计算方法习题答案

合集下载

计算方法习题及答案

计算方法习题及答案

计算方法习题及答案在学习计算方法的过程中,习题的练习和答案的掌握是非常重要的。

下面将为大家提供一些计算方法习题及答案,希望能够帮助大家更好地巩固知识。

一、整数运算习题1. 计算以下整数的和:-5 + 8 + (-3) + (-2) + 10。

答案:-5 + 8 + (-3) + (-2) + 10 = 8。

2. 计算以下整数的差:15 - (-6) - 10 + 3。

答案:15 - (-6) - 10 + 3 = 24。

3. 将 -3 × (-4) - 2 × 5 的结果化简。

答案:-3 × (-4) - 2 × 5 = 12 - 10 = 2。

二、分数运算习题1. 计算以下分数的和:1/2 + 2/3 + 3/4 + 4/5。

答案:1/2 + 2/3 + 3/4 + 4/5 = 47/20。

2. 计算以下分数的差:2/3 - 1/4 - 5/6。

答案:2/3 - 1/4 - 5/6 = -1/12。

3. 计算以下分数的积:2/3 × 3/4 × 4/5。

答案:2/3 × 3/4 × 4/5 = 4/15。

4. 将以下分数的除法化简为整数:3/8 ÷ 1/4。

答案:3/8 ÷ 1/4 = (3/8) × (4/1) = 3/2 = 1 1/2。

三、百分数运算习题1. 计算60% × 80%的结果。

答案:60% × 80% = 0.6 × 0.8 = 0.48 = 48%。

2. 计算40%除以20%的结果。

答案:40% ÷ 20% = (40/100) ÷ (20/100) = 2。

3. 计算200中的20%是多少。

答案:200 × 20% = 200 × 0.2 = 40。

四、多项式运算习题1. 计算以下多项式的和:(3x^2 + 4x + 5) + (2x^2 + x + 3)。

计算方法各习题及参考答案

计算方法各习题及参考答案

第二章数值分析已知多项式p(x) X1 X3 X2 X 1通过下列点:p(x)试构造一多项式q(x)通过下列点:表中p2(X)的某一个函数值有错误,试找出并校正它•答案:函数值表中P2( 1)错误,应有P2(1)O •利用差分的性质证明12 22n2 n(n 1)(2n1)/6 ・当用等距节点的分段二次插值多项式在区间[1,1]近似函数e x时,使用多少个节点能够保证误差不超过1 1062答案:需要个插值节点・设被插值函数f(x)C4[a,b] 出(叫x)是f(x)矢于等距节点baa Xo X1 Xn b的分段三次艾尔米特插值多项式,步长h •试估计n22I I f (x) H3(h)(x) I I .答案:| |f(x) H3(h) (x) | | M4 hl384第三章函数逼近求f(x) sin x, x [0, 0. 1]在空间span{l, x, x2} ±最佳平方逼近多项式,并给岀平方误差.答案:f (x) sin x的二次最佳平方逼近多项式为-52 sin x p2(x) 0. 832 440 7 10-5 1.000 999 lx 0. 024 985 lx2,二次最佳平方逼近的平方误差为0. 12 2 -12_ (sin x) p2 (x)) dx 0. 989 310 7 10~12・确定参数a, b和c ,使得积分[ax2 bx c 1 ] dx取最小值.l(a,b,c)求多项式f (x) 2x' x3 5x2 1在[1, 1]上的3 次最佳一致逼近多项式p(x) •8 10 a , b 0, c 33答案:f(X)的最佳一致逼近多项式为P(X) ; 7;4用幕级数缩合方法,求f (x) e s ( 1 x 1)上的3次近似多项式p6,3 ( x),并估计I f (x) P6,3(X)I ・答案:23 pe,3 ( x) 0. 994 574 65 0. 997 39583x 0. 542 968 75x2 0. 177 083 33x3,:f (x) P6,3 (x) | | 0. 006 572 327 7J求f (x) e s ( 1 x 1)上的关于权函数(x)的三次最佳平方逼近多1 X"项式S3 ( X),并估计误差I f(X)S3(X)〔2 和I I f(X)S3 (x) I •咎23、口Ss(x) 0. 994 571 0. 997 308x 0. 542 99lx2 0. 177 347 x3,丨丨 f (x) Ss(x) | 12 0. 006 894 83 , | | f (x) Ss( x) | | 0. 006 442 575 ・第四章数值积分与数值微分用梯形公式、辛浦生公式和柯特斯公式分别计算积分x n dx (n 1, 2, 3, 4),并与精确值比较答案:计算结果如下表所示式具有的代数术青度.版权文档,请勿用做商业用途h(1 ) h f (x) dx Aif ( h) Ao f (0) Ai f (h)X1(2 ) if (x) dx [f ( 1) 2f (xi) 3f (x?)]乜11 h 2(3) o f (x)dx 2h[ f (0) f (h)] h2[ f (0) f (h)]答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度. a h xi xo ,确定求积公式X12 31 (x xo) f (x) dx h2EAf (xo) Bf (xi) ] h3[Cf (xo) Df (xi) ] R[f]X中的待定参数A, B, C, D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.2/103)取7个节点处的函数值.用变步长的复化梯形公式和变步长的复化辛浦生公式计算 】山心砥•要求积分13 1610 3和10 6・版权文档,请勿用做商业用途 22 Ts 0. 946满足精度要求;使用复化辛浦生公式时,2 0J 田上述i 公武推导帶修忑项韵営化梯形求积公式K2 其中余域(x)dx= [占(xd 予 CxoH , &b).为 T N h [f po) 2f (xi) 2f (X2) 2f (XN 1) f (XN )],Xi xo in, (i 0, 1, 2, , N), Nh XN XO •$ x 9、用龙贝格方法计算椭圆 / y 2 1的周长,使结果具有五位有效数字. o 4 答案:1 41 9. 6884 .验证高斯型求积公 e f (x) dx Ao f (xo) Ai f (xi)的系数及节点分别为式f<4)()h 6,其中答案:A 3 , B 7 , C 30 20 1440 P2(x)是以 0, h, 口2h •为插值上的二次插值多项式,用3h0 f ( x)dx 的数值积分公式Ih,并用台劳展开法证明:P2 (x)导岀计算积分h 4 f (0) 0(h 5) • 8Ih 0 P2(X )dx°4给定积分Ih[ f(0) 3f (2h)]'sin x dx(2) (3)答5运用复化梯形公式#算上述积分值,使其截断误差不 聲萝改用复化辛浦生公式计算时,截断误差是多少?亠 10 “ •2取同样的求积节 要求的截断误差不超过106,若用复化辛浦生公式,应取多少个节点处的函数值? (1)只需n 7.5,取 9个节点,I 0. 946 ba 4 ⑷"41 6h 1 f ⑷()2) |Rn[f]| |2880 2880 4 5(V 0. 271 10 6 用事后误差估计法时,截断误不超过答案:使用复化梯形公式时,I S4 0. 946 083满足精度要求. f (1) (x) dx插值公式推导带有导数值的求积公式(b i2a )[f (b) f (a)] R[f],其中 确定高斯型求积公式0 xf (x) dx Aof (xo) Aif (xi)闻 xo , xi 及系数Ao,Ai.答案:xo 0. 289 949xi 0. 821 162 , Ao 0. 277 556, Ai 0. 389 111. 利用埃尔米特 b%ba[f(R f 山)]Ao 2: 2S Ao 2: 21x 0 2 2, Xi 2 2 . 第五章解线性方程组的直接法1 11用按列选主元的高斯若当消去法求矩 A 的逆矩阵’其中A21 01 1 0答案:用追赶法求解三对角方程组21 X11 131X22111X3221x4欣X4 2, X3L X2 1, XI 0 .第六章解线性代数方程组的迭代法X! 8X2 7X! 9X2 8作简单调整,使得用高斯一赛得尔迭代法求解时对任9x1 X2 X3 7 意初始向量都收敛,并取初始向量X (O ) [0 0 0]T使(k 1)k ()3||x (k bx k ()|| 10.3版权文档,请勿用做商业用途答案:近似解为X” [1.0000 1. 0000 1. 0000] T . 6 . 2讨论松弛因子1. 25时,用方法求解方程组1020X150101x231243x3170103x4答案: xi 2、X3 2X 21,Xi 1.411XI6 1 4. 25 2. 75X20. 512. 753. 5 X31. 25 答 xi 2X2X3用平方根法(分解法)求解方程组3用矩阵的直接三角分解法解方程组4x1 3x2 16 3xi 4x2 X3 20X2 4x312〔121,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛・12 1 123 0 2 X1bi6・4 设有方程组0 21X2b 2讨论用雅可比方法和咼斯一赛得尔方21 2 X3b3法解此方程组的收敛性•如果收敛,比较哪种方法收敛较 版权文档,请勿用做商业用途为6 . 3给定线性方程组Ax b,其中答案:雅可比方法收敛,高斯一赛得尔方法收敛,且较快.6. 5设矩阵A 非奇异.求证:方程组Ax b 的解总能通过高斯一赛得尔方法得到. …Aaij n n 为对称正定矩阵,对角阵D diag (an, a22 , , ann)・求证:高斯u 一赛得尔方法求解方程组D 2 AD 2x b 时对任意初始向量都收 敛.第七章非线性方程求根例7. 4对方程3x 2 e s 0确定迭代函数(x)及区间[a, b ],使对xo [a, b ],迭代过程 XR i (x), k 0, 1, 2,均收敛,并求解.要求 xk 1 xk | 10x X? 0.458960903 •在[3, 4]上,将原方程改写为e x 3 x 2 ,取对数得性条件,则迭代序列xki In(3 xk 2 ), k 0, 1,2,在[3, 4]中有惟一解.取x 0 3.5 , x xie 3.733067511 •例7 . 6对于迭代函数(x) x c(x 2 3),试讨论:的收敛性・若收敛,则取 x (0)[0 0 0]T迭代求解,使 ||x (I )x (k)1104-X1 1.50001,X2 答案:方程组的近似解3.33333,X32.16667 •答案:若取(X )e 2 ,则在[1,0]中满足收敛性条件,因此迭代法e 2k , k 0,1,2,在(1,0)中有惟一解•取 X0 0. 5, 3取(X )9 e"i,在[0 ,上1满足收敛性条件, 迭代序列1Xk 1 k 1 03k 0, 1, 2,在[0,1]中有惟一解.取 xo 0. 5,X X140.910001967x 2 ) (x)・满足收敛x In (3(1)当c为何值时,x kl (x k)产生的序列{x k}收敛于3;(2)c取何值时收敛最快?顿法收敛,证明牛顿迭代序列{Xk }有下列极限矢系:l k im xk i 2xk xk i第八章矩阵特征值用乘幕法求矩阵A 的按模最大的特征值与对应的特征向量,已矢口 5 5 0 A 0 5. 5 1,要求 x (k)| 10 6,这里 严表示|的第k 次近似值.3 1答案:1 5 ,对应的特征向量为[5,0,0] T :2 5 ,对应的特征向量为[5, 10, T 5 ・]1 1 0>彳 2的按模最小的特征12例7设不动点迭代xki (x)的迭代函数(x)具有二阶连续导数,/是(x)的不动1 1 5取C,力別If 鼻(X 丿旳个动点3 '妥吞| XkiXkl 1U- •3) 223(1 ) c (,0)时矗代收敛•答案: 31c 时收敛最快• O 、 233)分别取c 1,123,并取xo1.5,计算结果如下表7• 7所示yk点,且(X*) 1,证明迭代式(xk ) , Zk (xk )(yk x k )2 , k 0, 1, 2,二阶收敛于x"・版Xk 1 Xk Zk 2yk Xk权文档,请勿用做商业用途 例设(x) x p(x) f (x) q(x)f 2),试确定函数p(x)和q(x),使求解f (x) 0且以(x)为迭代函数的迭代法至少三阶收 敛.案:p(x) f X (x )・ q(x) ;[f f (W]3例7设f (x)在[a, b]上有高阶导数,x* (a, b)是 f(x) 0的m(m 2)重根,且牛知A 的按模较大的特征 值用反幕法求矩阵A的近似值为15,用p 5的原点平移法计算1及其对应的特征向量.版权文档,请勿用做商业用途 答案:0 A 的按模最小的特征值为3 0. 238442812212第九章 微分方程初值问题的数值解法用反复迭代(反复校正)的欧拉预估一校正法求解初值问题y © 0] 0<x 0.2 5 ,要求取步长h 0. 1,每步迭代误差不超过10 5 .答案:Y y(0. 1) yi y 】⑷ 0. 904 762 , y(0. 2) y 2 y?⑷ 0.818 594267 一x y , 0<x 0. 4用二阶中点格式和二阶休恩格式求初值问题"“ “嗜厲汀⑹1长h 0.2,运算过程中保留五位小数). 计算得用平面旋转变换和反射变换将向量X [23 0 5] T 变为与 ei [1 0 0 0]T 平行的向量.2/ 38 3/ 385/ 38答案: T3/ 13 2/ 13 0 00 1 010/ 49415/ 4940 13/4940. 324 442 840 0. 486 664 262 0 0. 811107 1040. 486 664 2620.812 176 0480 0.298 039 922H10.811 107 104 0. 298 039 922 00.530 266 798然后用QR 方法求A 的全部特征值.4 4 5答案:取5 2. 234375即有2位有效数字. 532若A 6 4 4 ,试把A 化为相似的上阵, 值, 21n 0 时,Ki 1.000 00, K2 1. 200 00, y(0. 2) yi=l. 240 00n 1 时,Ki 1. 737 60, 用二阶休恩格式, K 2 2. 298 72, 取初值yo 1计算得y(0. 4) y 2 =1. 699 740 1 5. 1248854 ,对应的特征向量为(8) _设方阵A 的特征值都是实数,且满足 n)时, [0.242 4310, 1 , 0. 320 011 7],为求1而作原1 2 n,点平移'试证:当平移量P 2,(2幕法收敛最快•用二分法求三对角对〈方 A的最小特征 使它至少具有2位有212 答案:用二阶中点格式,取初值yo 1n 0 时,Ki 1.000 00, Ka 1.266 67, y(0.2) yi=1.240 00n 1时,Ki 1.737 60, Ka 2.499 18, y(0.4) y 2 =1.701 76用如下四步四阶阿达姆斯显格式 y n 1 y n h(55f n 59 fn 137fn2 9fn 3)/24求初值问题y x y, y(0) 1在[0,0.5]上的数值解•取步长h 0.1 小数点后保留8位•答 y(0.4) y 40.583 640 216 ‘ y(0.5) y 51.797 421 984 ・ 为使二阶中点公式ym yn hf(Xn h 2h,yn h f(Xn, yn)),求解初值问题2 n nh 的大小应受到的限制条件・hf (Xn,yn)用如下反复迭代的欧拉预估T&榴式 yn (k 11) yn h[f(Xn,y n ) f(Xn1,y n (k)1)]'k 0,1,2,; n 0,1,2,求解初值问题心讪•小时,如何选择步长h ,使上述格式矢于k 的迭y(0) 1代收敛•2答案:h 时上述格式尖于K 的迭代是收敛的・e求系数a,b,c,d ,使求解初值问题y f (x, y), y(xo) a 的如下隐式二步法 yn2aynh(bfn2Cfmdfn)的误差阶尽可能高,并指出其阶数•高'为五阶。

计算方法练习题与答案

计算方法练习题与答案

练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.–作为x的近似值一定具有6位有效数字,且其误差限。

()2.对两个不同数的近似数,误差越小,有效数位越多。

()3.一个近似数的有效数位愈多,其相对误差限愈小。

()4.用近似表示cos x产生舍入误差。

( )5.和作为的近似值有效数字位数相同。

( )二、填空题1.为了使计算的乘除法次数尽量少,应将该表达式改写为;2.–是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3.误差的来源是;4.截断误差为;5.设计算法应遵循的原则是。

三、选择题1.–作为x的近似值,它的有效数字位数为( ) 。

(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。

(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x近似表示e x所产生的误差是( )误差。

(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。

(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.作为的近似值,有( )位有效数字。

(A) 3; (B) 4; (C) 5; (D) 6。

四、计算题1.,,分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:(1), (2)(3) , (4)4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。

现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。

5*. 采用迭代法计算,取k=0,1,…,若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。

计算方法习题集及答案(总结版)

计算方法习题集及答案(总结版)

雅克比法:
3 10 12 5
3 (k ) 2 (k ) x1( k +1) = − 5 x2 − 5 x3 −
,x
( k +1) 2
(k ) 1 (k ) =1 4 x1 − 2 x 3 + 5
18 i
,x
( k +1) 3 −4
(k ) 3 =−1 + 10 x (2 k ) + 5 x1
取初始向量 x
(2) x (3) x
3
= 1+ x2 =
,对应迭代公式 x 对应迭代公式 x
0
k +1
= 3 1 + x k2 ;
2
1 , x −1
k
+1 =
1 xk − 1

0
判断以上三种迭代公式在 x 解: (1) ϕ ( x) = 1 + x1
2
= 1 .5
的收敛性,选一种收敛公式求出 x
2 x3

2 3
= 1 .5
5
习题 3
1.
设有方程组
5 x1 + 2 x 2 + x3 = −12 − x1 + 4 x 2 + 2 x3 = 20 2 x − 3x + 10 x = 3 2 3 1
( k +1) (k )

(1)
考察用 Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; −x (2) 用 Jacobi 法及 Gauss-Seidal 法解方程组,要求当 x
1.
x
k +1 k k
'
<1
公式收敛

计算方法课后习题集规范标准答案

计算方法课后习题集规范标准答案

习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。

注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。

可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。

计算方法_课后习题答案

计算方法_课后习题答案

L3 x 的最高次项系数是 6,试确定 y1 。
解: l0 (x)

x x1 x0 x1

x x2 x0 x2

x x3 x0 x3

x 0.5 0 0.5
x 1 0 1
x2 02
= x3

7 2
x2

7 2
x 1
l1 ( x)

x x0 x1 x0
(2 2e1 4e0.5 )x2 (4e0.5 e1 3)x 1
2)根据Lagrange余项定理,其误差为
| R2 (x) ||
f
(3) ( 3!
)
21
(
x)
||
1 6
e
x(
x

1)(
x

0.5)
|
1 max | x(x 1)(x 0.5) |, (0,1) 6 0x1
x2 02
x4= 04
x3
7x2 14x 8 8
l1 ( x)

x x0 x1 x0

x x2 x1 x2

x x3 x1 x3

x0 1 0

x2 1 2
x4 1 4
=
x3
6x2 3
8x
l2 (x)

x x0 x2 x0

i j
而当 k 1时有
n
x jl j
j0
x

n

n
j0 i0 i j
x xi x j xi


x
j

计算方法 课后习题答案

计算方法 课后习题答案
其中,

正规方程组化为:
得 =2.43689 =0.291211
=2.43689所以 =11.45 = =0.291211
=2.43689所以 =11.45 1= =0.291211
12.求函数 在给定区间上对于 的最佳平方逼近多项式:
解:设
(1)
(2)


13. 上求关于 的最佳平方逼近多项式。
解:Legendre是[-1,1]上的正交多项式
解:1)用梯形公式有:
事实上,
2)Simpson公式
事实上,
3)由Cotes公式有:
事实上,
2.证明Simpson公式 具有三次代数精度。
证明:
而当 时
左侧:
右侧:
左侧不等于右侧。所以Simpson具有三次代数精度.
3.分别用复化梯形公式和复化公式Simpson计算下列积分.
(1) ,(3) ,(4)
注意到这里 是三重零点, 是单零点,故插值余项为
20.求作次数 的多项式 ,使满足条件
并列出插值余项。
解法1:由于在 处有直到一阶导数值的插值条件,所以它是“二重节点”;而在 处有直到二阶导数值的插值条件所以 是“三重节点”。因此利用重节点的差商公式:
可以作出差商表
一阶
二阶
三阶
四阶
0
0
1
1
1
-1
-1
利用 的第1式,可将第2式化为
同样,利用第2式化简第3式,利用第3式化简第4式,分别得
由 式消去 得
进一步整理
由此解出
解得:
因此所求的两点Gauss求积公式:
或依下面的思想:
解(2):令原式对于 准确成立,于是有

《计算方法》练习题及答案

《计算方法》练习题及答案

《计算方法》练习题及答案1. 单选题1. 数值3.1416的有效位数为()A. 3B. 4C. 5D. 6正确答案:C2. 常用的阶梯函数是简单的()次样条函数。

A. 零B. 一C. 二D. 三正确答案:A3. 设求方程f(x)=0的根的牛顿法收敛,则它具有()敛速。

A. 超线性B. 平方C. 线性D. 三次正确答案:C4. 构造拟合曲线不可以采用下列哪种准则()A. 使残差的最大绝对值为最小B. 使残差的绝对值之和为最小C. 使残差的平方和为最小D. 是残差的绝对值之差为最小正确答案:D5. 欧拉法的局部截断误差阶为()。

A. AB. BC.CD. D正确答案:B6. 依据3个样点(0,1),(1,2)(2,3),其插值多项式p(x)为()A. xB. x+1C. x-1D. x+2正确答案:B7. 题面如下,正确的是()A. 2B. 3C. -2D. 1正确答案:B8. 题面如下图所示,正确的是()A. AB. BC. CD. D正确答案:D9. 用列主元消去法解线性方程组,A. 3B. 4C. -4D. 9正确答案:C10. 利用克莱姆法则求解行列式时,求解一个n阶方程组,需要()个n阶行列式。

A. nB. n+1C. n-1D. n*n正确答案:C11. 线性方程组的解法大致可以分为()A. 直接法和间接法B. 直接法和替代法C. 直接法和迭代法D. 间接法和迭代法正确答案:C12. ()的优点是收敛的速度快,缺点是需要提供导数值。

A. 牛顿法B. 下山法C. 弦截法D. 迭代法正确答案:A13. 设x* = 1.234是真值x = 1.23445的近似值,则x*有()位有效数字。

A. 1B. 2C. 3D. 4正确答案:D14. 若a=2.42315是2.42247的近似值,则a有( )位有效数字.A. 1B. 2C. 3D. 4正确答案:C15. 所谓松弛法,实质上是()的一种加速方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 3). |e( x x2 )| ≈ | x2 e(x1 ) − 1 2
2) x1 x2 ; × 10−4 +
1 2
3) x1 /x2 . × 10−5 +
1 2
× 10−5 = 6 × 10−5 .
−5 + x 1 × 10−4 = 2.28675 × 10−4 . 2). |e(x1 x2 )| ≈ |x1 e(x2 ) + x2 e(x1 )| ≤ x1 1 22 2 × 10 x1 e(x2 )| x2 2
计算方法习题解答
1
绪 论 P15
1. 指出下列各数有几位有效数字:
x5 = 96 × 105 , 答 :5, 6, 4, 6, 2, 2.
x6 = 0.00096
2. 将下列各数舍入至5位有效数字: x1 = 3.25894, x2 = 3.25896,
kh ww w.
εr ≤ 1 × 10−(n−1) , 2a1 εr ≤ 1 × 10−4 ; 16 1 × 10−2 . 8 εr ≤ 1
ww
w.
6
kh
da w.
co
m
√ 因而 5 235.4 ≈ 2.981。 收 敛性分 析: m = 1时,牛顿迭代序列为常序列a,显然收敛。 √ f (ε) m ≥ 2时, 对任意正数ε(0 < ε n a), 令M (ε) = − f (ε) , 则 M (ε) = (1 − √ a 1 1 )ε + ε1−m = (ε + · · · + ε + aε1−m ) > m a = x∗ . m m m
3
1 + x2 k , k = 0, 1, 2 · · · , x0 = 1.5.
2 1 ϕ (x) = (1 + x2 )− 3 · 2x, 3
计算得 |ϕ (1.5)| = 所以迭代格式是局部收敛的。 3
3
2 × 1.5 (1 + 1.52 )2
= 0.4558,
8. 设ϕ(x) = x + c(x2 − 3)。应如何选取c,才能使迭代格式xk+1 = ϕ(xk )具有局部收敛性? 答 : 如果迭代格式xk+1 = ϕ(xk ) = xk + c(x2 k − 3), k = 0, 1, 2, · · · 是局部收敛的,设迭代序列的极限值 ∗ 为x ,则有 x∗ = x∗ + c(x∗2 − 3), √ √ x∗ = 3或x∗ = − 3, ϕ (x) = 1 + 2cx. √ √ 1 < c < 0时,则迭代格式局部收敛,收敛于 3. 当|ϕ ( 3)| < 1, 即− √ 3 √ √ 1 时,则迭代格式局部收敛,收敛于− 3. 当|ϕ (− 3)| < 1, 即0 < c < √ 3 √ √ 9. 写出用牛顿迭代法求方程xm − a = 0的根 m a的迭代公式(其中a > 0),并计算 5 235.4(精确至4位 有效数字)。分析在什么范围内取值x0 ,就可保证牛顿法收敛。 √ 答 :记f (x) = xm − a, x∗ = m a. 计算得 f (m) = mxm−1 , f (x) = m(m − 1)xm−2 , 牛顿迭代公式为
令m = 5, a = 235.4, 则牛顿迭代公式为


xk+1 = xk −
取x0 = 3, 计算得 k xk 1 2.98123 2 2.98100 3 2.98100


4 235.4 −4 xk+1 = xk + xk , k = 0, 1, 2, · · · 5 5

f (xk ) 1 a −m = (1 − )xk + x1 , k = 0, 1, 2, · · · f (xk ) m m k
4. 求下列各近似数的误差限(其中x1 , x2 , x3 均为第1题所给出的数):


并指出近似数x1 = 86.734, x2 = 0.0489的相对误差限分别是多少。 −(n−1) , 答 : x有n位有效数字,x = ±a1 .a2 a3 · · · an × 10m , ε ≤ 1 2 × 10
x3 = 4.382000,
da w.
x4 = 0.000789247. a1 = 0 , ∴ εr = ε ε 1 ≤ = × 10−(n−1) . |x| a1 2a1
答 :3.2589, 3.2590, 4.3820, 0.00078925. 3. 若近似数x具有n位有效数字,且表示为
x1 = 86.734, n = 5, a1 = 8, x2 = 0.0489, n = 3, a1 = 4,

1 1 x2 2
× 10−4 +
x1 1 2 x2 2
× 10−5 = 1.3692 × 10−5 .
5. 证明 er − er = 答 :er =
e x∗ , e er = x ,
e2 e2 r r = . 1 + er 1 − er
er − er = er −
e2 e e 1 r = . = e − = e − r r x∗ e+x 1 + er 1 + e1 r
1 ; x2


所以x∗ 2 ≈ 2.153。

4 2.16743
ww
w.
5 2.15984
1 |ϕ (x)| ≤ , 2
kh
6 2.15933 7 2.15609 8 2.15459
da w.
9 2.15389
co
10 2.15357
m
x = ln(4x), x ∈ [2, 3],
11 2.1534
1 2
× 10−3 .

−2 ∗ = y∗ yn n−1 − 10 (x + e), yn = yn−1 − 10−2 x,
ww
√ 计算到y100 , 若取 783 ≈ 27.982 (5位有效数字),试问计算到y100 将有多大误差? √ 答 :设x∗ = 783, x = 27.982, x∗ = x + e.
设二分k 次,取xk ≈ x∗ , |xk − x∗ | = k ≥ 9.965, 所以要二分10次。
1 2k+1
(1 − 0) ≤
1 × 10−3 , 2
设二分k 次,同上题计算,需二分10次。计算机计算略, x∗ ≈ 0.921。
3. 用简单迭代法求下列方程的根,并验证收敛性条件,精确至4位有效数字。 1) x3 − x − 1 = 0; 2) ex − 4x = 0; 答 :以2)为例. 3) 4 − x = tan x, x ∈ [3, 4]; 4) ex − 3x2 = 0.
1
9. 推导出求积分 In =
0
xn dx 10 + x2
n = 0, 1, 2, · · · , 10





ww
w.
3
kh
w.
10. 设f (x) = 8x5 − 0.4x4 + 4x3 − 9x + 1, 用秦九韶法求f (3)。 答 :1993.6.
co
m
的递推公式,并分析这个计算过程是否稳定;若不稳定,试构造一个稳定的递推公式。 1 答 :与例题类似,In = −10In−2 + n− 1 ,略。
所以x∗ 1 ≈ 0.3574。 – 求根x∗ 2: 将方程f (x) = 0在区间[2, 3]改写为同解方程
构造迭代格式 xk+1 = ln(4xk ), k = 0, 1, 2, · · · 记ϕ = ln(4x), 则 ϕ (x) = 当x ∈ [2, 3]时, 1 > 0. x
ϕ(x) ∈ [ϕ(2), ϕ(3)] = [ln 8, ln 12] ⊂ [2, 3],
w.
2
yn = yn−1 −
1 √ 783, 100
kh
7. 设y0 = 28, 按递推公式
da w.
n = 1, 2, · · ·
co
·········
m
√ 若y0 = 3 ≈ 1.73 (3位有效数字), 计算到y10 时误差有多大?这个计算过程稳定吗? √ ∗ = ∗ − y ≤ 1 × 10−2 , 答 :设y0 3, y0 = 1.73, e0 = y0 0 2
所以此迭代格式对x0 ∈ [2, 3]均收敛。
k xk 1 2.30259 2 2.22033 3 2.18395

取x0 = 2.5, 迭代得到

6. 求方程x3 − x2 − 1 = 0在x0 = 1.5附近的根,将其改写为如下4种不同的等价形式,构造相应的迭代格 式,试分析它们的收敛性。选一种收敛速度最快的迭代格式求方程的根,精确至4位有效数字。 1) x = 1 + 2) x = √ 3
构造迭代格式
1 x 记ϕ(x) = 4 e ,则

– 求根x∗ 1:


设f (x) = ex − 4x, 则f (x) = ex − 4, f (x) = 0的根为ln 4。
∗ x∗ 1 ∈ [0, 1], x2 ∈ [2, 3].
ww
w.
kh
da w.
2. 用二分法求方程2e−x − sin x = 0在区间[0, 1]内的根,精确到3位有效数字。 −x 答 :设f (x) = 2e−x −sin x, f (0) > 0, f (1) = 2 e −sin 1 < 0, f (x) = −2e −cos x < 0, 所以f (x)在[0, 1]内 有且仅有一根。
相关文档
最新文档