块A与B碰撞后瞬间的共同速度的大小.(3)车C的最短长度.动量守恒常见模型练习(参考答案)1、解:(1)设A 与B 相碰前的速度为v A ,A 从圆弧轨道上滑下时机械能守恒,有12mv 2A =mgR ① A 与B 相碰时,动量、机械能守恒 mv A =mv A ′+mv B ′②12mv 2A =12mv A ′2+12mv B ′2③ 由①②③式得v A ′ =0,v B ′=4 m/s.(2)B 碰撞后到达N 点时速度为0,由动能定理得 -fL =0-12mv B ′2⑤其中f =μmg ⑥ 由⑤⑥得μ=.2.解:(1)碰撞结束后小球A 做平抛运动h =12gt 2s =v A t解得v A =3 m/s.(2)两球碰撞前后动量守恒,有Mv 0=mv B +Mv A解得v 0=6 m/s.3.解析:(1)粘合后的两球飞出轨道后做平抛运动,有2R =12gt 2 解得t =2R g. (2)设球A 的质量为m ,碰撞前速度大小为v 1,由机械能守恒定律知12mv 2=12mv 21+2mgR设碰撞后粘合在一起的两球速度大小为v 2,由动量守恒定律知mv 1=2mv 2飞出轨道后做平抛运动,有 2R =v 2t联立以上各式得v =22gR .4.解:(1)爆炸过程动量守恒210)(v m M mv Mv --=解得:s m v /100=(2)增加的动能J Mv v m M mv E k 270021)(2121203221=--+=∆5.C6.解:设小孩的运动方向为正方向.小孩跳离船的过程,由动量守恒定律得mv 1-Mv 2=0解得:v 2=1.5m/s 7.提示:共mv mv 2= p E mv mv +⨯=2222121共10.解:(1)由动量守恒得mv 0=(M +m )v …(2分)子弹与木块的共同速度v =mM +mv 0.(1分) (2)对子弹利用动能定理得-fs1=12mv2-12mv20①(2分)所以s1=Mm M+2m v202f M+m2.(1分)同理对木块有:fs2=12Mv2②(2分)故木块发生的位移为s2=Mm2v202f M+m2(1分)子弹打进木块的深度为:l相=s1-s2=Mmv202f M+m.③(2分)(3)系统损失的机械能ΔE k=12mv20-12(M+m)v2=Mmv202M+m④(2分)系统增加的内能:Q=ΔE k=Mmv202M+m.(2分)11.解:设共同速度的大小为v,长木板的长度为L,由动量守恒定律有m 1v 0=(m 1+m 2)v ①由能的转化和守恒定律有12m 1v 20-12(m 1+m 2)v 2=μm 1gL ② 由①②式联立解得L =m 2v 202μm 1+m 2g.12.解:系统水平方向动量守恒,设某时刻人对地的速度为v 2,船对地的速度为v 1,则 mv 2-Mv 1=0在人从船头走到船尾的过程中每一时刻系统的动量均守恒,故mv 2t -Mv 1t =0,即 ms 2-Ms 1=0, 而s 1+s 2=L解得:L M m m S +=1,L Mm MS +=213.解析:选A.由水平方向动量守恒定律得Mv =(M +M )v ′,v ′=v2①由机械能守恒定律得 12Mv 2=12×(2M )v ′2+Mgh ② 由①②联立解得h =v 24g.14.解析:(1)从开始到木块到达最大高度过程:由动量守恒:mv 0=3mv 1由能的转化及守恒:12mv 20=12(3m )v 21+mgh +fL解得:f =mv 20-3mgh3L.15.B 16.A17.解:(1)设滑块A 滑到圆弧末端时的速度大小为v 1,由机械能守恒定律有m A gh =12m A v 21代入数据解得v 1=2gh =5 m/s.(2)设A 、B 碰后瞬间的共同速度为v 2,滑块A 与B 碰撞瞬间与车C 无关,滑块A 与B 组成的系统动量守恒,有 m A v 1=(m A +m B )v 2代入数据解得v 2=2.5 m/s.(3)设车C 的最短长度为L ,滑块A 与B 最终没有从车C 上滑出,三者最终速度相同令其为v 3,根据动量守恒定律有 (m A +m B )v 2=(m A +m B +m C )v 3 ① 根据能量守恒定律有μ(m A +m B )gL =12(m A +m B )v 22-12(m A +m B +m C )v 23 ②联立① ② 式代入数据解得L = m.。

相关文档
最新文档