集合中参数问题的解答方法(部分答案)

合集下载

第01讲 集合(解析版)备战2023年高考数学一轮复习精讲精练

第01讲 集合(解析版)备战2023年高考数学一轮复习精讲精练

第01讲集合(精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:集合的基本概念高频考点二:集合的基本关系高频考点三:集合的运算高频考点四:venn图的应用高频考点五:集合新定义问题第五部分:高考真题感悟第六部分:集合(精练)1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于 或 不属于,数学符号分别记为:∈和∉. (3)集合的表示方法:列举法、描述法、韦恩图(venn 图). (4)常见数集和数学符号 ①确定性:给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.给定集合{1,2,3,4,5}A =,可知1A ∈,在该集合中,6A ∉,不在该集合中; ②互异性:一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不重复出现的. 集合{,,}A a b c =应满足a b c ≠≠.③无序性:组成集合的元素间没有顺序之分。

集合{1,2,3,4,5}A =和{1,3,5,2,4}B =是同一个集合.④列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.⑤描述法用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.2、集合间的基本关系(1)子集(subset ):一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集(proper subset ):如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,记作AB (或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”.(3)相等:如果集合A 是集合B 的子集(A B ⊆,且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.(4)空集的性质: 我们把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集.3、集合的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ,即{|,}AB x x A x B =∈∈且.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A B ,即{|,}AB x x A x B =∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.4、集合的运算性质(1)A A A =,A ∅=∅,A B B A =. (2)A A A =,A A ∅=,A B BA =.(3)()U AC A =∅,()U A C A U =,()U U C C A A =.5、高频考点结论(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆.(4)()()()U U U C AB C A C B =,()()()U U U C A B C A C B =.一、判断题1.(2022·江西·贵溪市实验中学高二期末)集合{},,,A a b c d =的子集共有8个 ( ) 【答案】错误集合{},,,A a b c d =的子集共有4216=个, 故答案为:错误2.(2021·江西·贵溪市实验中学高二阶段练习)集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合( ) 【答案】√由集合相等的定义可知,集合{}1,2,3,4,5和{}5,4,3,2,1表示同一集合. 故答案为:√.3.(2021·江西·贵溪市实验中学高三阶段练习)满足条件{}{}11,2,3M ⋃=的集合M 的个数是2个.( ) 【答案】正确因{}{}11,2,3M ⋃=,则{2,3}M =或{1,2,3}M =,所以的集合M 的个数是2个. 故答案为:正确4.(2021·江西·贵溪市实验中学高三阶段练习)已知集合{}20M xx x =+=∣,则1M -∈.( ) 【答案】正确因为{}{}200,1M xx x =+==-∣ 所以1M -∈5.(2021·江西·贵溪市实验中学高二阶段练习)满足条件{}{}11,2,3M ⋃=的集合M 的个数是3 ( ) 【答案】错误因集合M 满足{}{}11,2,3M ⋃=,于是得{2,3}M =或{1,2,3}M =,即符合条件的集合M 有2个,所以原命题是错误的.故答案为:错误 二、单选题1.(2022·广东茂名·高一期末)已知集合{}21A x y x ==+,集合{}21B y y x ==+,则A B =( )A .0B .{}|1x x ≥C .{}|1x x ≤D .R【答案】B由题意,集合A R =,{}|1B y y =≥,∴{}|1x x A B =≥. 故选:B.2.(2021·广东·佛山一中高一阶段练习)已知集合{}22,531,=-+A a a ,,{}5,9,1,4=+-B a a ,若{}4A B ⋂=,则实数a 的取值的集合为( ) A .{}1,2,2- B .{}1,2 C .{}1,2- D .{}1【答案】D集合{}22,531,=-+A a a ,,{}5,9,1,4=+-B a a , 又{}4A B ⋂=∴314a +=或24a =,解得1a =或2a =或2a =-, 当1a =时,}{2,5,4,1A =-,}{6,9,0,4B =,{}4A B ⋂=,符合题意; 当2a =时,}{2,5,7,4A =-,}{7,9,1,4B =-,{}7,4⋂=A B ,不符合题意;当2a =-时,}{2,5,5,4A =--,}{3,9,3,4B =,不满足集合元素的互异性,不符合题意.1a,则实数a 的取值的集合为{}1.故选:D.3.(2022·河南平顶山·高三阶段练习(文))已知集合{}1A x x =>,{}260B x x x =--<,则()R A B ⋂=( )A .{}13x x <<B .{}12x x <<C .{}3x x ≥D .{}2x x ≥【答案】C二次不等式求出集合B ,进而求出B R,()RAB .【详解】由题意可得:{}23B x x =-<<,则{2R B x x =≤-或}3x ≥,故(){}R 3A B x x ⋂=≥. 故选:C4.(2022·湖南·沅陵县第一中学高二开学考试)如图所示,阴影部分表示的集合是( )A .(UB ⋂)A B .(U A ⋂)BC .() UA B ⋂D .(U A B )【答案】A由图可知阴影部分属于A ,不属于B , 故阴影部分为() UB A ⋂,故选:A.高频考点一:集合的基本概念1.(2020·重庆·一模(理))已知集合{}2|280,A x Z x x =∈+-<{}2|B x x A =∈,则B 中元素个数为A .4B .5C .6D .7【答案】A{}{}2|280|42{3,2,1,0,1}A x Z x x x Z x =∈+-<=∈-<<=---, {}2|{0,1,4,9}B x x A =∈=,B 中元素个数为4个.故选:A.本题考查集合的化简,注意集合元素的满足的条件,属于基础题.2.(2021·上海黄浦·一模)已知集合{}2,(R)A x x x =∈,若1A ∈,则x =___________.【答案】1-{}2,(R)A x x x =∈,1A ∈, 则1x =或21x =, 解得1x =或1x =-,当1x =时,集合A 中有两个相同元素,(舍去), 所以1x =-.故答案为:1- 3.(2012·全国·一模(理))集合中含有的元素个数为A .4B .6C .8D .12【答案】B共6 个.故选B4.(2017·河北·武邑宏达学校模拟预测(理))集合{}2*|70,A x x x x N =-<∈,则*6|,B y N y A y ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为 A .1个 B .2个C .3个D .4个【答案】D,,所以集合中的元素个数为4个,故选D.考点:集合的表示5.(2020·湖南·邵东市第十中学模拟预测(理))已知集合{}1,0,1A =-,(),|,,xB x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为( ) A .3 B .4 C .6 D .9【答案】B 因为x A ∈,yA ,xy∈N ,所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1. 故选:B.【点睛】本题考查集合中元素个数的求法,属于基础题.6.(2021·全国·二模(理))定义集合运算:{},,A B z z xy x A y B *==∈∈,设{1,2}A =,{1,2,3}B =,则集合A B *的所有元素之和为( ) A .16 B .18C .14D .8【答案】A由题设知:{1,2,3,4,6}A B *=,∴所有元素之和1234616++++=.故选:A.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合,然后 再看集合的构成元素满足的限制条件是什么,从而准确把握集合的意义,再求解时注意把握集合元素的三特性中的“互异性”.高频考点二:集合的基本关系1.(2021·广东肇庆·模拟预测)已知集合{}3P x x =<,{}2Q x Z x =∈<,则( ) A .P Q ⊆ B .Q P ⊆C .P Q P =D .P Q Q ⋃=【答案】B由题意,{}{}21,0,1Q x Z x =∈<=-,{}3P x x =< 故Q P ⊆,A 错,B 对又{1,0,1}P Q Q =-=,{|3}P Q x x P ⋃=<=,故C ,D 错 故选:B2.(2020·山东·模拟预测)已知集合==2{1,},{}M x N x ,若N M ⊆,则x =__. 【答案】0若1x =,则21x =,不符合条件;若2x x =,则0x =或1x =(舍去),经验证0x =符合条件. 故答案为:0.3.(2020·江苏省如皋中学二模)设{,2}M m =,{2,2}N m m =+,且M N ,则实数m 的值是________. 【答案】0;因为{,2}M m =,{2,2}N m m =+,且M N ,所以+222m m m =⎧⎨=⎩,解得0m =,故答案为:0.【点睛】本题主要考查集合的基本运算,利用集合相等求解m 的值是解题关键,属于基础题. 4.(2021·辽宁·东北育才学校一模)所有满足{}{},,,a M a b c d ⊆的集合M 的个数为________;【答案】7 满足{}{},,,a M a b c d ⊆的集合M 有{}{}{}{}{}{}{},,,,,,,,,,,,,,,a a b a c a d a b c a b d a c d ,共7个.故答案为:75.(2022·全国·模拟预测)已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( ) A .[)1,+∞ B .[)2,+∞ C .(],1-∞ D .(),1-∞【答案】C∵集合{}{}2131M x x x x =+<=<,且N M ⊆,∴1a ≤. 故选:C .6.(2020·广西·模拟预测)已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-.(1)求A B ,()R A B ⋂:(2)若B C C =,求实数m 的取值范围.【答案】(1){|05}A B x x ⋃=<≤;(){14}R A B xx x ⋂=≤≥或∣;(2)52m ≤. (1){|05}A B x x ⋃=<≤;(){14}RA B x x x ⋂=≤≥或∣(2)因为B C C =,所以C B ⊆. 当B φ=时,121m m +≥-,即2m ≤; 当B φ≠时,12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,即522m <≤综上,52m ≤7.(2020·广西·模拟预测)已知集合{|121}A x a x a =+≤≤-,{|3B x x =≤或5}x >.(1)若4a =,求A B ; (2)若A B ⊆,求a 的取值范围.【答案】(1){|57}A B x x =<≤;(2){|2a a ≤或}4a >. (1)当4a =时,易得{|57}A x x =≤≤,{|3B x x =≤或5}x >,{|57}A B x x ∴=<≤.(2)若211a a -<+,即2a <时,A =∅,满足A B ⊆, 若211a a -≥+,即2a ≥时,要使A B ⊆,只需2132a a -≤⎧⎨≥⎩或152a a +>⎧⎨≥⎩,解得2a =或4a >,综上所述a 的取值范围为{|2a a ≤或}4a >.【点睛】本题考查根据集合的基本关系求参数,属于基础题. 重点考查结论:(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个. (2)U U A B AB A A B BC B C A ⊆⇔=⇔=⇔⊆.(3)若A B ⊆注意要讨论①A =∅②A ≠∅高频考点三:集合的运算1.(2022·甘肃陇南·模拟预测(理))已知集合{}|321A x x =->,{}260B x x x =--<,则A B =( )A .{}13x x <<B .{}12x x <<C .{}21x x -<<D .{}31x x -<<【答案】A{}{}{}|321|33|1A x x x x x x =->=>=>{}{}{}260(2)(3)023B x x x x x x x x =--<=+-<=-<<所以{}13A B x x ⋂=<<, 故选:A2.(2022·北京丰台·一模)已知集合{|12}A x x =-<≤,{|21}B x x =-<≤,则A B ⋃=( ) A .{|11}x x -<< B .{|11}x x -<≤ C .{|22}x x -<< D .{|22}x x -<≤【答案】D∵集合{|12}A x x =-<≤,{|21}B x x =-<≤, ∴{|22}A B x x ⋃=-<≤. 故选:D.3.(2022·河南·模拟预测(理))已知集合{}14A x x =≤≤,(){}214B x x =-≥,则()AB =R( )A .[]3,4B .[]1,4C .[)1,3D .[)3,+∞【答案】C解:由()214x -≥,即310x x ,解得3x ≥或1x ≤-,即(){}214{|3B x x x x =-≥=≥或1}x ≤-,所以()1,3R B =-,又{}14A x x =≤≤,所以()[)1,3R A B ⋂=; 故选:C4.(2022·全国·模拟预测(理))设全集U =R ,集合102x A xx ⎧⎫+=≤⎨⎬-⎩⎭,集合{}ln 1B x x =≤,则A B 是( ) A .(]0,2 B .()2,e C .()0,2 D .[)1,e -【答案】C102x x +≤-,解得:12x -≤<,故集合[)1,2A =-,ln 1x ≤,解得:(]0,e x ∈,集合(]0,e B =,则()0,2A B =, 故选:C .5.(2022·江西赣州·一模(理))设集合{}1,0,A n =-,{},,B x x a b a A b A ==⋅∈∈.若A B A =,则实数n的值为( ) A .1- B .0 C .1 D .2【答案】C依据集合元素互异性可知,0,1n n ≠≠-,排除选项AB ; 当1n =时,{}1,0,1A =-,{}{},,110B x x a b a A b A ==⋅∈∈=-,,, 满足A B A =.选项C 判断正确;当2n =时,{}1,0,2A =-,{}{},,2,014B x x a b a A b A ==⋅∈∈=-,,, {}0A B A ⋂=≠.选项D 判断错误.故选:C6.(2021·江西·模拟预测)2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,传扬中国共产党的伟大精神,为广大青年群体带来精神感召.现有《青春之歌》《建党伟业》《开国大典》三支短视频,某大学社团有50人,观看了《青春之歌》的有21人,观看了《建党伟业》的有23人,观看了《开国大典》的有26人.其中,只观看了《青春之歌》和《建党伟业》的有4人,只观看了《建党伟业》和《开国大典》的有7人,只观看了《青春之歌》和《开国大典》的有6人,三支短视频全观看了的有3人,则没有观看任何一支短视频的人数为________. 【答案】3把大学社团50人形成的集合记为全集U ,观看了《青春之歌》《建党伟业》《开国大典》三 支短视频的人形成的集合分别记为A ,B ,C ,依题意,作出韦恩图,如图,观察韦恩图:因观看了《青春之歌》的有21人,则只看了《青春之歌》的有214638---=(人), 因观看了《建党伟业》的有23人,则只看了《建党伟业》的有234739---=(人), 因观看了《开国大典》的有26人,则只看了《开国大典》的有2667310---=(人), 因此,至少看了一支短视频的有3467891047++++++=(人), 所以没有观看任何一支短视频的人数为50473-=. 故答案为:37.(2021·上海·模拟预测)已知集合{}2890,U x x x x Z =--≤∈,{}A y y y Z ==∈,则UA__________.【答案】{1,6,7,8,9}-由题意,289(9)(1)019x x x x x --=-+≤∴-≤≤,又x ∈Z{}1,0,1,2,3,4,5,6,7,8,9U -∴=又y =由于20(4)2525x ≤--+≤05∴≤,又y Z ∈{}0,1,2,3,4,5A ∴= 故{1,6,7,8,9}UA =-故答案为:{1,6,7,8,9}- 集合运算的常用方法①若集合中的元素是离散的,常用Venn 图求解;②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.高频考点四:venn 图的应用1.(2022·贵州贵阳·一模(理))若全集U 和集合A ,B 的关系如图所示,则图中阴影部分表示的集合为( )A .()U AB ⋂ B .()UB AC .()UA BD .()U A B【答案】A由图知:阴影部分属于A ,不属于B ,故为()U B A ⋂. 故选:A2.(2021·广东·模拟预测)已知全集U =R ,集合{}2,20A x yB xx x ⎧==--<⎨⎩∣∣,它们的关系如图(Venn 图)所示,则阴影部分表示的集合为( )A .{12}x x -≤<∣B .{12}xx -<<∣ C .{12}xx ≤<∣ D .{12}xx <<∣ 【答案】C解:由题意得:{10}{1}A x y xx x x ⎧==->=<⎨⎩∣∣∣ {}220{12}B x x x x x =--<=-<<∣∣{}()1,{12}UUA x x AB x x ∴=≥⋂=≤<∣∣故选:C3.(2021·黑龙江·哈九中三模(理))如图,U 是全集,,,M P S 是U 的子集,则阴影部分表示的集合是( )A .()MP S B .()MP S C .()UM P S ⋂⋂D .()UM P S ⋂⋃【答案】C解:由图知,阴影部分在集合M 中,在集合P 中,但不在集合S 中, 故阴影部分所表示的集合是()UM P S ⋂⋂.故选:C.4.(2021·江苏徐州·二模)某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为( )A .5B .10C .15D .20【答案】C用集合A 表示除草优秀的学生,B 表示椿树优秀的学生,全班学生用全集U 表示,则UA 表示除草合格的学生,则UB 表示植树合格的学生,作出Venn 图,如图,设两个项目都优秀的人数为x ,两个项目都是合格的人数为y ,由图可得203045x x x y -++-+=,5x y =+,因为max 10y =,所以max 10515x =+=. 故选:C .【点睛】关键点点睛:本题考查集合的应用,解题关键是用集合,A B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.5.(2020·北京市第五中学模拟预测)高二一班共有学生50人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择三门课程进行学习.已知选择物理、化学、生物的学生各有至少20人,这三门课程都不选的有10人,这三门课程都选的有10人,在这三门课程中选择任意两门课程的都至少有13人,物理、化学只选一科的学生都至少6人,那么选择物理和化学这两门课程的学生人数至多()A.16 B.17 C.18 D.19【答案】C把学生50人看出一个集合U,选择物理科的人数组成为集合A,选择化学科的人数组成集合B,选择生物颗的人数组成集合C,要使选择物理和化学这两门课程的学生人数最多,除这三门课程都不选的有10人,这三门课程都选的有10人,则其它个选择人数均为最少,即得到单选物理的最少6人,单选化学的最少6人,单选化学、生物的最少3人,单选物理、生物的最少3人,单选生物的最少4人,以上人数最少42人,可作出如下图所示的韦恩图,所以单选物理、化学的人数至多8人,+=人.所以至多选择选择物理和化学这两门课程的学生人数至多10818故选:C.【点睛】本题主要考查了集合的应用,其中解答中根据题意,画出集合运算的韦恩图是解答本题的关键,着重考查数形结合思想,以及分析问题和解答问题的能力.高频考点五:集合新定义问题1.定义集合{|A B x x A -=∈ 且}x B ∉.己知集合{}Z 26U x x =∈-<<,{}0,2,4,5A =,{}1,0,3B =-,则()UA B -中元素的个数为( )A .3B .4C .5D .6【答案】B因为{}0,2,4,5A =,{}1,0,3B =-,所以{}2,4,5A B -=, 又因为{}1,0,1,2,3,4,5U =-,所以(){}U1,0,1,3A B -=-.故选:B.2.设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且}x A B ∉.已知{|A x y =,{|1}B x x =>,则A B ⨯等于( ) A .[0,1](2,)+∞ B .[0,1)(2,)⋃+∞ C .[0,1] D .[0,2]【答案】A集合A 中,220x x -≥,即()20x x -≤, 解得02x ≤≤,即{}[]|0202A x x =≤≤=,, 又{}|1B x x =>,所以)0,A B ⎡⋃=+∞⎣,](1,2A B ⋂=, 则[]0,1(2,)A B ⨯=⋃+∞. 故选:A .3.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( ) A .2 B .3C .8D .9【答案】B解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3. 故选:B.4.已知非空集合A 、B 满足以下两个条件:(1){}1,2,3,4,5A B =,A B =∅;(2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(),A B 的个数为( ) A .4 B .6C .8D .16【答案】C由题意可知,集合A 不能是空集,也不可能为{}1,2,3,4,5.若集合A 只有一个元素,则集合A 为{}4;若集合A 有两个元素,则集合A 为{}1,3、{}3,4、{}3,5; 若集合A 有三个元素,则集合A 为{}1,2,4、{}1,2,5、{}2,4,5; 若集合A 有四个元素,则集合A 为{}1,2,3,5. 综上所述,有序集合对(),A B 的个数为8. 故选:C.【点睛】关键点点睛:解本题的关键在于对集合A 中的元素个数进行分类讨论,由此确定集合A ,由此得解.5.(多选)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即{}[]5k n k n Z =+∈,0,1,2,3,4k =.则下列结论正确的是( )A .2011[1]∈;B .[0][1][2][3][4]Z =⋃⋃⋃⋃;C .3[3]-∈;D .整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.【答案】ABDA :2011除以5,所得余数为1,满足[]1的定义,故正确;B :整数集Z 就是由除以5所得余数为0,1,2,3,4的整数构成的,故正确;C :()3512-=⨯-+,故[]33-∉,故错误;D :设{}112212125,5,,,,0,1,2,3,4a n m b n m n n Z m m =+=+∈∈, 则()12125a b n n m m -=-+-;若整数a ,b 属于同一“类”,则120m m -=,所以[]0a b -∈; 反之,若[]0a b -∈,则120m m -=,即12m m =,,a b 属于同一“类”. 故整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”,正确. 故选:ABD .1.(2021·山东·高考真题)假设集合{}1,2,3A =,{}1,3B =,那么A B 等于( ) A .{}1,2,3 B .{}1,3C .{}1,2D .{}2【答案】B{}1,2,3A =,{}1,3B =,{}1,3∴⋂=A B . 故选:B .2.(2021·湖南·高考真题)已知集合{}13,5A =,,{}1,2,3,4B =,且A B =( ) A .{}1,3 B .{}1,3,5C .{}1,2,3,4D .{}1,2,3,4,5【答案】A因为集合{}13,5A =,,{}1,2,3,4B = 所以{}1,3A B =, 故选:A.3.(2021·江苏·高考真题)已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( )A .-2B .-1C .0D .1【答案】B 因为{}1,2,3MN =,若110a a -=⇒=,经验证不满足题意;若121a a -=⇒=-,经验证满足题意. 所以1a =-. 故选:B.4.(2021·天津·高考真题)设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( ) A .{}0 B .{0,1,3,5} C .{0,1,2,4} D .{0,2,3,4}【答案】C{}{}{}1,0,11,3,5,0,2,4A B C =-==,,{}1A B ∴⋂=,{}()0,1,2,4A B C ⋂⋃=∴. 故选:C.5.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B 由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.6.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( ) A .{}1x x >- B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D由交集的定义结合题意可得:{}|12A B x x =≤<. 故选:D.7.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z【答案】C任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C.一、单选题1.(2021·北大附中云南实验学校高一阶段练习)下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .北大附中云南实验学校20202021-学年度第二学期全体高一学生C .高一年级视力比较好的同学D .高一年级很有才华的老师 【答案】B 【详解】对于ACD ,集合中的元素具有确定性,但ACD 中的元素不确定,故不能构成集合,ACD 错误; B 中的元素满足集合中元素的特点,可以构成集合,B 正确. 故选:B.2.(2022··模拟预测(理))已知集合A ={}250x x x -≤,B ={}21,x x k k Z =-∈,则A B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B由250x x -≤得:05x ≤≤,所以{}05A x x =≤≤,又{}21,B x x k k Z ==-∈,令0215k ≤-≤,解得:132k ≤≤,k Z ∈,当1k =时,1x =,当2k =时,3x =,当3k =时,5x =,故A B 中元素的个数为3. 故选:B3.(2022·贵州毕节·模拟预测(理))已知集合(){}10A x x x =-=,{}20,,B m m =,若A B B ⋃=,则m =( ) A .1- B .0C .1D .±1【答案】A∵集合(){}{}100,1A x x x =-==,{}20,,B m m =,A B B ⋃=,∴1m =或21m =,即1m =±,当1m =时,{}0,1,1B =不合题意,当1m =-时,{}0,1,1B =-成立, ∴1m =-. 故选:A.4.(2022·全国·模拟预测)已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( ) A .3 B .4 C .8 D .16【答案】C依题意{}2,3,4B =,所以集合B 的子集的个数为328=, 故选:C.5.(2022·湖南·长沙一中高三阶段练习)集合1,36n M x x n Z ⎧⎫==+∈⎨⎬⎩⎭,1,63n N x x n Z ⎧⎫==+∈⎨⎬⎩⎭,则MN =( ) A .M B .N C .∅ D .,6n x x n Z ⎧⎫=∈⎨⎬⎩⎭【答案】B由已知2,6n M x x n Z ⎧⎫+==∈⎨⎬⎩⎭,21,6n N x x n Z ⎧⎫+==∈⎨⎬⎩⎭,又2n +表示整数,21n 表示奇数,故M N N =,故选:B6.(2022·广东·高二期末)集合{}2230A x x x =--=,{}10B x mx =+=,A B A ⋃=,则m 的取值范围是( ) A .11,3⎧⎫-⎨⎬⎩⎭B .{}1,3-C .10,3⎧⎫-⎨⎬⎩⎭D .10,1,3⎧⎫-⎨⎬⎩⎭【答案】D根据题意,可得:{}3,1A =- A B A ⋃=,则有:B A ⊆当0m =时,B =∅,满足题意; 当0m ≠时,则有:1x m=- 则有:13m -=,11m-=-解得:13m =-或1m =综上,解得:0m =或13m =-或1m =故答案选:D7.(2022·湖南·长郡中学高二阶段练习)已知集合(){}2ln 4A x y x ==-,{B y x =,则A B =( )A .()2,3B .()(],22,3-∞-C .()0,3D .(]2,3【答案】B 由题意得,{}2|40{|2A x x x x =->=<-或2}x >,{}|3B y y =≤,故A B ⋂()(],22,3∞=--⋃, 故选:B8.(2022·河南·温县第一高级中学高三阶段练习(理))已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,B ={-2,-1,0,1},则A ∩B =( ) A .{-2,-1,0,1} B .{-1,0,1}C .{-1,0}D .{-2,-1,0}【答案】B 因为102x x -≤+等价于(1)(2)020x x x -+≤⎧⎨+≠⎩等价于21x -<≤, 所以{|21}A x x =-<≤,又{}2,1,0,1B =--, 所以A B ={}1,0,1-. 故选:B 二、填空题9.(2022·四川·雅安中学高一阶段练习)集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 【答案】8{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:810.(2022·上海金山·高一期末)满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______.【答案】7由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个,故答案为:7.11.(2022·全国·高三专题练习)已知集合{}2{123},280A x a x a B x x x =-<<+=--≤,若()R A B A ⋂=,求实数a 的取值范围是___________. 【答案】[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦()R A B A =⋂,R A B ∴⊆ {}2280B x x x =--≤,{2R B x x ∴=<-∣或4}x > 当A =∅时,123,4a a a -+-,满足R A B ⊆当A ≠∅时,要使得R A B ⊆,则4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-⎩ 解得542a -<≤-或5a 综上,实数a 的取值范围是[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦ 故答案为:[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦12.(2022·全国·高三专题练习)设集合{}2280A x x x =-->,{B x x a =≤或}5x a ≥+,若()R A B ⋂=∅,则a 的取值范围是___________. 【答案】[]2,1--{}()(){}{22804202A x x x x x x x x =-->=-+>=<-或}4x >, 因为{B x x a =≤或}5x a ≥+,所以{}R 5B x a x a =<<+,若()R A B ⋂=∅,则254a a ≥-⎧⎨+≤⎩,解得21a -≤≤-. 所以a 的取值范围是[]2,1--,故答案为:[]2,1--.三、解答题13.(2022·山西·榆次一中高一开学考试)已知集合{}22150M x x x =--≤,{}N x m x m =-≤≤.(1)当1m =时,求M N ⋂以及()()R R M N ⋃;(2)若M N ,求实数m 的取值范围.【答案】(1)[1,1]=-M N ,()()()(),11,R R M N ∞∞⋃=--⋃+(2)[5,)+∞ (1){}{}(3)(5)035M x x x x x =+-≤=-≤≤,当1m =时,[1,1]N =-,∴[1,1]=-MN , (,3)(5,)=-∞-+∞R M ,(,1)(1,)=-∞-+∞R N ,∴()()(,1)(1,)=-∞-+∞R R M N .(2)由题可知M N , 所以35-≤-⎧⎨≥⎩m m , 解得5m ≥,所以实数m 的取值范围为[5,)+∞.14.(2022·江苏省天一中学高一期末)集合1121x A x x +⎧⎫=>⎨⎬-⎩⎭,{}22240B x x ax a =-+-<. (1)若{}23,4,23C a a =+-,()0B C ∈,求实数a 的值;(2)从条件①②③这三个条件中选择一个作为已知条件,求实数a 的取值范围.条件:①A B A =;②()R A B ⋂=∅;③()R B A R ⋃=.(注:答题前先说明选择哪个条件,如果选择多于一条件分别解答,按第一个解答计分).【答案】(1)1(2)条件选择见解析,502a ≤≤(1)因为()0B C ∈,所以0C ∈,所以2230a a +-=,解得:1a =或3a =-.当3a =-时,{}51B x x =-<<-,不合题意;当1a =时,{}13B x x =-<<,满足题设.∴实数a 的值为1.(2)集合1112212x A x x x x +⎧⎫⎧⎫=>=<<⎨⎬⎨⎬-⎩⎭⎩⎭. 集合{}{}2224022B x x ax a x a x a =-+-<=-<<+. 若选择①A B A =,即22501222a A B a a +≥⎧⎪⊆⇒⇒≤≤⎨-≤⎪⎩若选择②()12502222R a A B a a ⎧-≤⎪⋂=∅⇔⇔≤≤⎨⎪+≥⎩, 若选择③()R B A R ⋃=,则22501222a a a +≥⎧⎪⇒≤≤⎨-≤⎪⎩15.(2022·江西·赣州市赣县第三中学高一开学考试)已知集合{}2430A x x x =++=,{}22230B x x ax a a =-+--=. (1)若1a =,求A B ;(2)若A B A ⋃=,求a 的取值集合.【答案】(1){}1A B ⋂=-(2){3a a ≤-或}2a =-.(1)当1a =时,{}{}22301,3B x x x =--==-. 因为{}{}24303,1A x x x =++==--, 所以{}1A B ⋂=-.(2)因为A B A ⋃=,所以B A ⊆.当()224434120a a a a ∆=---=+<时,解得3a <-,B =∅,符合题意; 当4120a ∆=+=,即3a =-时,{}3B =-,符合题意;当4120a ∆=+>,即3a >-时,{}3,1B A ==--,则()()2312,313,a a a ⎧-+-=⎪⎨-⨯-=--⎪⎩解得2a =-. 综上,a 的取值集合是{3a a ≤-或}2a =-.16.(2022·江苏·高一)已知集合A 为非空数集,定义:{},,S x x a b a b A ==+∈,{},,T x x a b a b A ==-∈.(1)若集合{}1,3A =,直接写出集合S 、T ;(2)若集合{}1234,,,A x x x x =,且T A =,写出一个满足条件的集合A ,并说明理由;(3)若集合{}02020,A x x x N ⊆≤≤∈,S T ⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.【答案】(1){}2,4,6S =,{}0,2T =(2){}1234,,,A x x x x =,1234x x x x <<<,理由见解析(3)1347(1)根据题意,由{}1,3A =,则{}2,4,6S =,{}0,2T =;(2)由于集合{}1234,,,A x x x x =,1234x x x x <<<,且T A =,所以T 中也只包含四个元素,即{}2131410,,,T x x x x x x =---,剩下的324321x x x x x x -=-=-,所以1423x x x x +=+;(3)设{}12,,k A a a a =满足题意,其中12k a a a <<<,则11213223122k k k k k k a a a a a a a a a a a a a a -<+<+<<+<+<+<<+<, ∴21S k ≥-,1121311k a a a a a a a a -<-<-<<-,∴T k ≥, ∵S T ⋂=∅,31S T S T k ⋃=+≥-, S T 中最小的元素为0,最大的元素为2k a , ∴21k S T a ⋃≤+,∴()31214041*k k a k N -≤+≤∈, 1347k ≤,实际上当{}674,675,676,,2020A =时满足题意, 证明如下:设{},1,2,,2020A m m m =++,m N ∈,则{}2,21,22,,4040S m m m =++,{}0,1,2,,2020T m =-, 依题意有20202m m -<,即16733m >, 故m 的最小值为674,于是当674m =时,A 中元素最多, 即{}674,675,676,,2020A =时满足题意, 综上所述,集合A 中元素的个数的最大值是1347.。

利用集合间包含关系求参数取值范围-高考数学解题方法含详解

利用集合间包含关系求参数取值范围-高考数学解题方法含详解

利用集合间包含关系求参数取值范围-高考数学解题方法一、单选题1.设集合{}220M x x x =-≥,{}N x x a =<,若M N ⊆,则实数a 的取值范围是( ) A .2a <B .2a >C .2a ≥D .2a ≤2.已知集合{}12A x x =<<,集合{}B x x m =>,若()A B =∅R,则m 的取值范围为( ) A .(],1-∞B .(],2-∞C .[)1,+∞D .[)2,+∞3.已知集合{1}A =,{|}B x x a =≥,若A B B ⋃=,则实数a 的取值范围是( ) A .(,1)-∞B .(,1]-∞C .(1,)+∞D .[1,)+∞4.已知集合{}2|20,{|1},A x x x B x x m AB A =--<=-<<=,则实数m 的取值范围为( ) A .(2,)+∞ B .(1,2)- C .[2,)+∞D .(1,2]-5.已知集合{}220A x x x =+-=,若{}B x x a =≤,且AB ,则a 的取值范围是( ) A .1a >B .1a ≥C .2a ≥-D .2a ≤-6.若{}1,4,A x =,{}21,B x =且B A ⊆,则x =( ).A .2±B .2±或0C .2±或1或0D .2±或±1或07.已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,8.已知集合{}M x y x R ==∈,{},N y y x a x R ==-+∈,若M N ⊆,则实数a 的取值范围是( )A .()1,+∞B .[)1,+∞C .(),3-∞-D .(],3-∞- 9.设U =R ,N ={x |-2<x <2},M ={x |a -1<x <a +1},若U N 是U M的真子集,则实数a的取值范围是( )A .-1<a <1B .-1≤a <1C .-1<a ≤1D .-1≤a ≤110.已知集合{}220A x x x =-≤,{}0lg 1B x x =<≤,2a C x x ⎧⎫=<⎨⎬⎩⎭,若{}()03A B C x x =≤<∣,则a 的值为( )A .1B .3C .6D .811.已知{}{},14||A x x a B x x =<=<<,若RA B ⊆,则实数a 的取值范围为( )A .{}|1a a <B .{}4|a a ≤C .{}|1a a ≤D .{}|1a a ≥12.已知集合{}2230A x N x x *=∈--<,{}20B x ax =+=,若AB B =,则实数a 的取值集合为( ) A .{}1,2--B .{}1,0-C .2,0,1D .{}2,1,0--13.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<14.已知集合1ln 1x a e a x A x x x --⎧⎫+=-≤⎨⎬⎩⎭,集合{}2021ln 2021B x x x =+≥,若B A ⊆,则实数a 的取值范围为( )A .[],e e -B .[],1e -C .[]1,1-D .[]1,e -15.已知0a >,函数()()21sin cos 2f x a x x x x a =+-+++-,x ∈R .记函数()f x 的值域为M ,函数()()f f x 的值域为N ,若M N ⊆,则a 的最大值是( )A .1B .2C .3D .416.设函数()()()21ln 31f x g x ax x ==-+,若对任意1[0,)x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为( )A .94B .2C .92D .417.若对函数()2sin f x x x =-的图象上任意一点处的切线1l ,函数。

专题01 集合、集合间的关系、集合的运算(重难点突破)解析版

专题01 集合、集合间的关系、集合的运算(重难点突破)解析版

专题01 集合、集合间的关系、集合的运算一、知识结构思维导图二、学法指导与考点梳理1.集合的概念及其表示⑴.集合中元素的三个特征:①.确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.②.互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.③.无序性:即集合中的元素无顺序,可以任意排列、调换。

⑵.元素与集合的关系有且只有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).⑶.集合常用的表示方法有三种:列举法、Venn图、描述法.(4).常见的数集及其表示符号2. 集合间的基本关系A B (或B A )【名师提醒】子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集. 3. 集合之间的基本运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为 全集 ,全集通常用字母 U 表示;【名师提醒】1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1,非空真子集n2-2个. 2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UUAB A B U ⇔=∅⇔= .3.奇数集:{}{}{}21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z . 4. 德▪摩根定律:①并集的补集等于补集的交集,即()=()()UUU A B A B ; ②交集的补集等于补集的并集,即()=()()U UU A B A B .【名师点睛】1.判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.2. 集合中的元素具有三个特性,求解与集合有关的字母参数值(范围)时,需借助集合中元素的互异性来检验所求参数是否符合要求.3.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识.4.利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题.5.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴求解.6.求集合交集的方法为:(1)定义法,(2)数形结合法.(3)若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.三、重难点题型突破考点1 集合的概念及其表示归纳总结:与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是(数轴)数集、(平面直角坐标系)点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.例1.(1)(集合的确定性)下面给出的四类对象中,能组成集合的是()A.高一某班个子较高的同学B.比较著名的科学家C.无限接近于4的实数D.到一个定点的距离等于定长的点的全体【答案】D【解析】选项A,B,C所描述的对象没有一个明确的标准,故不能构成一个集合,选项D的标准唯一,故能组成集合.故选:D.(2).(集合的确定性)(多选题)考察下列每组对象,能构成集合的是( )A.中国各地最美的乡村;B.直角坐标系中横、纵坐标相等的点;C.不小于3的自然数;D.2018年第23届冬季奥运会金牌获得者. 【答案】BCD【解析】A 中“最美”标准不明确,不符合确定性,BCD 中的元素标准明确,均可构成集合,故选BCD 【变式训练1】(集合的互异性)在集合{1A =,21a a --,222}a a -+中,a 的值可以是 ( )A .0B .1C .2D .1或2【答案】A【解析】当a =0时,a 2﹣a ﹣1=﹣1,a 2﹣2a +2=2,当a =1时,a 2﹣a ﹣1=﹣1,a 2﹣2a +2=1,当a =2时,a 2﹣a ﹣1=1,a 2﹣2a +2=2, 由集合中元素的互异性知:选A .【变式训练2】(集合的互异性)若1{2-∈,21a a --,21}a +,则(a = ) A .1- B .0C .1D .0 或1【答案】B【答案】解:①若a 2﹣a ﹣1=﹣1,则a 2﹣a =0,解得a =0或a =1, a =1时,{2,a 2﹣a ﹣1,a 2+1}={2,﹣1,2},舍去,∴a =0; ②若a 2+1=﹣1,则a 2=﹣2,a 无实数解;由①②知:a =0.故选:B . 考点2 元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . (2)不属于:如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A . (3)常见的数集及表示符号归纳总结:(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确. (2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn 图等来直观解决这类问题. 例2.(1)(元素与集合的关系)(多选题)下列关系中,正确的有( ) A .∅∪{0} B .13Q ∈C .Q Z ⊆D .{}0∅∈【答案】AB【解析】选项A:由空集是任何非空集合的真子集可知,本选项是正确的; 选项B:13是有理数,故13Q ∈是正确的; 选项C:所有的整数都是有理数,故有Z Q ⊆,所以本选项是不正确的;选项D; 由空集是任何集合的子集可知,本选项是不正确的,故本题选AB. (2)(元素个数问题)集合12{|3A x Z y x =∈=+,}y Z ∈的元素个数为( ) A .4B .5C .10D .12【思路分析】根据题意,集合中的元素满足x 是整数,且12x+3是整数.由此列出x 与y 对应值,即可得到题中集合元素的个数.【解析】由题意,集合{x ∈Z |y =12x+3∈Z }中的元素满足x 是整数,且y 是整数,由此可得 x =﹣15,﹣9,﹣7,﹣6,﹣5,﹣4,﹣2,﹣1,0,1,3,9;此时y 的值分别为:﹣1,﹣2,﹣3,﹣4,﹣6,﹣12,12,6,4,3,3,1, 符合条件的x 共有12个,故选:D .例3.(单元素集合)若集合A ={x |x 2+ax +b =x }中,仅有一个元素a ,求a 、b 的值. 【答案】解:∵集合A ={x |x 2+ax +b =x }中,仅有一个元素a , ∴a 2+a 2+b =a 且△=(a ﹣1)2﹣4b =0解得a =31,b =91. 故a 、b 的值分别为31,91.【变式训练1】(1)(元素与集合的关系)下列关系中,正确的个数为( )R ;②13Q ∈;③0{0}=;④0N ∉;⑤Q π∈;⑥3Z -∈.A .6B .5C .4D .3【思路分析】利用元素与集合的关系及实数集、有理数集、自然数集的性质直接求解. 【答案】解:由元素与集合的关系,得:在①中,√5∈R ,故①正确;在②中,13∈Q ,故②正确;在③中,0∈{0},故③错误;在④中,0∈N ,故④错误;在⑤中,π∉Q ,故⑤错误;在⑥中,﹣3∈Z ,故⑥正确.故选:D .(2)(元素个数问题)已知集合{1A =,2,3,4,5},{(,)|B x y x A =∈,y A ∈,x y <,}x y A +∈,则集合B 中的元素个数为( ) A .2B .3C .4D .5【思路分析】通过集合B ,利用x ∈A ,y ∈A ,x <y ,x +y ∈A ,求出x 的不同值,对应y 的值的个数,求出集合B 中元素的个数.【解析】因为集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x <y ,x +y ∈A }, 当x =1时,y =2或y =3或y =4;当x =2时y =3; 所以集合B 中的元素个数为4.故选:C .【点睛】本题考查集合的元素与集合的关系,考查基本知识的应用. 【变式训练2】(二次函数与集合)设集合A ={x |ax 2+2x +1=0,a ∈R } (1)当A 中元素个数为1时,求:a 和A ;(2)当A 中元素个数至少为1时,求:a 的取值范围; (3)求:A 中各元素之和. 【思路分析】(1)推导出a =0或⎩⎨⎧=-=∆≠0440a a ,由此能求出a 和A .(2)当A 中元素个数至少为1时,a =0或⎩⎨⎧≥-=∆≠0440a a ,由此能求出a 的取值范围.(3)当a =0时,A 中元素之和为21-;当a <1且a ≠0时,A 中元素之和为a2-;当a =1时,A 中元素之和为﹣1;当a >1时,A 中无元素.【答案】解:(1)∵集合A ={x |ax 2+2x +1=0,a ∈R },A 中元素个数为1, ∴a =0或⎩⎨⎧=-=∆≠0440a a ,解得a =0,A ={21-}或a =1,A ={﹣1}.(2)当A 中元素个数至少为1时,a =0或⎩⎨⎧≥-=∆≠0440a a ,解得a ≤1,∴a 的取值范围是(﹣∞,1]. (3)当a =0时,A 中元素之和为21-;当a <1且a ≠0时,A 中元素之和为a2-; 当a =1时,A 中元素之和为﹣1;当a >1时,A 中无元素. 考点3 集合间的基本关系 1.集合A 中含有n 个元素,则有(1)A 的子集的个数有2n 个.(2)A 的非空子集的个数有2n -1个.(3)A 的真子集的个数有2n -1个.(4)A 的非空真子集的个数有2n -2个.2.空集是任何集合的子集,因此在解A ⊆B (B ≠∅)的含参数的问题时,要注意讨论A =∅和A ≠∅两种情况,前者常被忽视,造成思考问题不全面.例4.(1).(2020·全国高一)(空集是任何非空集合的子集)已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是______.【答案】(],3-∞【解析】由B A ⊆可得:当B =∅,则121m m +>-,∴2m <,当B ≠∅,则m 应满足:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤,综上得3m ≤; ∴实数m 的取值范围是(],3-∞.故答案为:(],3-∞.(2).(空集)如果2{|10}A x ax ax =-+<=∅,则实数a 的取值范围为( ) A .04a <<B .40<≤aC .40≤<aD .40≤≤a【思路分析】由A =∅得不等式ax 2﹣ax +1<0的解集是空集,然后利用不等式进行求解. 【答案】解:因为A ={x |ax 2﹣ax +1<0}=∅,所以不等式ax 2﹣ax +1<0的解集是空集, 当a =0,不等式等价为1<0,无解,所以a =0成立.当a ≠0时,要使ax 2﹣ax +1<0的解集是空集,则{a >0△=a 2−4a ≤0,解得0<a ≤4.综上实数a 的取值范围0≤a ≤4.(3)(子集与真子集)已知集合1{|42k M x x ==+,}k Z ∈,1{|24k N x x ==+,}k Z ∈,则( ) A .M N =B .M ⊊NC .N ⊊MD .M∩N=∅【思路分析】将集合M ,N 中的表达式形式改为一致,由N 的元素都是M 的元素,即可得出结论. 【答案】M ={x |x =k4+12,k ∈Z }={x |x =k+24,k ∈Z },N ={x |x =k2+14,k ∈Z }={x |x =2k+14,k ∈Z },∵k +2(k ∈Z )为整数,而2k +1(k ∈Z )为奇数,∴集合M 、N 的关系为N ⊊M .故选:C .【变式训练1】.(1)(2019·浙江省温州中学高一月考)(子集与真子集个数问题)已知集合21,,{1}A a a =-,若0A ∈,则a =______;A 的子集有______个.【答案】0或1- 8【解析】∵集合21,,{1}A a a =-,0A ∈,∴0a =或2101a a ⎧-=⎨≠⎩,解得0a =或1a =-.A 的子集有328=个.故答案为:0或1-,8.(2)若集合2{|20}A x x x m =-+==∅,则实数m 的取值范围是( ) A .(,1)-∞-B .(,1)-∞C .(1,)+∞D .[1,)+∞【解析】∵A ={x |x 2﹣2x +m =0}=∅,∴方程x 2﹣2x +m =0无解,即△=4﹣4m <0, 解得:m >1,则实数m 的范围为(1,+∞),故选:C .【点睛】此题考查了空集的定义,性质及运算,熟练掌握空集的意义是解本题的关键. 考点4 集合的基本运算1.由所有属于集合A 或属于集合B 的元素组成的集合叫A 与B 的并集,记作A ∪B ;符号表示为A ∪B ={x |x ∈A 或x ∈B } 2.并集的性质A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ,A ⊆A ∪B .3.对于两个给定的集合A 、B ,由所有属于集合A 且属于集合B 的元素组成的集合叫A 与B 的交集,记作A ∩B 。

1.3.2 补集及集合运算的综合(解析版).pdf

1.3.2 补集及集合运算的综合(解析版).pdf

2020-2021学年高一数学同步题型学案(新教材人教版必修第一册)第一章 集合与常用的逻辑用语1.3.2 补集及集合运算的综合【课程标准】1.在具体情境中,了解全集的含义,理解补集的含义,能求给定(全集的)子集的补集.2.能用Venn 图表达集合的补集.【本节知识点】1.全集:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作.U 2.补集【题型分类】题型一 补集的运算题型要点点拨:(1)补集是相对于全集而言的,它与全集不可分割.一方面,若没有定义全集,则不存在补集的说法;另一方面,补集的元素逃不出全集的范围.(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A 的补集的前提是A 为全集U 的子集,随着所选全集的不同,得到的补集也是不同的.文字语言对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A 符号语言∁U A ={x |x ∈U ,且x ∉A }图形语言运算性质∁U A ⊆U ,∁U U =∅,∁U ∅=,∁U (∁U A )=,A ∪(∁U A )=,A ∩(∁U A )=U A U ∅(3)符号∁U A有三层意思:①A是U的子集,即A⊆U;②∁U A表示一个集合,且(∁U A)⊆U;③∁U A是U中不属于A的所有元素组成的集合,即∁U A={x|x∈U,且x∉A}.(4)若x∈U,则x∈A或x∈∁U A,二者必居其一.【例1】已知全集为U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.【参考答案】B={2,3,5,7}【解析】 (1)法一:∵A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.法二:借助Venn图,如图所示.由图可知B={2,3,5,7}.【例2】已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.【参考答案】{x|x<-3或x=5}【解析】 将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.【方法技巧】求集合补集的策略(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合补集的定义来求解.另外,针对此类问题,在解答过程中也常常借助Venn图来求解,这样处理相对来说比较直观、形象,且解答时不易出错.(2)如果所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解. 【同类练习】1.若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于( )A.{x|0<x<2} B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}【参考答案】C【解析】:∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.2.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.【参考答案】:4【解析】:因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得m=1×4=4.题型二、集合的交、并、补集的综合运算【例3】已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2}.(1)求A∩B,(∁U A)∪B,A∩(∁U B);(2)求∁U(A∪B)和∁U(A∩B).【参考答案】【解析】(1)因为A={x|-2<x<3},B={x|-3≤x≤2},所以∁U A={x|x≤-2或3≤x≤4},∁U B={x|x <-3或2<x≤4},所以A∩B={x|-2<x≤2},(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.(2)由条件知A∪B={x|-3≤x<3},所以∁U(A∪B)={x|x<-3或3≤x≤4}.又A∩B={x|-2<x≤2},所以∁U(A∩B)={x|x≤-2或2<x≤4}.【方法技巧】解决集合运算问题的方法(1)要进行集合运算时,首先必须熟练掌握基本运算法则,可按照如下口诀进行:交集元素仔细找,属于A且属于B;并集元素勿遗漏,切忌重复仅取一;全集U是大范围,去掉U中A元素,剩余元素成补集.(2)解决集合的混合运算问题时,一般先运算括号内的部分,如求(∁U A)∩B时,先求出∁U A,再求交集;求∁U(A∪B)时,先求出A∪B,再求补集.(3)当集合是用列举法表示时(如数集),可以通过列举集合的元素分别得到所求的集合;当集合是用描述法表示时(如不等式形式表示的集合),则可运用数轴求解. 【同类练习】1.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N=( )A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}【参考答案】B【解析】:画出Venn图,阴影部分为M∩(∁U N)={2,4},所以N={1,3,5}.2.已知全集U=R,集合A={x|x+1<0},B={x|x-3<0},那么集合(∁U A)∩B=( )A.{x|-1≤x<3}B.{x|-1<x<3}C.{x|x<-1}D.{x|x>3}【参考答案】A【解析】:∵A={x|x+1<0}={x|x<-1},B={x|x-3<0}={x|x<3},∴∁U A={x|x≥-1},∴(∁U A)∩B={x|-1≤x<3}.题型三、与补集有关的求参数问题【例5】已知集合A={x|x2-4x+2m+6=0,x∈R},B={x|x<0,x∈R},若A∩B≠∅,求实数m的取值范围.【参考答案】m<-3【解析】∵A∩B≠∅,∴A≠∅.设全集U={m|Δ=(-4)2-4(2m+6)≥0}={m|m≤-1}.若A∩B=∅,则方程x2-4x+2m+6=0的两根x1,x2均非负,则Error!⇒-3≤m≤-1,∵{m|-3≤m≤-1}关于U的补集为{m|m<-3},∴实数m的取值范围为m<-3【方法技巧】由集合的补集求解参数的问题(1)如果所给集合是有限集,由补集求参数问题时,可利用补集定义并结合知识求解.(2)如果所给集合是无限集,与集合交、并、补运算有关的求参数问题时,一般利用数轴分析法求解. 【同类练习】1.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围.【参考答案】{m|m≥2}【解析】 由已知A={x|x≥-m},得∁U A={x|x<-m},因为B={x|-2<x<4},(∁U A)∩B=∅,所以-m≤-2,即m≥2,所以m的取值范围是{m|m≥2}.2.已知集合A={x|-2<x<3},B={x|m<x<m+9},若(∁R A)∩B=B,则实数m的取值范围为_________.【参考答案】{m|m≤-11或m≥3}【解析】:∁R A={x|x≤-2或x≥3},由(∁R A)∩B=B,得B⊆∁R A,∴m+9≤-2或m≥3.故m的取值范围是{m|m≤-11或m≥3}.【本节同步分层练习】一、夯实基础1.已知U=R,集合A={x|x<-2或x>2},则∁U A=( )A.{x|-2<x<2} B.{x|x<-2或x>2}C.{x|-2≤x≤2}D.{x|x≤-2或x≥2}【参考答案】C【解析】:根据补集的定义可得∁U A={x|-2≤x≤2}.2.已知全集U={1,2,3,4,5,6},集合A={1,2,5},∁U B={4,5,6},则A∩B=( )A.{1,2}B.{5}C.{1,2,3}D.{3,4,6}【参考答案】A【解析】:因为∁U B={4,5,6},所以B={1,2,3},所以A∩B={1,2,5}∩{1,2,3}={1,2},故选A.∁U3.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则(A∩B)等于( )A.{2,3} B.{1,4,5}C.{4,5} D.{1,5}【参考答案】B【解析】集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},所以A∩B={2,3},∁U(A∩B)={1,4,5},故选B.∁R4.集合A={x|-1≤x≤2},B={x|x<1},则A∩(B)=( )A.{x|x>1} B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}【参考答案】D【解析】由补集的概念和已知条件可得:∁R B={x|x≥1},又根据交集的定义可知A∩(∁R B)={x|1≤x≤2},故选D.∁U5.已知全集U={1,2,a2-2a+3},A={1,a},A={3},则实数a等于( )A.0或2 B.0C.1或2 D.2【参考答案】 D【解析】 根据题意,得a2-2a+3=3,且a=2,解得a=2,故选D.6.已知全集S={(x,y)|x∈R,y∈R},A={(x,y)|x2+y2≠0},用列举法表示集合∁S A=________.【参考答案】:{(0,0)}【解析】:∁S A={(x,y)|x2+y2=0}={(0,0)}.7.已知全集U=R,M={x|-1<x<1},∁U N={x|0<x<2},那么集合M∪N=________.【参考答案】:{x|x<1或x≥2}【解析】:∵U=R,∁U N={x|0<x<2},∴N={x|x≤0或x≥2},∴M∪N={x|-1<x<1}∪{x|x≤0或x≥2}={x|x<1或x≥2}.∁U8.设全集U={2,4,-(a-3)2},集合A={2,a2-a+2},若A={-1},则实数a的值为________.【参考答案】2【解析】由已知可得Error!解得a=2.9.已知M={x|x<-2或x≥3},N={x|x-a≤0},若N∩∁R M≠∅(R为实数集),则a的取值范围是________.【参考答案】a≥-2∁R【解析】 ∵M={x|-2≤x<3},借助数轴可得a≥-2.10.设U=R,已知集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(∁U B);(4)B∩(∁U A).【参考答案】见解析【解析】:(1)如图①.A∩B={x|0≤x<5}.(2)如图①.A∪B={x|-5<x<7}.(3)如图②.∁U B={x|x<0或x≥7},∴A∪(∁U B)={x|x<5或x≥7}.(4)如图③.∁U A={x|x≤-5或x≥5},∴B∩(∁U A)={x|5≤x<7}.二、能力提升1.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( ) A.{1,6} B.{1,7}C.{6,7}D.{1,6,7}【参考答案】C【解析】: ∵U={1,2,3,4,5,6,7},A={2,3,4,5},∴∁U A={1,6,7},∴B∩∁U A={2,3,6,7}∩{1,6,7}={6,7}.2.已知U={1,2,3,4,5},A={2,m},且∁U A={1,3,5},则m等于( )A.1B.3C.4D.5【参考答案】C【解析】:由已知m∈U,且m∉∁U A,故m=2或4.又A={2,m},由元素的互异性知m≠2,故m=4.所以选C.3.设全集U={x|x≥0},集合P={1},则∁U P等于( )A.{x|0≤x<1或x>1}B.{x|x<1}C.{x|x<1或x>1}D.{x|x>1}【参考答案】A【解析】:因为U={x|x≥0},P={1},所以∁U P={x|x≥0且x≠1}={x|0≤x<1或x>1}.4.设全集U=R,集合M={x|x>1,或x<-1},N={x|0<x<2},则∁U(M∪N)=( )A.{x|-1≤x≤1}B.{x|0<x≤1}C.{x|-1≤x≤0}D.{x|x<1}【参考答案】C【解析】:因为M∪N={x|x>0或x<-1},所以∁U(M∪N)={x|-1≤x≤0}.5.设全集U=R,M={x|x<-2或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为( )A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2或x>3}D.{x|-2≤x≤2}【参考答案】A【解析】:阴影部分所表示的集合为∁U(M∪N)=(∁U M)∩(∁U N)={x|-2≤x≤2}∩{x|x<1或x>3}={x|-2≤x<1}.故选A.6.设全集U=R,集合A={x|0<x<9},B={x∈Z|-4<x<4},则集合(∁U A)∩B中的元素的个数为________.【参考答案】:4【解析】:∵U=R,A={x|0<x<9},∴∁U A={x|x≤0或x≥9},又∵B={x∈Z|-4<x<4},∴(∁U A )∩B ={x ∈Z|-4<x ≤0}={-3,-2,-1,0}共4个元素.7.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.【参考答案】:m -n【解析】:因为(∁U A )∪(∁U B )=∁U (A ∩B ),所以A ∩B 中的元素个数是(m -n )个.8.设全集U =R,集合A ={x |x >1},B ={x |x >a },且(∁U A )∪B =R,则实数a 的取值范围是________.【参考答案】:{a |a ≤1}【解析】:因为A ={x |x >1},B ={x |x >a },所以∁U A ={x |x ≤1},由(∁U A )∪B =R,可知a ≤1.9.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁R A )∩B ={2},A ∩(∁R B )={4},求实数a ,b 的值.【参考答案】a =,b =-87127【解析】:由条件(∁R A )∩B ={2}和A ∩(∁R B )={4},知2∈B ,但2∉A ;4∈A ,但4∉B .将x =2和x =4分别代入B ,A 两集合中的方程得Error!即Error!解得a =,b =-即为所求.8712710.已知全集U ={小于10的正整数},A ⊆U ,B ⊆U ,且(∁U A )∩B ={1,8},A ∩B ={2,3},(∁U A )∩(∁U B )={4,6,9}.(1)求集合A 与B ;(2)求(∁R U )∪[∁Z (A ∩B )](其中R 为实数集,Z 为整数集).【参考答案】【解析】:由(∁U A )∩B ={1,8},知1∈B,8∈B ;由(∁U A )∩(∁U B )={4,6,9},知4,6,9∉A ,且4,6,9∉B ;由A ∩B ={2,3},知2,3是集合A 与B 的大众元素.因为U ={1,2,3,4,5,6,7,8,9},所以5,7∈A .画出Venn 图,如图所示.(1)由图可知A ={2,3,5,7},B ={1,2,3,8}.(2)(∁R U )∪[∁Z (A ∩B )]={x |x ∈R,且x ≠2,x ≠3}.三、挑战高考1.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,求m的值.【参考答案】m=1或m=2.【解析】A={-2,-1},由(∁U A)∩B=∅,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验知m=1或m=2符合条件.综上可得m=1或m=2.2.设全集U=R,集合A={x|-5<x<4},集合B={x|x<-6或x>1},集合C={x|x-m<0},求实数m的取值范围,使其同时满足下列两个条件.①C⊇(A∩B);②C⊇(∁U A)∩(∁U B).【参考答案】【解析】:因为A={x|-5<x<4},B={x|x<-6或x>1},所以A∩B={x|1<x<4}.又∁U A={x|x≤-5或x≥4},∁U B={x|-6≤x≤1},所以(∁U A)∩(∁U B)={x|-6≤x≤-5}.而C={x|x<m},因为当C⊇(A∩B)时,m≥4,当C⊇(∁U A)∩(∁U B)时,m>-5,所以m≥4.即实数m的取值范围为{m|m≥4}.11。

集合与函数复习——解答题

集合与函数复习——解答题

集合与函数复习——解答题一、集合部分1、设A是实数集,满足若a∈A,则A,且1∉A.⑴若2∈A,则A中至少还有几个元素?求出这几个元素.⑵A能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.⑷求证:集合A中至少含有三个不同的元素.解:⑴2∈A ⇒-1∈A ⇒∈A ⇒2∈A∴ A中至少还有两个元素:-1和⑵如果A为单元素集合,则a=即=0该方程无实数解,故在实数范围内,A不可能是单元素集⑶a∈A ⇒∈A ⇒∈A⇒A,即1-∈A⑷由⑶知a∈A时,∈A, 1-∈A .现在证明a,1-,三数互不相等.①若a=,即a2-a+1=0 ,方程无解,∴a≠②若a=1-,即a2-a+1=0,方程无解∴a≠1-③若1-=,即a2-a+1=0,方程无解∴1-≠.综上所述,集合A中至少有三个不同的元素.2、(全国II卷)设,函数若的解集为A,,求实数的取值范围。

解:由f(x)为二次函数知,令f(x)=0解得其两根为由此可知(i)当时,的充要条件是,即解得(ii)当时,的充要条件是,即解得综上,使成立的a的取值范围为二、函数部分1、(江苏省启东中学高三综合测试二)解:设,则f(t)的顶点横坐标为,属于,故f(t)在上是减函数,在为增函数,所以最小值在达到,为,当时达到最小值,该函数没有最大值2、(陕西长安二中2008届高三第一学期第二次月考)为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形上规划出一块长方形地面建造公园,公园一边落在CD上,但不得越过文物保护区的EF.问如何设计才能使公园占地面积最大,并求这最大面积.(其中AB=200m,BC=160m,AE=60m,AF=40m.)解:设CG=X,矩形CGPH面积为Y,如图∴HC=160∴当(m)即CG长为190m时,最大面积为(m2)3、(陕西长安二中2008届高三第一学期第二次月考)定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1;(2)求证:对任意的x∈R,恒有f(x)>0;(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。

【高中数学考点精讲】考点01集合:集合的含义

【高中数学考点精讲】考点01集合:集合的含义

考点01 集合1、与集合中元素有关的问题的求解策略(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合,要明了集合{x|y=f(x)},{y|y=f(x)},{(x,y)|y=f(x)}三者是不同的.(2)集合元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2、集合间基本关系的2种判定方法和1个关键两种方法:(1)化简集合,从表达式中寻找两集合的关系;(2)用列举法(图示法)表示各集合,从元素(图形)中寻找关系一个关键:关键是看它们是否具有包含关系,若有包含关系就是子集关系3、根据两集合的关系求参数的方法已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论(必须优先考虑空集的情况),做到不漏解,其次是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn图等来直观解决这类问题.(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时应注意集合中元素的互异性;(2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.4、集合基本运算的方法技巧5、数形结合常使集合间的运算更简捷、直观对离散的数集间的运算或抽象集合间的运算,可借助韦恩(Venn)图实施;对连续的数集间的运算,常利用数轴进行;对点集间的运算,则往往通过坐标平面内的图形求解.这些在本质上都是数形结合思想的体现和运用.6、集合运算中参数问题的求解策略(1)化简所给集合;(2)用数轴表示所给集合;(3)根据集合端点的大小关系列出不等式(组);(4)解不等式(组);(5)检验.7、集合新定义问题的求解思路(1)遇到新定义问题,先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到解题的过程中,这是解答新定义型问题的关键所在;(2)集合的性质是解答集合新定义问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些条件.考点一集合的含义(一)判断元素与集合的关系1.(2022·天津河北·高一期末)下列关系中正确的个数是()①②③④A.1 B.2 C.3 D.4【解析】是有理数,是实数,不是正整数,是无理数,当然不是整数.只有①正确.故选:A.2.(2022·云南德宏·高一期末)下列四个选项中正确的是()A.B.C. D.【解析】对于A: ,故A错误;对于B:,故B错误;对于C: ,故C错误;对于D:,故D正确;故选:D3.(2022·四川乐山·高一期末)已知集合,,有以下结论:①;②;③.其中错误的是().A.①③ B.②③C.①② D.①②③【解析】由可得所以,故①错;,②错;,③对,故选:C.(二)根据集合中元素的个数求参数4.(2022·全国·高一课时练习)已知,集合.(1)若A是空集,求实数a的取值范围;(2)若集合A中只有一个元素,求集合A;(3)若集合A中至少有一个元素,求实数a的取值范围.【解析】(1)若A是空集,则关于x的方程无解,此时,且,所以,即实数a的取值范围是.(2)当时,,符合题意;当时,关于x的方程应有两个相等的实数根,则,得,此时,符合题意.综上,当时;当时.(3)当时,,符合题意;当时,要使关于x的方程有实数根,则,得.综上,若集合A中至少有一个元素,则实数a的取值范围为.5.(2022·全国·高一课时练习)已知集合A={x|ax2﹣3x+1=0,a∈R},若集合A中至多只有一个元素,则a的取值范围是_____.【解析】当a=0时,方程可化为﹣3x+1=0,解得x,故成立;当a≠0时,Δ=9﹣4a≤0,解得;综上所述,a的取值范围是{0}∪[,+∞).故答案为:{0}∪[,+∞).6.(2022·江苏·高一)已知,若集合A中恰好有5个元素,则实数的取值范围为()A.B.C.D.【解析】由题意可知,可得.故选:D7.(2022·全国·高一课时练习)已知集合,,若中有三个元素,则实数a的取值集合为().A.B.C.D.【解析】因为中有三个元素,且,,所以或.①当时,解得或,均符合题意;②当时,解得,符合题意.故选:C(三)集合元素特性及其应用8.(2022·全国·高一课时练习)含有三个实数的集合可表示为,也可以示为,则的值为____.【解析】由题意,若,则或,检验可知不满足集合中元素的互异性,所以,则,所以,则,故.故答案为:.9.(2022·全国·高一课时练习)已知集合,,则集合B中元素的个数为______.【解析】因为,,,所以时,;时,或,时,或3或4.,所以集合B中元素的个数为6.故答案为:6.10.(2022·全国·高一课时练习)以实数为元素所组成的集合最多含有()个元素.A.0 B.1 C.2 D.3【解析】当时,,此时集合中共有2个元素;当时,,此时集合中共有1个元素;当时,,,此时集合中共有2个元素;综上所述,以实数为元素所组成的集合最多含有2个元素.故选:C.11.(2022·全国·高一)若以集合的四个元素为边长构成一个四边形,则这个四边形可能是()A.矩形 B.平行四边形C.梯形 D.菱形【解析】由题意,集合的四个元素为边长构成一个四边形,根据集合中元素的互异性,可得四个元素互不相等,以四个元素为边长构成一个四边形,结合选项,只能为梯形.故选:C.12.(2022·全国·高一课时练习)已知集合A中的元素全为实数,且满足:若,则.(1)若,求出A中其他所有元素.(2)0是不是集合A中的元素?请你取一个实数,再求出A中的元素.(3)根据(1)(2),你能得出什么结论?【解析】(1)由题意,可知,则,,,,所以A中其他所有元素为,,2.(2)假设,则,而当时,不存在,假设不成立,所以0不是A中的元素.取,则,,,,所以当时,A中的元素是3,,,.(3)猜想:A中没有元素,0,1;A中有4个元素,其中2个元素互为负倒数,另外2个元素也互为负倒数.由(2)知0,,若,则,与矛盾,则有,即,0,1都不在集合A中.若实数,则,,,.结合集合中元素的互异性知,A中最多只有4个元素,,,且,.显然,否则,即,无实数解.同理,,即A中有4个元素.所以A中没有元素,0,1;A中有4个元素,其中2个元素互为负倒数,另外2个元素也互为负倒数.(四)集合的表示13.(2022·内蒙古·赤峰红旗中学松山分校高一期末(文))方程的所有实数根组成的集合为()A.B.C.D.【解析】由,解得或,所以方程的所有实数根组成的集合为;故选:C14.(2022·北京西城·高一期末)方程组的解集是()A.B.C.D.【解析】由可得:或.所以方程组的解集是.故选:A15.(2022·广西玉林·高一期末)集合,用列举法可以表示为_________.【解析】因为,所以,可得,因为,所以,集合.故答案为:。

高一数学集合试题答案及解析

高一数学集合试题答案及解析

高一数学集合试题答案及解析1.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。

点评:涉及实数构成集合问题,常常借助于韦恩图。

2.已知集合A={ |-≤x≤},则必有 ()A.-1∈A B.0∈A C.∈A D.1∈A【答案】D【解析】∵,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【考点】元素与集合的关系点评:本题先根据x是正整数和-≤x≤确定集合A,再判断各元素是否属于集合。

3.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1)B.(,1)C.(-∞,0)D.(0,+∞)【答案】C【解析】因为函数f(x)的定义域是(0,1),所以,即,,故选C。

【考点】本题主要考查函数的概念,指数函数的图象和性质。

点评:简单题,解答指数不等式,通常要化为同底数指数,利用指数函数的单调性,转化为代数不等式。

4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B= ()A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}【答案】A【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【考点】本题主要考查集合的并集。

点评:简单题,借助于数轴求集合的并集。

5.满足{0}∪B={0,2}的集合B的个数是 ()A.1B.2C.3D.4【答案】B【解析】依题意知,B中至少含有元素2,故B可能为{2},{0,2},共两个.【考点】本题主要考查集合的子集,集合的并集。

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析

《子集、全集、补集》典型例题剖析题型1 集合关系的判断例1 指出下列各组集合之间的关系:(1){15},{05}A xx B x x =-<<=<<∣∣; (2){}21(1)0,,2nA x x xB x x n ⎧⎫+-=-===∈⎨⎬⎩⎭Z ∣∣;(3){(,)0},{(,)0,00,0}A x y xy B x y x y x y =>=>><<∣∣或; (4){}{}2*2*1,,45,A x x a a B x x a a a ==+∈==-+∈N N ∣∣.解析 (1)中集合表示不等式,可以根据范围直接判断,也可以利用数轴判断;(2)解集合A 中方程得到集合A ,再根据集合B 中n 分别为奇数、偶数得到集合B ,进行判断;(3)可以根据集合中元素的特征或者集合的几何意义判断;(4)将集合A 中x 关于a 的关系式改写成集合B 中的形式,再进行判断.答案 (1)方法一:集合B 中的元素都在集合A 中,但集合A 中有些元素(比如00.5-,)不在集合B 中,故BA .方法二:利用数轴表示集合A ,B ,如下图所示,由图可知BA .(2){}20{0,1}A x x x =-==∣.在集合B 中,当n 为奇数时,1(1)02nx +-==,当n 为偶数时,1(1)1,{0,1},2n x B A B +-==∴=∴=.(3)方法一:由00000xy x y x y >>><<得,或,;由000x y x >><,或,0y <得0xy >,从而A B =.方法二:集合A 中的元素是平面直角坐标系中第三象限内的点对应的坐标,集合B 中的元素也是平面直角坐标系中第一、三象限内的点对应的坐标,从而A B =.(4)对于任意x A ∈,有221(2)4(2)5x a a a =+=+-++.**,2{3,4,5},a a x B ∈∴+∈∴∈N N .由子集的定义知,A B ⊆.设1B ∈,此时2451a a -+=,解得*2,a a =∈N .211a +=在*a ∈N 时无解,1A ∴∉. 综上所述,AB .名师点评 对于(5),在判断集合A 与B 的关系时可先根据定义判断A B ⊆,再进一步判断AB .判断A B 时,只要在集合B 中找出一个元素不属于集合A 即可.变式训练1 判断下列各组中两个集合的关系:(1){3,},{6,}A xx k k B x x z z ==∈==∈N N ∣∣; (2)1,24k A xx k ⎧⎫==+∈⎨⎬⎩⎭Z ∣,1,42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ∣. 答案 (1)A 中的元素都是3的倍数,B 中的元素都是6的倍数,对于任意的,63(2)z z z ∈=⨯N ,因为z ∈N ,所以2z ∈N ,从而可得6z A ∈,从而有B A ⊆.设63z =,则12z =∉N ,故3B ∉,但3A ∈,所以BA . (2)方法一:取,0,1,2,3,4,5,k =,可得1357911,,,,,,,444444A ⎧⎫=⎨⎬⎩⎭,13537,,,1,,,,24424B ⎧⎫=⎨⎬⎩⎭, 易知A 中任一元素均为B 中的元素,但B 中的有些元素不在集合A 中,A B .方法二:集合A 的元素为121()244k k x k +=+=∈Z ,集合B 的元素为12()424k k x k +=+=∈Z ,而21k +为奇数,2k +为整数,A B ∴.点拨 判断两个集合的关系要先找到集合中元素的特征,再由特征判断集合间的关系. 题型2 根据集合间的包含关系求参数的值范围 类型(一)有限集的问题例2 已知{}2230,{10}A x x x B x ax =--==-=∣∣,若BA ,试求a 的值.解析: 首先将集合A ,B 具体化,在对集合B 具体化时,要注意对参数a 进行讨论,然后再由BA 求a 的值.答案 {}2230{1,3}A x x x =--==-∣,且BA ,(1)当B =∅时,方程10ax -=无解,故0a =;(2)当B ≠∅时,则1B a ⎧⎫=⎨⎬⎩⎭.若11a =-,即1a =-时,B A ; 若13a =,即13a =时,B A . 综上可知,a 的值为:10,1,3-.易错提示 特别要注意子集与真子集的区别,审清题意,由题目的具体条件确定真子集是否有可能为∅,这是个易错点.变式训练2 已知集合{}2320,{05,}A x x x B x x x =-+==<<∈N ∣∣,那么满足A C B 的集合C 的个数是( )A.1B.2C.3D.4 答案 B点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{123},,,{124},,.本题考查对元素个数及真子集的理解,一定要弄清子集和真子集的区别.变式训练3 把上题改为:已知集合{2320}A x x x =-+=∣,{05,}B xx x =<<∈N ∣,则满足A C B ⊆⊆的集合C 的个数是___________.答案 4点拨 {}2320{1,2},{05,}{1,2,3,4}A x x x B x x x =-+===<<∈=N ∣∣,由题意集合C 可以是{1,2},{1,2,3},{1,2,4},{1,2,3,4},故答案为4.类型(二) 无限集的问题例 3 已知集合{04},{}A x x B x x a =<=<∣∣,若A B ,求实数a 的取值集合.解析 将数集A 在数轴上表示出来,再将B 在数轴上表示出来,使得A B ,即可求出a 的取值范围.答案 将数集A 表示在数轴上(如图),要满足AB ,表示数a 的点必须在表示4的点处或在表示4的点的右边.所以所求a 的集合为{4}aa ∣.易错提示 在解决取值范围问题时,一般借助数轴比较直观,但一定要注意端点的取舍问题,能取的用实心点,不能取的用空心点,此题易漏掉端点4,显然4a =符合题意.变式训练 4 已知集合{25},{121}A xx B x a x a =-=+-∣∣. (1)若B A ⊆,求实数a 的取值范围; (2)若AB ,求a 的取值范围.答案 (1),B A D ⊆∴=∅①时,满足要求. 则121a a +>-即2a <;②B ≠∅时,则121,12,23215a a a a a +-⎧⎪+-⇒⎨⎪-⎩.综上可知:3a ≤. (2)121,,12215a a AB a a +-⎧⎪∴+-⎨⎪-⎩,,且12215a a +≤--≥与中的等号不能同时成立. 解这个不等式组,无解,a ∴∈∅,即不存在这样的a 使A B .题型3 集合的全集与补集问题例4 已知全集U ,集合 {1,3,5,7},{2,46},{1,4,6}UU A A B ===,,则集合B =____________.解析 因为{1,3,5,7},{2,4,6}UA A ==,所以{1,2,3,4,5,6,7}U =.又由已知{1,4,6}UB =,所以{2,3,5,7}B =.答案 27}3{5,,,变式训练5 设集合{1,2,3,4,5,6},{1,2,3},{3,4,5}U M N ===,则集合UM 和UN 共有的元素组成的集合为( )A.{2,3,4,5}B.{1,2,4,5,6}C.{1,2,6}D.{6} 答案 D点拨 由题意 {4,5,6},{1,2,6}U UM N ==,所以集合U M 和UN 共有的元素为6,组成的集合为{6}.例5 已知集合{}21A x a x a =<<+∣,集合{}15B x x =<<∣. (1)若A B ⊆,求实数a 的取值范围; (2)若RAB ,求实数a 的取值范围.解析 (1)可借助数轴求解;(2)先根据集合B 求出共补集RB ,再根据RAB 列出不等式求解.注意要考虑A 为空集的情况.答案(1)若A =∅,则21a a +≤,解得1a ≤-,满足题意; 若A ≠∅,则21a a <+,解得1a >-.由A B ⊆,可得2151a a +≤≥且,解得12a ≤≤.综上,实数a 的取值范围为{1, 12}aa a -∣或. (2)R {1, 5}B xx x =∣或. 若A ≠∅,则211a a a +≤≤-,则,此时RAB ,满足题意;若A ≠∅,则1a >-. 又RAB ,所以5211a a ≥+≤或,所以510a a ≥-<≤或.综上,实数a 的取值范围为{0, 5}aa a ∣或. 变式训练6 已知集合{12},{}A xx B x x a =<<=<∣∣,若RA B ⊆,求实数a 的取值范围.答案由{}B xx a =<∣,得R {}B x x a =∣.又RA B ⊆,所以1a ≤,故a 的取值范围是1a ≤.规律方法总结1.判断集合间关系的常用方法. (1)列举观察法.当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系. (2)集合元素特征法.首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.一般地,设{()},{()}A xp x B x q x ==∣∣,①若由()p x 可推出()q x ,则A B ⊆;②若由()q x 可推出()p x ,则B A ⊆;③若()p x ,()q x 可互相推出,则A B =;④若由力()p x 推不出()q x ,由()q x 也推不出()p x ,则集合A ,B 无包含关系.(3)数形结合法.利用venn 图、数轴等直观地判断集合间的关系,一般地,判断不等式的解集之间的关系,适合用画数轴法.2.根据集合间的包含关系求参数的值或范围的方法.已知两个集合之间的包含关系求参数的值或范围时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.一般地,若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时要注意集合中元素的互异性;若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.3.求补集的策略.(1)若所给集合是有限集,则先把集合中的元素列举出来,然后结合补集的定义来求解另外,针对此类问题,在解答过程中也常常借助Venn 图来求解,这样处理比较直观、形象,且解答时不易出错.(2)若所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解.核心素养园地目的 以一元二次方程和两个集合的关系为知识载体,求参数的范围为任务,借助根与系数的关系、解方程分类讨论思想等一系列数学思维活动,加强逻辑推理和数学运算核心素养水平一、水平二的练习.情境 已知集合{}{}22240,2(1)10A x x x B x x a x a =+==+++-=∣∣,若B A ⊆,求实数a 的取值范围.分析 易知集合{0,4}A =-,由B A ⊆的具体含义可知 {0}B B =∅=或或{}{}404B B =-=-或,,进而得解.答案 {}240{0,4}A x x x =+==-∣.,B A B ⊆∴=∅或{}{}0404}{B B B ==-=-或或,. 当B =∅时,()22[2(1)]410,1a a a ∆=+--<∴<-;当{}0B =时,由根与系数的关系知202(1)01a a =-+⎧⎨=-⎩,,解得1a =-. 当{}4B =-时,由根与系数的关系知2442(1),161,a a --=-+⎧⎨=-⎩无解; 当{0,4}B =-时,由根与系数的关系知2402(1),0 1.a a -+=-+⎧⎨=-⎩解得1a =. 综上可知,实数a 的取值范围为{1, 1}aa a -=∣或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合中参数问题的解答方法集合中的参数问题主要包括:①集合与集合关系中的参数问题;②集合运算过程中的参数问题;每类问题又涉及到求参数的值和求参数的取值范围两种情况。

那么在实际解答这类问题时,到底应该怎样展开思路,寻求解答方法呢?下面通过对典型例题的解析来回答这个问题。

【典例1】解答下列问题:1、含有三个元素的集合可以表示为{a,b a ,1},也可以表示为{2a ,a+b,0}. 求:20092010a b +的值。

2、设A={x|2x -3x+2=0},B={x|x+2>a },如果A ⊆ B,求实数a 的取值范围;3、已知集合A={x|0<ax+1≤5},B={x|-12<x ≤2}. ①若A ⊆ B, 求实数a 的取值范围;②若B ⊆ A, 求实数a 的取值范围;③A 、B 能否相等?若能求出实数a 的值;若不能说明理由。

4、已知集合A={x|a 2x -3x+2=0,a ∈R }.①若A 是空集,求实数a 的取值范围;②若A 中只有一个元素,求a 的值,并把这个元素求出来;③若A 中至多有一个元素,求实数a 的取值 【解析】1、【知识点】①集合相等的定义与性质;②集合元素的定义与特性;③参数值的求法;④代数式的值的意义与求法;【解答思路】根据集合相等的定义与性质,结合结合元素的特性求出参数a ,b 的值,再把求得的值代入代数式通过计算得出结果;【详细解答】Q {a,b a ,1}={2a ,a+b,0},0∈{a,b a ,1},a ≠0,∴b a=0,⇒b=0,2a =1, ⇒a=±1,Q a ≠1,∴a=-1,∴20092010a b +=2009(1)-+20100=-1+0=-1。

2、【知识点】①集合的表示方法;②一元二次方程的定义与解法;③一元一次不等式的定义与解法;④数轴的定义与运用;⑤子集的定义与性质;【解答思路】根据一元二次方程的定义与解法把集合A 用列举法表示出来,由一元一次不等式的定义与解法把集合B 用描述法表示出来,运用A B 结合数轴得到关于a 的不等式,求解不等式就可得出结果;【详细解答】如图,Q A ⊆B ,∴a-2≤1,⇒a ≤3 0 1 2∴当A ⊆B ,实数a 的取值范围是(-∞,3]。

3、【知识点】①集合的表示法;②一元一次不等式的定义与解法;③参数分类讨论的原则与方法;④子集的定义与性质;【解答思路】根据一元一次不等式的定义与解法把集合A 用描述法表示出来,由A ⊆B 得到关于参数a的不等式组,求解不等式组得出结果;【详细解答】(1)Q{x|-1a<x≤4a},a>0,①当a>0时,Q A={x|-1a<x≤4a},A ⊆B,A= R,a=0,∴-1a≥-12,⇒a≥2;②当a=0时,Q A=R,{x|4a≤x<-1a}, a<0,4a≤2,显然A ⊆B不成立;③当a<0时,Q A={x|4a≤x<-1a}, A⊆B,∴4a>-12,⇒a<-8;∴综上所述,当A⊆B时,实数-1a≤2,a的取值范围是(- ∞,-8)U[2,+∞)。

(2)①当a>0时,Q A={x|-1a<x≤4a},B⊆A,∴-1a≤-12,0<a≤2;②当a=0时,-1a≥2,4a≥2,Q A=R,显然B⊆A成立;③当a<0时,Q A={x|4a≤x<-1a}, B⊆A,4a<-12,⇒-12≤a<0,∴综上所述,当B⊆A时,实数a的取值范围是[-12,2]。

-1a=-12,(3)设A=B能成立,①当a>0时,Q A={x|-1a<x≤4a},A=B,∴4a=2,⇒a=2;②当a=0时,Q A=R,显然A=B不成立;③当a<0时,Q A={x|4a≤x<-1a}, A=B,∴4 a =-12,⇒∅,∴综上所述,存在实数a=2,使A=B成立。

-1a=2,4、【知识点】①集合的表示方法;②一元二次方程根的判别式的定义与性质;③空集的定义与性质;【解答思路】根据空集的定义与性质,结合一元二次方程根的判别式,得到关于参数a的不等式,再求解不等式就可得出结果;【详细解答】(1)Q集合A是空集,∴方程a2x-3x+2=0,a∈R没有实数根,①当a=0时,a2x-3x+2=0,⇔-3x+2=0,⇒x=23与题意不符合;②当a≠0时,⇒∆=9-8a<0,⇒a>98,∴综上所述,当集合A是空集时,实数a的取值范围是(98,+∞)。

(2)若集合A中只有一个元素,①当a=0时,a2x-3x+2=0,⇔-3x+2=0,⇒x=23与题意符合;②当a≠0时,⇒∆=9-8a=0,⇒a=98,∴综上所述,当集合A中只有一个元素时,实数a=0或a=98。

(3)当集合A中至多有一个元素时,由(1),(2)可知,实数a的取值范围是[98,+∞)或{0}。

『思考问题1』(1)【典例1】是集合与集合关系问题中的参数问题,解答这类问题需要理解子集,真子集,集合相等的定义,掌握子集,真子集和集合相等的性质;(2)注意空集的特殊性,在具体问题中,如果没有说明集合非空,则应该考虑空集的可能性,尤其是问题中涉及到A⊆B时,一定要注意分A=∅和A≠∅两种情况来考虑;(3)对含有参数的集合问题,应该对参数的可能取值进行分类讨论,同时还应注意分类标准的确定,作到分类合理,不重复不遗漏。

[类型1]解答下列问题:1、设a,b∈R,集合{1,a+b,a},集合{0,ba,b}表示同一集合,则b-a= 。

2、有三个元素的集合可以表示为{4a,2,2a},也可以表示为{a,2,4}。

求实数a的值;3、设A={7,0,2a-2a+2},B={a-3,2a-2a+4,5},如果A=B,求实数a的值;4、设A={x|2x-4x+3=0},B={x|x+2>a},如果A ⊆ B,求实数a的取值范围;5、设A={x|-1<x<3},B={x||x|>a},如果A ⊆ B,求实数a的取值范围.【典例2】解答下列问题:1、设A是自然数集的一个非空子集,如果k∈A,2k∉A,∉A,那么k是A的一个“酷元”。

给定S={x∈N|y=lg(36-2x)},设M⊆S,且集合M中的两个元素都是“酷元”,那么这样的集合M有()((2013湖北重点中学联考)A 3个B 4个C 5个D 6个2、已知集合A={x|2x+(a+2)x+1=0},B=R+为正实数的集合,如果A∩B= ∅,求实数a 的取值范围;3、已知集合A={(x,y)|2x+mx-y+2=0}, B={(x,y)|x-y+1=0,0≤x≤2},如果A∩B ≠∅,求实数m的取值范围.4、设集合A={x|2x-3x+2=0},B={x|2x+2(a+1)x+(2a-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围;(3)若U=R,A∩(UC B)=A,求实数a的取值范围。

【解析】1、【知识点】①子集的定义与性质;②新定义的理解与应用;【解答思路】根据“酷元”的定义与性质,确定集合S中的“酷元”,再由集合M的结构特征求出满足条件的集合M 的个数;【详细解答】Q S={x ∈N|y=lg(36-2x )}={0,1,2,3,4,5},显然0,1不是“酷元”,3,5是“酷元”,2,4不能同时属于集合M ,∴满足条件的集合M 可能有{2,3},{2,5},{4,3},{4,5},{3,5}共5个,⇒C 正确,∴选C 。

2、【知识点】①集合的表示方法;②空集的定义与性质;③交集的定义与性质;④一元二次方程根的判别式的定义与性质;【解答思路】根据A ∩B=∅,可分A=∅ 和A ≠∅两种情况来考虑,①当A=∅时,⇒2x +(a+2)x+1=0,得到关于参数a 的不等式,求解不等式可得出a 的取值范围;②当A ≠∅时,⇒2x +(a+2)x+1=0没有正实数根,得到关于参数a 的不等式组,求解不等式组可得出a 的取值范围,两种情况的并集就是所求的结果;【详细解答】Q ①当A=∅时,显然A ∩B=∅成立,∴方程2x +(a+2)x+1=0没有实数根,⇒∆=2(2)a +-4=a(a+4)<0,⇒-4<a <0;②当A ≠∅时,Q A ∩B=∅,∴方程2x +(a+2)x+1=0没有正实数根,⇒∆=2(2)a +-4=a(a+4) ≥0,⇒a ≥0,∴综上实数,当 a+2>0,A ∩B=∅时,实数a 的取值范围是(-4,+∞)。

3、【知识点】①集合的表示方法;②交集的定义与性质;③补集的定义与性质;④参数分类讨论的基本原则与基本方法;【解答思路】根据A ∩B=∅,可知曲线2x +mx-y+2=0与直线x-y+1=0没有公共点,结合图形得到2x +mx-y+2=0,没有实数解,⇒方程2x +(m-1)x+1=0没有实数根,⇒∆=2(1)m --4 x-y+1=0,=(m+1)(m-3)<0,求解这个不等式就可得出结果【详细解答】Q A ∩B=∅,∴曲线2x +mx-y+2=0与直线x-y+1=0没有公共点, ⇒ 2x +mx-y+2=0,没有实数解,⇒方程2x +(m-1)x+1=0没有实数根,⇒∆=2(1)m --4x-y+1=0,=(m+1)(m-3)<0,⇒-1<m <3,∴当A ∩B=∅时,实数m 的取值范围是(-1,3).4、【知识点】①集合的表示方法;②空集的定义与性质;③交集的定义与性质;④数形结合法的基本方法;【解答思路】;(1)根据A ∩B={2},可知2∈B ,⇒4+4(a+1)+(2a -5)=0,解这个方程就可求出a 的值;(2)根据A ∪B=A ,可知B ⊆A ,①当B=∅时,显然B ⊆A 成立,得到关于参数a 的不等式,求解这个不等式,可得出实数a 的取值范围;②当B ≠∅时,由B ⊆A 可知,B={1}或B={2}或B={1,2},若B={1},⇒1+2(a+1)+(2a -5)=0,解这个方程可得出a 的值;若B={2}由(1)可得出a 的值;若B={1,2},⇒2(a+1)=-3且2a -5=2,⇒∅,求出①,②的并集,就可得到实数a 的取值范围;(3)根据A ∩(U C B )=A ,得到U C B ⊆A ,【详细解答】(1)Q A∩B={2},∴2 ∈B,⇒4+4(a+1)+(2a-5)=0,∴a=-1或a=-3,(a+1)-4(2a-5)=8a+24<0,即a<-3时,显(2)Q A∪B=A,∴B⊆A,①当B=∅,⇒∆=42然A∪B=A成立;②当B={2}或B={1},即a=-3或a=-1或a=-1±时,A∪B=A成立;③当A=B时,⇒B={1,2},⇒a>-3,⇒∅,∴综上所述,当A∪B=A时,实数a-2(a+1)=1+2=3,的取值范围是a ≤-3或a=-1或2C B)a-5=1⨯2=2,a=-1±(3)Q U=R,A∩(U=A,⇒A⊆(U C B),⇒1∉B,2∉B,①当B=∅即a<-3时,显然成立,②当 B≠∅时,由B={2}或B={1}时,⇒a=-3或a=-1或a=-1±,∴综上所述,当U=R,A∩(U C B)=A时,实数a的取值范围是(-∞,-3)∪(-3,∪(,-1)∪(-1,)∪(,+∞)。

相关文档
最新文档