x射线物理学基础
X射线物理学基础

6) 假定空气由20% O2 和 80% N2 组成, 其密
度为1.29×10-3 g/cm3, 试求其对于Cr Kα的质
量吸收系数um 和线吸收系数u。
7) 作出Cu靶在1, 5, 20 and 40 kV 电压下的强
度-波长关系图。
8) 对于铁靶,应用什么做滤波片,解释你的选
择理由。
一、原子能态及其表征
可以象粒子一样和微观粒子发生相互作用
同样微观粒子既有粒子性,又可以作为一
种波(德布罗意波)有干涉和衍射现象
X射线的特点: 1)不可见 2)折射率接近1 3)穿透性强 5)杀伤作用
(三) X产生与X射线管
1. 产生方式: 1.高速电子流撞击金属靶
2.同步幅射X射线 X射线管的结构 :
X射线管
阴极产生电子
X射线物理学基础作业 1.在原子序24(Cr)到74(W)之间选择7种元素,根据它们的特征谱波 长(Kα1),用图解法验证莫塞莱定律。 2.若X射线管的额定功率为1.5kW,在管电压为35kV时,容许的最大电流 是多少? 3.讨论下列各组概念中二者之间的关系: 1)同一物质的吸收谱和发射谱; 2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 3)X射线管靶材的发射谱与被照射试样的吸收谱。 4.为使Cu靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 5.画出MoKα辐射的透射系数(I/I0)-铅板厚度(t)的关系曲线(t取 0~1mm)。 6.欲用Mo靶X射线管激发Cu的荧光X射线辐射,所需施加的最低管电压是 多少?激发出的荧光辐射的波长是多少?
1
式中K2为与靶中主量子数有关的常数,
K2 (Z )
K2 (Z )
σ为屏蔽常数,与电子所在的壳层有关。 特征X射线谱及管电压对特征谱的影响 (钼钯K系)
chap1_X射线物理学基础

第一篇X射线衍射分析n1910年,诺贝尔奖第一次颁发,伦琴因X射线的发现而获得第一个诺贝尔物理学奖。
1895年伦琴初次发现X射线,拍摄的他夫人手指的X射线照在伦琴的两名研究生弗里德里希(W. Friedrich)和克尼(Knipping)的帮助下,劳厄进行了第一次X射线衍射实验,并取得了成功。
第一次X射线衍射实验所用的仪器。
所用的晶体是硫酸铜。
劳厄法X射线衍射实验的基本装置与所拍的照片爱因期坦称,劳厄的实验“物理学最美的实验”。
它一箭双雕地解决了X射线的波动性和晶体的结构的周期性。
第一章X射线的物理特性n1.1 X射线的产生极其性质n1.2 X射线谱n1.3 X射线与物质的相互作用n1.4 X射线的衰减规律第一节X射线的产生极其性质一、X射线的产生X射线管包括阴极、高压、靶材图1-1 X射线管的结构示意图二、X射线的本质X射线是一种电子波,横波,波长短(0.01-10nm)“硬”X射线,“软”X射线三、X射线的本质Ø不能用一般方法使X射线会聚发散Ø通常靠使荧光物质发光、使照相底片感光、使气体产生电离现象观察检测Ø软X射线的波长与晶体中原子间距比较接近,常被用来进行X射线衍射分析(0.25-0.05nm)Ø对有机质是有害的,需要加上铅制品保护。
第二节X 射线谱图1-2 两种X 射线谱示意图一、连续谱X 射线强度随波长λ而变化的关系曲线,即X 射线谱。
丘包状曲线为连续谱竖直尖峰为特征谱对应两种X 射线辐射的物理过程。
连续谱:大量高速运动的电子与靶材碰撞时而减速,不同能量损失转化成不同波长的X 射线,并按统计规律分布。
2I iZUα连=图1-2 两种X 射线谱示意图2max12o hc eU h m ευνλ====动短波限λo :hc K e U Uλ==o K=1.24nm ·kV ,短波限只与管电压有关。
连续X 射线总强度:α值约为(1.1-1.4)×10-9X 射线管发射连续X 射线的效率η为:2X X iZU ZUiUαηα===连续射线总强度射线管功率当用钨阳极(Z=74),管电压为100kV 时,η≈1%,可见效率是很低的。
X射线物理学基础

敦德励学 知行相长
01—X射线物理学基础
1784年左右研究了空气由O2和N2组成; 确定了水的成分,肯定了它不是元素而是化合物。
X射线的发现像一声春雷,唤醒了沉睡的物理学界。由此而引发了一系 列重大的发现,把人们的注意力引向更深入、更广阔的天地,从而揭开了现 代物理学的序幕。 敦德励学 知行相长
01—X射线物理学基础
1905年,德国基尔大学 1914年,德国法兰克福大学 的勒纳德。阴极射线。 的劳厄,晶体的X射线衍射。
1915年,英国的亨利·布拉格和劳伦 斯·布拉格,X射线分析晶体结构。
01—X射线物理学基础 中国近代物理学奠基人,生于江西。 1921年赴美入芝加哥大学,随康普顿从事物理学研究。 1926年获博士学位。 1928年秋起任清华大学教授,物理系主任、理学院院长。 1945年10月任中央大学校长。 1950年夏任中国科学院近代物理研究所所长,同年12月起 任中国科学院副院长。 1977年11月30日在北京逝世。
发现硝酸,被称为“化学中的牛顿” ;
1781年制得H2,并证明燃烧之后生成水; 首先提出电势的概念,对静电理论的发展起了重要作用;
发现一对电荷间的作用力和它们之间的距离平方成反比, 即后来库伦定律的一部分;
指出导体两端的电势与通过它的电流成正比,即1827年的
卡文迪许(Henry
欧姆定律;
Cavendish,1731.10.10.~ 1810.3.10.)英国化学家、
连续谱上,会出现一系列强度很
Kβ
高、波长范围很窄的线状光谱,
第一章 X射线的性质

透射x射线
热能 图1-9. X射线与物质的相互作用
穿透
入射 X射线透过物质沿原方向的传播
相干散射: 入射 X射线与试样物质中的电子相互作用,散射波 之间发生相互干涉的散射现象称为相干散射。
散射 非相干散射: 入射 X射线与试样物质中的电子产生弹性碰撞, 产生新的光子和反冲电子的过程.(康-吴效应) 吸收 入射 X射线的能量在通过物质时,转变为其它形式的能量,其 本身能量被消耗的现象.
(2) 俄歇效应 处于K激发态的原子能量(EK—EL)如还能继续 产生二次电离使另一个核外电子脱离原子变为二 次电子,如EK—EL>EL,它就可能使L、M、N等层 的电子逸出,这种二次电子称为KL电子,它的能 量有固定值,近似地等于“EK-EL”这种具有特征能 量的电子就是俄歇电子。
三:X射线的衰减规律 (1)质量吸收系数 实验证明:当一束X射线通过物质时,由于散射和 吸收的作用使其透射方向上的强度衰减。衰减的程 度与所经过物质小的距离成正比,如图1-7所示。 强度的相对变化为: Ix Ix dx dIx
1
二.
重要的概念和公式:
1.高能粒子与物质相互作用 特征辐射(特征X射线):入射电子,击出k层 电子,发出具有特定波长的x光子。 光电效应(荧光辐射):入射x光子,击出内层 电子—光电子,发出x光子(荧光X射线)。 俄歇效应:入射x光子,击出一个k层电子,L层 一电子跃入 填充,再使L层上一电子成自由电子 (KL2L2 Auger电子)。
1.1.3 X射线谱 由X射线管发射出来的X射线可以分为两种类型。 (1) 连续X射线谱 : 定义:高速运动的带电粒子受阻而减速时,都会产 生电磁辐射,这种辐射称之为韧致辐射。由于电子 与阳极碰撞的无规律性,因而其X射线的波长是连续 分布的 ,故叫做连续X射线谱。其谱形如图1-5 (2) 特征X射线 : 定义:原子外层电子向内层跃迁所产生的X射线叫做 特征X射线,又叫标识X射线。由特征X射线构成的X 射线谱叫特征x射线谱,产生的原理见图1-6。 特征X射线产生的根本原因 1 是原子内层电子的跃迁,它的波 K (Z ) 长与原子序数服从莫塞莱定律。
X射线物理学基础(2)

1. 光电效应 ---光电子和荧光X射线
激发K系光电效应时,入射光子的能量必须等于 或大于将K电子从K层移至无穷远时所作的功WK,即
hγ k =
hc
λk
= ωk
将激发限波长λK和激发电压VK联系起 ,即
eVk = ωk =
hc
λk
hc 12.4 = (nm) λk = eVk Vk
2. 俄歇效应
µl µm = ρ
工作中有时需要计算i个元素组成的化合 物、混合物、合金和溶液等的质量衰减系 数µm。由于µm与物质的存在状态无关, 因此衰减系数可按下式求得: µm=ω1µm1+ω2µm2+…ωiµmi
(3) X射线的吸收曲线 X射线的吸收曲线 如果用σm仍表示散射 系数,τm表示吸收系数。 在大多数情况下吸收系数 比散射系数大得多,故 μm≈τm。质量吸收系数 与波长的三次方和元素的 原子序数的三次方近似地 成比例。
温故而知新
1. X射线的本质 X射线的本质 2. X射线的产生 X射线的产生 (1) 产生条件 (2) X射线管的主要结构 X射线管的主要结构 3. X射线谱 X射线谱 连续X射线谱、特征X 连续X射线谱、特征X射线谱
第三节 X射线与物质的相互作用
【教学目标】 教学目标】
1. 理解X射线的散射与吸收。 2. 掌握X射线的衰减规律及线吸收系数和质量吸收系数。
光电子被被xx射线击出壳层的电子即射线击出壳层的电子即光电子光电子它带有壳它带有壳层的特征能量层的特征能量所以可用来进行成分分析所以可用来进行成分分析xpsxps俄歇电子高能级的电子回跳高能级的电子回跳多余能量将同能级的另多余能量将同能级的另一个电子送出去一个电子送出去这个被送出去的电子就是这个被送出去的电子就是俄歇电子俄歇电子带有壳层的特征能量带有壳层的特征能量aesaes二次荧光高能级的电子回跳高能级的电子回跳多余能量以多余能量以xx射线形式发射线形式发出出
第1章 X射线的性质

17
1.3 X射线谱--- 连续X射线谱
X射线强度与波长的 关系曲线,称之X射 线谱。 一、连续X射线谱
在管压很低时, 小 于 20kv 的 曲 线 是 连续变化的,故称 之连续X射线谱,即 连续谱。
18
1、连续X射线谱的产生机理
极大数量的电子与靶材随机碰撞 不同且连续的X射线
2、短波限λ0
15
根据量子力学理论,原子系统中的电子按泡利不相容原理不
连续地分布在K、L、M、N……等不同能级的轨道(壳层)上,
而且按能量最低原理首先填充最靠近原子核的第K层,再依次 填L、M、N等。能量大小:K<L<M<N… eg:当K电子被打出K层时,如L层电子来填充K空位时,则产 生Kα辐射。此X射线的能量为电子跃迁前后两能级的能量差,
这么大数目的电子到达靶上的时间和条件不 会相同,并且大多数电子要经过多次碰撞,能量 逐步损失掉,因此其波长必然覆盖一个很大的范 14 围,这种辐射称为连续辐射。
4.X射线产生的机理
特征辐射 当管电压达到或超过某一临界值时,则阴极发出的电 子在电场加速下,可以将靶物质原子深层的电子击到能量 较高的外部壳层或击出原子外,使原子电离。 阴极电子将自已的能量给予受激发的原子,而使它的 能量增高,原子处于激发状态。 处于激发状态的原子有自发回到稳定状态的倾向,此 时外层电子将填充内层空位,相应伴随着原子能量的降低。 原子从高能态变成低能态时,多出的能量以X射线形式辐 射出来。因物质一定,原子结构一定,两特定能级间的能 量差一定,故辐射出的特征X射波长一定。
X射线与物质的相互作用,是一个比较复杂的物理过程。
从能量的转换角度来看:
一束X射线通过物质时,其能量分为三个部分: 被散射,改变前进方向 被吸收,产生光电效应 热效应 透过物质,强度发生衰减。
第一章-X射线物理学基础

第一章 X 射线的物理学基础1、X 射线有什么性质,本质是什么?波长为多少?与可见光的区别?X 射线性质:(1)X 射线穿透物质时可被吸收;(2)原子量及密度不同的物质,对X 射线的吸收不同;(3)轻原子物质对X 射线来说几乎是透明的,而重元素物质对X 射线的吸收非常显著;(4)可穿透不透明的物质。
本质:属于电磁波。
X 射线的波长:大约在0.01~100 Å之间。
X 射线和可见光本质上同属于电磁波,只不过彼此占据不同的波长范围而已;X 射线虽然和可见光一样(没有静止质量,但有能量),与光传播有关的一些现象(如反射、折射、散射、干涉、以及偏振)都会发生,但由于相对可见光而言,X 射线的波长要短得多(光量子的能量相应要高得多),上述物理现象在表现方式上与可见光存在很大的差异。
不能象可见光一样使X 射线会聚、发散、和变向,使得X 射线无法制成显微镜!2、什么是X 射线管的管电压、管电流?它们通常采用什么单位?数值通常是什么?X 射线的管电压:加载到阴极和阳极侧之间的电压。
(KV ),50KVX 射线的管电流:在阴阳两极电场作用下,向阳极运动,形成的电流。
(mA )50mA3、X 射线的焦点与表观焦点的区别与联系?焦点:阳极靶表面被电子束轰击的地方,正是这个区域发射X 射线。
对于长方形焦点的X 射线管,引出窗口很重要。
对着焦点长边开设的窗口发射出X 射线的表观焦点为线状(称为线焦斑),其强度较弱,但其水平发散度小,分辨率较高,线性较好,粉末衍射仪多采用线焦斑;对焦点短边开设的窗口发射出的X 射线的表观焦点则为正方形(称为点焦斑),强度较高,可使衍射线明锐,适合于织构测定及德拜、劳埃照相场合。
4、X 射线有几种?产生不同X 射线的条件是什么?产生的机理是怎样的?晶体的X 射线衍射分析中采用的是哪种X 射线?硬X 射线:波长较短的硬X 射线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。
x射线诊断的物理基础

x射线诊断的物理基础X射线诊断是一种常用于医学影像学中的诊断技术。
它通过利用X射线穿透物体并在胶片或数字传感器上形成影像的原理来诊断疾病。
X射线的物理基础包括X射线的生成、穿透和吸收。
X射线的生成主要是通过X射线管。
X射线管由阴极和阳极组成,阴极由电子束加热产生电子,经由高电压加速,在阳极上产生高速电子撞击阳极金属,从而产生X射线。
X射线的频率和能量与电子束的能量有关。
X射线具有很强的穿透能力,可以穿过人体组织。
它的穿透能力与射线的能量有关,能量越高,穿透能力越强。
在医学影像学中,通常使用具有30至150kV的高电压来产生X射线。
X射线可以穿透软组织,如肌肉和脂肪,显示为较浅的影像;而在骨骼等密度较高的组织中,X射线的穿透能力较弱,形成较浓密的影像。
通过观察X射线影像的浓密程度和形状,可以判断组织的健康情况。
X射线在物体中的吸收程度与物质的原子序数和原子量有关。
原子序数越大的物质,如钙和铅,对X射线的吸收能力越强。
而原子序数较小的物质,如肌肉和脂肪组织,对X射线的吸收能力较弱。
在X 射线影像中,骨骼和钙质结构会显示为较白的区域,而软组织则显示为较暗的区域。
X射线诊断的物理基础还包括X射线的散射和弥散。
X射线在穿过物体时会发生散射,散射的程度与物体的密度有关。
散射会导致X 射线影像的对比度降低,影响诊断的准确性。
为了减少散射,常常使用散射补偿方法,如使用散射屏或增加固定的铅遮挡器。
X射线诊断是通过利用X射线的生成、穿透、吸收和散射等物理原理,对患者进行影像检查并诊断疾病的一种常用技术。
了解X射线的物理基础对于正确解读X射线影像,提高诊断准确性非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X射线是一种短波长(0.005-10nm) 、高能量(2.5×105-1.2×102)的电磁波 。它是原子内层电子在高速运动电子流 冲击下,产生跃迁而发射的电磁辐射。
一、x射线须具备如下条件:
1.产生自由电子的电子源,如加热钨丝发射 热电子;
2.设置自由电子撞击靶子,如阳极靶,用以 产生x射线;
1912年、劳厄(M.v.Lnue)等利用晶体作为产生 x射线衍射的光栅,使x射线产生衍射,证实了 x射线本质上是一种电磁波,波动性是其本性 的—个方面。
它与可见光一样,x射线以光速沿直线传播, 其电场强度矢量E和磁场强度矢量H相互垂直 ,并位于垂直于x射线传播方向的平面上。
x射线波长范围为10—0.001nm,在X射 线金属学中,常用的波长约在0.25— 0.05nm之间,用于材料探伤的x射线波长 在0.1—0.005nm之间,一般波长短的x射 线称为硬x射线.反之称为软X射线。
x射线物理学基础
2020年4月22日星期三
开创了人类认 识物质微观结 构的新纪元
发展了X射线 的衍射理论
1912年劳埃(Laue )
X射线的发现和广泛应用是廿世纪科学发展 中最伟大成就之一
围绕X射线发现 、发展和应用 而进行科研工 作的科学家获 诺贝尔奖的就 有近卅人之多
1901年 伦琴(英)
获诺贝尔物理奖
当X射线管中高速运动的电子和阳极靶碰撞时 、产生极大的负加速度,电子周围的电磁场将 发生急剧的变化,辐射出电磁波。由于大量电 子轰击阳极靶的时间和条件不完全相同,聚射 出的电磁波具有各种不同的波长,因而形成了 连续X射线谱。
根据量子力学观点、能量为eV的电子和阳极靶 碰撞时产生光子,从数值上看光子的能量应该 小于或最多等于电子的能量。
3.施加在阴极和阳极之间的高压,用以加速 自由电于朝阳极靶方向加速运动,如高压发生 器;
4.将阴阳极封闭在>10-3Pa的高真空中,保 持两极纯洁,促使加速电子无阻地撞击到阳极 靶上。
二、X射线发生装置基本原理
三、X射线的本质
X射线的波动性与粒子性是X射线具有的客观属 性
1 、X射线的波动性
1914年 劳埃(德)
获诺贝尔物理奖
1915年 布拉格父子(英) 获诺贝尔物理奖
1936年 德拜(英/荷) 获诺贝尔化学奖
1962年 奥森等3人
获诺贝尔生物奖
1964年 霍奇金(英/埃) 获诺贝尔化学奖
1985年 豪普特曼等2人 获诺贝尔化学奖
…………
X射线衍射法结构测定
X射线荧光光谱成分分析
x射线物理学基础
x射线具有很强的穿透物质的能力,经过电场 和磁场时不发生偏转,当穿过物质时x射线可 被偏振化.可被吸收而使强度减弱,它能使空 气或其它气体电离,能激发荧光效应,使照相 片感光,并能杀死生物细胞与组织。
它成为研究晶体结构,进行元素分析,以及医 疗透射照像和工业探伤等多方面问题的有力工 具。
§2 x射线谱
§1 x射线的本质 §2 x射线谱 §3 x射线与物质相互作用
§1 x射线的本质
1895年德国物理学家伦琴(W.K.Rontyen) 在研究阴极射线时,发现了—种新的射线。 后人为纪念发现者,称之为“伦琴射线”
实验表明,高速运动的电子被物质(如阳极 靶)阻止时,伴随电子动能的消失与转化, 会产生x射线。
实验规律:
1)当增加x射线管压时,各种波长射线的 相对强度—致增高,最大强度X射线的波 长λm和短波限λ0变小。
2)当管压保持恒定、增加管流时.各种 波λ0数长值x射大线小的不相变对。强度一致增高,但λm和
3)当改变阳极靶元素时.各种波长的相 对强度随靶元素的原子序数增加。
电动力学和量子力学的知识解释
x射线谱指的是x射线的强度I随波长λ变 化的关系曲线。
x射线强度大小由单位时间内通过与x射 线传播方向垂直的单位面积上的光量子 数决定。
实验表明,x射线管阳靶发射出的X射线 谱分为两类:连续x射线谱和特征x射线 谱。
一、 连续x射线谱
连续x射线是高速运动的电子被阳极靶突 然阻止而产生的。
它由某一短波限λ0开始直到波长等于无 穷大λ∞的一系列波长组成。
连续x射线谱有短波限λ0存在,且与电压成反比。 但是,在被加速的电子中的大多数高速电子与阳 极靶撞击时,其部分能量ε’要消耗在电子对阳极 靶的各种激发作用上,所以转化为X射线光量子 的能量要小于加速电子的全部能量,即ε=eV—ε’ 。
—个电子有时要经过几次碰撞才能转换 成光量子,或者一个电子转换为几个光 量子,这说明大多数辐射的波长均应大 于短波极限λ0,因而组成了连续X射线谱 。
库伦坎普弗(Kulenkampff)综合各种连续x 射线强度分布的实验结果,得出一个经 验公式
此式说明,连续谱的总强度与管电流强 度I、靶的原子序数Z以及管电压V的平方 成正比。
X射线管的效率η定义为x射线强度与x射 线管功率的比值,即
当用钨阳极管Z=74,管电压为100kv时 ,x射线管的效率为1%或者更低,这是 由于x射线管中电子的能量绝大部分在和 阳极靶碰撞时产生热能而损失,只有极 少部分能量转化为x射线能。
它具有如下实验规律:如图5—2。
连续X射线由高真空度Байду номын сангаасX射线管产生。当 热阴极发射出热电子后,电子在几万电子伏高 压电场下被加速,电子流撞击到阳极靶上,当 高速电子撞击靶面时,受到靶材料原子核的库 仑力作用而突然减速,使电子周围电磁场发生 急剧变化。电子的部分动能转变为X射线辐射 能。由于撞击到阳极靶上的电子并不都是以同 样的方式受到原子核的库仑力作用,其中有些 电子在一次碰撞中立即释放出全部能量而停止 运动,有些电子则与靶材料发生多次碰撞才逐 步失去动能而停止运动,从而产生了不同波长 的X射线。对于大量电子射到靶材料来讲,其 能量损失或转变是一个随机变量,因而产生各 种波长的连续X射线。
2、x射线粒子性.
x射线在空间传播具有粒子性,或者说x射线是 由大量以光速运动的粒子组成的不连续的粒子 流。这些粒子叫光量子
每个光量子具有能量hγ是X射线的最小能量单 位。
当它和其他元素的原子或电子交换能量时只能 一份一份地以最小能量单位被原于或电子吸收 ,由式(5—1)可见.对不同频率v或波长λ的x射 线,光量子的能量是不同的。