清华大学断裂力学讲义ch3讲解
断裂力学第三讲断裂力学理论

27
应力强度因子
应力强度因子一般写为:
K Y a
——名义应力,即裂纹位置上按无裂纹计算的应力
a ——裂纹尺寸,即裂纹长或深
Y——形状系数,与裂纹大小、位置有关
应力强度因子单位:N.m-3/2
28
应力强度因子
3
k
Hale Waihona Puke 1平面应力3 4 平面应变
14
Ⅲ型裂纹求解
对于I型和II型裂纹来说,是属于平面问题。但对于III型裂纹, 由于裂纹面是沿z方向错开,因此平行于xy平面的位移为零, 只有z方向的位移不等于零 对于此类反平面问题,前面给出的平面问题的基本方程已不 适用,因此不能沿用Airy应力函数求解,需要从弹性力学的 一般(空间)问题出发,推导公式。弹性力学一般问题的基 本方程,可以仿照平面问题的方法导出
同。选取应力函数
=yReZII
II x
yReZII z
yII ReZIIzyImZIIz
因为
ReZzReZz
x
ReZzImZz
y
ImZz ReZz
y
所以
2II x2
yReZII
z
2 y2II 2ImZIIzyReZIIz 2 xyII ReZIIzyImZIIz
8
Ⅱ型裂纹求解
得到II型裂纹问题各应力分量表达式为
用解析函数求解III型裂纹尖端 应力强度因子的定义式
19
Ⅲ型裂纹求解
应力强度因子是在裂尖时 0存在极限,若考虑裂尖附近 的一个微小区域,则有:
KI 2ZΙΙI()
ZΙI ( )
断裂力学导论讲诉课件

THANKS
感谢观看
对未来学习和研究者的建议和展望
总结:随着科学技术的发展,断裂力学仍然是一个充 满挑战和机遇的领域。对于未来的学习和研究者来说 ,深入理解断裂力学的原理和方法,结合实际工程问 题,开展创新性的研究是至关重要的。
首先,建议学习和研究者具备扎实的力学基础和一定 的工程背景知识。其次,通过参加学术会议、研讨会 等活动,与同行交流,了解最新的研究动态和趋势。 此外,积极拓展相关领域的知识和技术,例如数值模 拟和实验研究等。最后,结合实际工程问题开展研究 ,不仅可以提高研究的意义和实用性,还可以促进学 科之间的交叉和融合。
03
包括应力、应变、弹性模量、泊松比等,是理解弹性
力学的基础。
塑性力学基础知识
01
塑性力学简介
塑性力学是研究物体在塑性范围 内的应力、应变和位移关系的学 科。
02
塑性力学的基本方 程
包括屈服条件、流动法则、强化 准则等,用于描述塑性物体的力 学行为。
03
塑性力学的基本概 念
包括塑性应变、塑性应力、加工 硬化等,是理解塑性力学的基础 。
研究材料在高温高压条件下的相变过程与断裂行为之间的关联,探索相变对材料从微观结构角度出发,研究高温高压条件下材料的晶体结构、化学键合、缺陷等与断裂行为之间的关系 。
多场耦合作用下断裂力学的研究
01
多物理场耦合模型
建立多物理场(如温度场、应力场、 电场、磁场等)耦合作用的数学模型 ,研究多场耦合对材料断裂行为的影 响机制。
金属材料抗疲劳性能评估
运用断裂力学的理论和方法,评估金属材料的抗疲劳性能,为提高 工程结构的安全性和可靠性提供依据。
断裂力学在复合材料中的应用
复合材料的层间断裂
断裂力学导论讲诉课件

弹塑性材料在受到外力作用时,会同 时发生弹性变形和塑性变形。在裂纹 尖端附近,由于应力集中,材料会发 生屈服并进入塑性区。
能量释放率
能量释放率是描述裂纹扩展所需最小 能量的物理量。在弹塑性断裂力学中 ,当能量释放率达到材料的临界值时 ,裂纹将发生失稳扩展。
断裂韧性测试方法
紧凑拉伸试样法
压力容器的断裂分析
压力容器的断裂分析
压力容器的断裂分析主要关注压力容器在各种工况下的强度和稳定性。由于压力容器内部储存着高压气体或液体,一旦发生 破裂,后果将非常严重。因此,对压力容器的断裂分析需要采用严格的测试和评估方法,以确保压力容器的安全性和可靠性 。
压力容器的断裂分析
压力容器的断裂分析
在压力容器的断裂分析中,需要考虑压力容器的结构形式、 材料特性以及各种工况下的应力分布。通过断裂力学的理论 和方法,可以评估压力容器的强度和稳定性,为压力容器的 设计、制造和使用提供重要的安全保障。
高层建筑抗震设计
利用断裂力学原理,可以评估高层建 筑在地震作用下的抗震性能,优化抗 震设计。
机械工程
转子动力学分析
在机械工程中,断裂力学可用于转子动 力学的分析,研究转子裂纹的形成和扩 展,提高旋转机械的稳定性和可靠性。
VS
焊接结构完整性评估
焊接是机械工程中常用的连接方式,断裂 力学可以用于焊接结构的完整性评估,确 保焊接结构的可靠性和安全性。
课程目标
掌握断裂力学的基本 原理和方法。
培养学生对断裂力学 研究的兴趣和独立思 考能力。
了解断裂力学在工程 实践中的应用和案例 分析。
02
断裂力学基础知识
断裂力学的定义
总结词
断裂力学是一门研究材料断裂行为的学科。
断裂力学与断裂韧度

就会突然破裂
传统力学或经典的强
度理论解决不了带裂 纹构件的断裂问题
断裂力学应运而生
断裂力学就是研究带裂纹体的力学,它给出了含 裂纹体的断裂判据,并提出一个材料固有性能的 指标——断裂韧性,用它来比较各种材料的抗断 能力。
§3.2 格里菲斯(Griffith)断裂理论 3.2.1 理论断裂强度 金属的理论断裂强度可由原子间结合力的图形算出
某点的位移则有
平面应力情况下 位移
平面应力情况时
3. 应力强度因子K1 由上述裂纹尖端应力场可知,如给定裂纹尖端某点
§3.3 材料的断裂韧度
3.3.1 裂纹尖端的应力场
1.三种断裂类型 根据裂纹体的受载和变形情况,可将裂纹分为三种类 型:
张开型(或称拉伸型)裂纹 滑开型(或称剪切型)裂纹 撕开型裂纹
张开型(或称拉伸型)裂纹
外加正应力垂直于裂纹面,在应力作用下裂纹尖端 张开,扩展方向和正应力垂直。这种张开型裂纹通 常简称I型裂纹。
对于大多数金属材料,虽然裂纹尖端由于应力集中 作用,局部应力很高,但是一旦超过材料的屈服强 度,就会发生塑性变形。在裂纹尖端有一塑性区, 材料的塑性越好强度越低,产生的塑性区尺寸就越 大。裂纹扩展必须首先通过塑性区,裂纹扩展功主 要耗费在塑性变形上,金属材料和陶瓷的断裂过程 不同,主要区别也在这里。
设裂纹扩展单位面积所耗费的能量为R,则
R 2( s p )
而裂纹扩展的动力,对于上述的Griffith试验情况来说, 只来自系统弹性应变能的释放
定义
也就是G表示弹性应变能的释放率或者为裂纹扩展力。 因为G是裂纹扩展的动力,当G达到怎样的数值时, 裂纹就开始失稳扩展呢?
按照Griffith断裂条件G≥R R=s 按照Orowan修正公式G≥R R=2( s+ p)
第12讲 断裂力学培训讲义

结构可靠性评价及失效分析第12讲断裂力学培训讲义1、概述1.1载荷的分类与破坏形式结构承受载荷的性质(拉、压、扭转、剪切)、大小、方向、作用位置中一项或多项不断变化(疲劳)或变化过大、过速(冲击)的情况都属于动载。
疲劳是结构失效的基本形式,约占结构失效总量的80~90%。
冲击载荷容易造成结构的脆性破坏。
造成脆性破坏,或加速疲劳破坏的原因可能是结构形式不佳(如应力集中严重)或结构工作环境的恶化(如环境温度变得过低,使材料材质变脆;或环境介质腐蚀性强,使结构缺陷加深增大)等。
疲劳破坏和脆性破坏都属于低应力破坏,发生破坏时的工作应力可能只有结构材料屈服极限的1/2,1/5,1/10,甚至没有外载荷。
例如,历史上曾经发生的破坏事件:海面上本来风平浪静,船舶却突然开裂破坏;火车尚未到达大桥,大桥却突然先行倒塌。
人类已经为突发性的低应力破坏付出了太多、太沉重的代价。
科研工作者为研究低应力破坏的机理、规律、预防措施等,做出了巨大贡献,我们应当认真学习研究这些知识,预防低应力破坏事件的发生。
1.2结构脆性断裂的特点⑴名义工作应力低: 只有材料s的1/3~1/10,甚至外载荷等于零(如图1宽板焊接接头的实验结果)。
⑵断裂之前无明显塑性变形,无征兆,突发断裂。
⑶低应力脆性破坏多发生在低温阴冷的时刻。
以上三个特点,让人猝不及防,容易造成严重危害。
⑷ 发生低应力脆性断裂的结构内,多半存在着较大的内应力,有较高的内能。
⑸ 发生低应力脆性断裂的结构上,必有裂源或应力集中点存在。
脆性断裂对缺陷和应力集中很敏感。
后两个特点,反映了低应力脆性断裂的必然性,并非无缘无故发生。
1.3结构发生脆性断裂的原因和条件(金属结构脆性断裂的能量理论)固体内部的裂纹和缺陷,导致其发生低应力脆性断裂。
使材料的实际断裂强度只有其理论强度的1/10 ~ 1/1000。
对这一现象作如下分析:⑴ 一个L B ⋅⋅δ的微裂纹体(图2),1=δ,在平均力F 的作用下,伸长了L ∆长,两端固定起来(相当于被均匀拉伸的弹性体的一个局部)。
断裂力学讲义(学生讲义)

第一章 绪论§1.1 断裂力学的概念任何一门科学都是应一定的需要而产生的,断裂力学也是如此。
一提到断裂,人们自然而然地就会联想到各种工程断裂事故。
在断裂力学产生之前,人们根据强度条件来设计构件,其基本思想就是保证构件的工作应力不超过材料的许用应力,即σ≤[σ]~安全设计安全设计对确保构件安全工作也确实起到了重大的作用,至今也仍然是必不可少的。
但是人们在长期的生产实践中,逐步认识到,在某些情况下,根据强度条件设计出的构件并不安全,断裂事故仍然不断发生,特别是高强度材料构件,焊接结构,处在低温或腐蚀环境中的结构等,断裂事故就更加频繁。
例如,1943~1947年二次世界大战期间,美国的5000余艘焊接船竟然连续发生了一千多起断裂事故,其中238艘完全毁坏。
1949年美国东俄亥俄州煤气公司的圆柱形液态天然气罐爆炸使周围很大一片街市变成了废墟。
五十年代初,美国北极星导弹固体燃料发动机壳体在试验时发生爆炸。
这些接连不断的工程断裂事故终于引起了人们的高度警觉。
特别值得注意的是,有些断裂事故竟然发生在σ<<[σ]的条件下,用传统的安全设计观点是无法解释的。
于是人们认识到了传统的设计思想是有缺欠的,并且开始寻求更合理的设计途径。
人们从大量的断裂事故分析中发现,断裂都是起源于构件中有缺陷的地方。
传统的设计思想把材料视为无缺陷的均匀连续体,而实际构件中总是存在着各种不同形式的缺陷。
因此实际材料的强度大大低于理论模型的强度。
断裂力学恰恰是为了弥补传统设计思想这一严重的缺陷而产生的。
因此,给断裂力学下的定义就是断裂力学是研究有裂纹(缺陷)构件断裂强度的一门学科。
或者说是研究含裂纹构件裂纹的平衡、扩展和失稳规律,以保证构件安全工作的一门科学。
断裂力学在航空、机械、化工、造船、交通和军工等领域里都有广泛的应用前景。
它能解决抗断设计、合理选材、制定适当的热处理制度和加工工艺、预测构件的疲劳寿命、制定合理的质量验收标准和检修制度以及防止断裂事故等多方面的问题,因此是一门具有高度实用价值的学科。
清华大学断裂力学讲义ch3

4 F 0
应力函数
F Re z z z dz
11 Re 2 z
应力场
22 Re 2 z 12 Im z
2 2 K I2 K II K III G 【作业题3-5】 E 2
ui ui a x1 , ui a x1 , 2ui a x1 ,
G lim
1 a i 2 x1 , 0 ui dx1 a 0 2a 0 1 a lim x , 0 u a x1 , dx1 i 2 1 i a 0 a 0
lim 22 r , 0 lim
r 0 r 0
x1
x1 a x1 a
a
r 2a
a
2r
K I lim 2 r 22 r , 0 a
r 0
KI a
K I lim Z I z 2 z a
裂尖位移场
裂尖温度场
基于应力强度因子的断裂准则
安全 K I K IC 临界状态
实验测量KIC
KIC 材料的断裂韧性 (Fracture toughness) Compact tension (CT)
ASTM Single edge notch bend (SENB)
Crack mouth opening displacement (CMOD)
利用了对称性
2 F F,
Imz z z x
Imz z z x
断裂力学课件

从带裂纹物体的载荷——变形量关系来看,脆性断裂时的载荷与变形量一般呈线性关系,如图(1-4)。在接近最大载荷时才有很小一段非线性关系。脆性断裂的发生是比较突然的,即裂纹开始扩展的启裂点与裂纹扩展失去控制的失稳断裂点非常接近。裂纹扩展后,载荷即迅速下降,断裂过程很快就结束了。韧性断裂的载荷——变形量关系如图(1-5)所示,有较长的非线性阶段,启裂后,裂纹可以缓慢地扩展一段时间。除非载荷增加到失稳断裂点,否则就不会发生失稳断裂。对于金银等延展性相当好的材料,受载时可以发生很大的变形,但承载能力较低,不易立即发生失稳断裂,这不属于断裂力学研究的范围。
断裂力学中的三种裂纹形式
根据外力的作用方式,断裂力学按照裂纹扩展形式将介质中存在的裂纹分为三种基本形式:张开型:裂纹上下表面位移是对称的,由于法向位移的间断造成裂纹上下表面拉开;滑开型:上下表面的切向位移是反对称的,由于上表面切向位移间断,从而引起上下表面滑开,而法向位移则不间断,因而形成面内剪切;撕开型:上下表面的位移间断,沿Z方向扭剪。
断裂力学的相关概念
脆性断裂和韧性断裂
韧度(toughness)是指材料在断裂前的弹塑性变形中吸收能量的能力。高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。例如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。玻璃和粉笔低韧度、低塑性材料,断裂前几乎没有变形,表形为脆性断裂。例如图(1-3)所示的一个带环形尖锐切口的圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(即发生颈缩),断口可能呈锯齿状,这种断裂一般是韧性断裂。低强度钢的断裂就属于韧性断裂。象金银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。同时,同一种材料在不同的温度或不同的截面积时,也会显出不同的断裂特征。同一种材料一般是随裂纹的存在和长度的增加,以及温度降低和零构件截面积的增大,而增加脆性断裂的倾向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
12
M.L. Williams. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics 24, 109-115 (1957).
应力强度因子KI,II,III与G之间的关系 G 与裂纹延伸时能量的变化有关
I、II型裂纹
4F 0
应力函数 F Re z z z dz
应力场
11 Re2 z 22 Re2 z 12 Imz
位移场
2u1 Re z 2u2 Im z
3 4 3
1
Plane strain Plane stress
Westergaard应力函数法( Westergaard stress function)
到的。
G
K
2 I
K
2 II
K2 III
E 2
在II型和III型加载下裂纹扩展往往会发生拐折和分叉。对很
多材料的实验观察表明,裂纹实际的扩展路径会逐渐转向为I
型断裂占优的路径。
此外,I型断裂最为危险。
G
K
2 I
E
实验测量应力强度因子
电测法 裂尖应变
光弹法
裂尖主应力
数字图像相关(Digital image correlation) 热弹性法(Thermoelastic Method)
在前面的平面问题求解中,需要确定两个解析函数(z)和(z) ,其实在对称和
反对称特例下,可利用Westergaard函数进一步简化为一个解析函数的求解。
以I型问题为例:
F Re zz zdz
12 x1,0=0 x1 , 利用了对称性
2F F,
Imzz z Imzz z 0
x2 0
a0 a
a0 2a
a
0 32
x1, 0
u3dx1
1
lim a0 a
a 0
32
x1
,
0
u3
a
x1
,
dx1
G
K2 III
2
针对I、II、III型裂纹
x2
x2
σ
u
x1
a
u
x1
a
i2
KM a
2 x1
O
x1
i 1, 2, 3 M II I III
ui
ui a x1, ui a x1, 2ui a
x2 0
zz z A A为实常数 x2 0
u v u v x y y x
解析延拓(定义见下页): z A zz
1
G lim a0 2a
a
0 i2
x1, 0
ui dx1
1 lim
a0 a
a 0
i
2
x1
,
0
ui
a
x1,
dx1
x1,a xΒιβλιοθήκη 2KMa a
1 1 4
II I III
G
K
2 I
K
2 II
K2 III
E 2
【作业题3-5】
复合型裂纹
Ga
a
0 i2
x1,
0
ui
a
x1,
dx1
wtip a
如果不是固定位移载荷加载(如固定力),是何结论?
可由能量平衡来理解
F
裂纹扩展
Gda dU Fd
逐渐放松保持力过程
wtip da dU Fd
F
这种假设裂纹闭合张开的虚拟过程的分析仍然适用。
x2
x2
σ
x1
a
u
a u
G
K
2 I
K
2 II
K2 III
x1
E 2
平面应变断裂韧性:
能量释放率和应力强度因子关系是假定裂纹呈直线延伸下得
裂尖位移场
裂尖温度场
基于应力强度因子的断裂准则
实验测量KIC
安全
KI KIC 临界状态
KIC 材料的断裂韧性 (Fracture toughness)
ASTM Single edge notch bend (SENB)
Compact tension (CT)
平面应变
2
B
2.5
K IC y
2
a
2.5
KIC y
Crack mouth opening displacement (CMOD)
KQ
PQ BW
f
a W
应力强度因子求解
此前,只讨论了裂尖的渐近解,这里将讨论如何结合几何和载 荷条件来确定应力强度因子。主要有以下一些方法: ❖ Westergaard应力函数法( Westergaard stress function) ❖ 权函数法(Weight function) ❖ 线性叠加法 (Principle of superposition)
2u3
2u3 r 2
1 r
u3 r
1 r2
2u3 2
0
u3 r1uˆ3
ui 0 as r 0
为什么有如此渐近的形式?
分离变量法 u3 r, Rruˆ3
2u3
2R r 2
uˆ3
1 r
R r
uˆ3
R r2
2uˆ3 2
0
12
r2 R
2R r 2
r R
R r
1 uˆ3
2uˆ3 2
首先假设固定位移加载
针对III型裂纹
x2
A
B
σ
x1
a
x2
u
u
x1
a
KIII
lim
x1 0
2 x1 32 x1, 0
32 x1, 0
KIII
2 x1
u3 u3+ a x1, u3- a x1, =2u3+ a x1, =
2
2KIII
1
a x1 2
G lim U A UB lim 1
第三章:线弹性断裂力学
断裂模式及对称性分析 三型裂纹裂尖场的渐近解
复变函数(回顾) 三型裂纹裂尖场的解
应力强度因子K K-G关系
计算K的常用方法 讨论
反平面剪切问题(一个相对简单的问题)
3 , 0
3
1 2 u3,
3 2 3
整理可得调和方程(或由Navier方程直接简化)
渐近解
2u3 0
U e
1 U e
G
A
B a
KI,II,III仅与裂纹尖端区域的场强度有关
KI K II
K III
lim
r0
2
r
22 12
r,0
r,
0
32
r
,
0
KI,II,III与G之间的关系?
George Rankine Irwin
G.R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics 24, 361-364 (1957).
应力强度因子的计算:
KM
lim x1 0
2x1 2i x1,0
i 1, 2, 3 M II I III
Westergaard应力函数法( Westergaard stress function)
之前的解析函数构造时只关心裂尖处的渐近场及边界条件,Westergaard 应力函数方法将满足所有边界,并能给出全场解。