1.2 集合之间的关系(含答案)

合集下载

高中数学必修一1.2 集合间的基本关系-单选专项练习(27)(人教A版,含答案及解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(27)(人教A版,含答案及解析)

1.2 集合间的基本关系1.集合A={}|2k k Z πααπ=+∈,与集合B={}|2,2k k Z πααπ=±∈的关系是( )A .A=B B .A ⊆BC .B ⊆AD .以上都不对2.设集合{}2|10A x ax ax =-->,若A 为空集,则实数a 的取值范围是( )A .(4,0)-B .(4,0]-C .[4,0)-D .[4,0]-3.下列关系正确的是( )A .0=∅B .1∈1}C .∅=0} D .0⊆0,1}4.已知:A =x|x 2=1},B =x|ax =1},C =x|x =a},B ⊆A ,则C 的真子集个数是( ) A .3B .6C .7D .85.设a ,b∈R,集合A 中含有0,b ,ba三个元素,集合B 中含有1,a ,a+b 三个元素,且集合A 与集合B 相等,则a+2b =( ) A .1B .0C .﹣1D .不确定6.已知集合{}1,2,4A =,{}|32,B y y x x A ==-∈,则A B 的子集个数是( ) A .1 B .2 C .3 D .4 7.设23{|}A x x =<<,{|}B x x m =<,若A B ⊆,则实数m 的取值范围是( ) A .[3,)+∞B .(3,)+∞C .(,2)-∞D .(,2]-∞8.已知集合{}1,2,3,4A =,那么A 的真子集的个数是 A .15 B .16 C .3 D .4 9.已知集合{}{}1,21,2,3,4A ⊆,则满足条件的集合A 的个数为( )A .1B .2C .3D .4 10.已知集合A ⊆0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为 A .6B .5C .4D .311.下列四个写法:①{}{}01,2,3∈;②{}0∅⊆;③{}{}0,1,21,2,0⊆;④0∉∅,其中错误写法的序号有( ) A .① B .②C .③D .④12.下列说法中正确的是( )A .(){}11,1∈B QC .{}{}11,2,3,4,5⊆D .{}5xx ∅∈≤∣ 13.已知集合A ,B 相等,A =R ,则B =( )A .NB .QC .RD .Z14.M =x|x 3=x},N =x|x 2=1},则下列式子中正确的是( )A .M =NB .M ⊆NC .N ⊆MD .M∩N=∅15.已知集合|,44k M x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭,集合|,84k N x x k Z ππ⎧⎫==-∈⎨⎬⎩⎭,则( ) A .M N ⋂=∅ B .M N ⊆ C .N M ⊆D .M N M ⋃=16.设A 为非空的数集,{}3,6,7A ⊆,且A 中至少含有一个奇数元素,则这样的集合A 共有 A .6个B .5个C .4个D .3个17.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈,给出如下四个命题:①若1m =,则{}1S =;②若12m =-,则114l ≤≤;③若12l =,则0m ≤;④若1l =,则10m -≤≤或1m =;其中正确的命题个数是( ) A .1 B .2 C .3 D .4 18.已知集合{|1}M x x =>-,那么( )A .0M ⊆B .{0}M ∈C .M ∅∈D .{0}M ⊆19.集合A=正方形},B=矩形},C=平行四边形},D=梯形},则下面包含关系中不正确的是( ) A .A B ⊆B .BC ⊆C .CD ⊆D .A C ⊆20.{}a {},,P a b c ⊆的集合P 的个数是 A .2 B .3C .4D .5参考答案1.A2.D3.B4.C5.A6.D7.A8.A详解:集合A里有4个元素,那么它有42115-=个真子集,故选A9.C10.A详解:试题分析:根据已知中集合A满足A⊆0,1,2},且集合A中至少含有一个偶数,逐一列举出满足条件的集合A,可得答案.解:∵集合A⊆0,1,2},且集合A中至少含有一个偶数,∴满足条件的集合A可以为:0},2},0,1},1,2},0,2},0,1,2},共6个,故选A.考点:子集与真子集.11.A12.C13.C14.C15.B16.A17.D18.D19.C详解:{}{}{},,,,p a b a c a b c =或或【参考解析】1.解析:对于集合A ,当k 取奇数时,令k =2n ﹣1,α=2nπ2π-;当k 取偶数时,令k =2n ,α=2kπ2π+,n∈Z,即可看出A ,B 的关系 详解: 对于集合A ,当k 取奇数时,令k =2n ﹣1,α=2nπ2π-;n∈Z, 当k 取偶数时,令k =2n ,α=2kπ2π+,n∈Z, ∴A=α|α=2kπ±2π,k∈Z}=B . 故选:A .2.解析:分0,0a a =≠两种情况分类讨论,0a =时符合题意,0a ≠时只需满足0a <⎧⎨∆≤⎩ 即可求解. 详解:当0a =时,原不等式为10->,A 为空集; 当0a ≠时,因为A 为空集 所以210ax ax -->无解,只需满足2040a a a <⎧⎨+≤⎩,解得40a -≤<,综上实数a 的取值范围是[4,0]-. 故选D 点睛:本题主要考查了一元二次不等式的解为空集,分类讨论的思想,属于中档题.3.解析:利用元素与集合以及集合与集合的关系即可求解.对于A :0是一个元素,∅是一个集合,元素与集合是属于(∈)或者不属于(∉)关系,二者必居其一,A 不对. 对于B :1是一个元素,1}是一个集合,1∈1},所以B 对.对于C :∅是一个集合,没有任何元素,0}是一个集合,有一个元素0,所以C 不对. 对于D :0是一个元素,0,1}是一个集合,元素与集合是属于(∈)或者不属于(∉)关系,二者必居其一,D 不对. 故选:B. 点睛:本题考查了元素与集合关系的符号表示、集合与集合之间关系的符号表示,属于基础题.4.解析:首先求得A =﹣1,1},之后根据B ⊆A ,求得a 的值,从而得到C =﹣1,0,1},根据含有n 个元素的有限集合真子集的个数,求得结果. 详解:由A 中x 2=1,得到x =1或﹣1,即A =﹣1,1}, ∵B=x|ax =1},B ⊆A ,∴把x =﹣1代入ax =1,得:a =﹣1;把x =1代入ax =1得:a =1, 当B φ=时,0a =,满足B ⊆A , ∴C=﹣1,0,1},则C 真子集个数为23﹣1=7. 故选:C. 点睛:该题考查的是有关集合的问题,涉及到的知识点有根据包含关系求参数的值,含有n 个元素的有限集合真子集的个数公式,属于简单题目.5.解析:依据题意可得01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩,然后进行计算即可.详解:由题意可知a≠0,则只能a+b =0,则有以下对应关系:01a b b a a b +=⎧⎪⎪=⎨⎪=⎪⎩①或01a b b a b a⎧⎪+=⎪=⎨⎪⎪=⎩②;由①得a =﹣1,b =1,符合题意; ②无解;则a+2b =﹣1+2=1. 故选:A 点睛:本题考查集合相等求参数,重在计算,属基础题.6.解析:求出集合B ,进而可得A B ,利用子集个数的公式2n 求解即可. 详解:解:由已知{}{}|32,1,4,10B y y x x A ==-∈=,{}1,4A B ∴=,A B ∴的子集个数为224=,故选:D. 点睛:本题考查集合交集的运算,及集合子集的个数,是基础题.7.解析:由A B ⊆得到关于m 的不等式,能求出实数m 的取值范围. 详解:解:{|23}A x x =<<,{|}B x x m =<,A B ⊆,3m ∴≥,∴实数m 的取值范围是[)3,+∞.故选:A . 点睛:本题考查实数的取值范围的求法,考查元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题. 8.9.解析:由题意可知,集合A 中一定有1,2两个元素,且A 中最多三个元素,从而可求得满足题意的集合A . 详解:由题意,当集合A 中有两个元素时,集合}{1,2A =, 当集合A 中有三个元素时, 集合}{1,2,3A =或}{1,2,4. 即满足条件的集合A 的个数为3. 故选:C. 点睛:本题考查了集合间的包含关系,考查了真子集的性质,属于基础题. 10.11.解析:利用元素与集合的关系以及集合与集合之间的关系,便可得出答案. 详解:对①:0}是集合,1,2,3}也是集合,所以不能用∈这个符号,故①错误. 对②:∅是空集,0}也是集合,由于空集是任何集合的子集,故②正确.对③:0,1,2}是集合,1,2,0}也是集合,由于一个集合的本身也是该集合的子集,故③正确. 对④:0是元素,∅是不含任何元素的空集,所以0∉∅,故④正确. 故选: A. 点睛:本题考查集合与元素的关系以及集合与集合之间的关系,属于基础题.12.解析:根据元素与集合的关系,以及集合与集合的关系,判断选项. 详解:根据元素与集合的关系可知,(){}11,1∉Q ,故AB 不正确;根据集合与集合的关系可知,{}{}11,2,3,4,5⊆,{}5xx ∅⊆≤∣,故C 正确,D 不正确. 故选:C13.解析:根据集合相等得概念,即可得出答案. 详解:解:因为集合A ,B 相等,A =R , 所以B =R. 故选:C.14.解析:求得两个集合的元素,由此确定正确选项. 详解:()()()332,0,1110x x x x x x x x x =-=-=+-=,所以{}0,1,1M =-,()()21,110x x x =+-=,所以{}1,1N =-,所以N M ⊆.故选:C15.解析:对两个集合中的元素x 所具有的性质P 分别化简,使其都是含有4π-的表达式. 详解:由题意可知,(24)|,84k M x x k Z ππ+⎧⎫==-∈⎨⎬⎩⎭2|,84n x x n Z ππ⎧⎫==-∈⎨⎬⎩⎭ 2(21)|,8484k k N x x x k Z ππππ-⎧⎫==-=-∈⎨⎬⎩⎭或所以M N ⊆,故选B. 点睛:本题考查两个集合之间的基本关系,要求对集合中的元素所具有的性质能进行化简.16.解析:可采用列举法(分类的标准为A 中只含3不含7,A 中只含7不含3,A 中即含3又含7)逐一列出符合题意的集合A. 详解:解:∵A 为非空集合,{}3,6,7A ⊆,且A 中至少含有一个奇数 ∴当A 中只含3不含7时A =3,6},3} 当A 中只含7不含3时A =7,6},7} 当A 中即含3又含7时A =3,6,7},3,7} 故符合题意的集合A 共有6个 故选A 点睛:本题主要考查了子集的概念,属中档题,较易.解题的关键是理解子集的概念和A 中至少含有一个奇数分三种情况:只含3不含7,A 中只含7不含3,A 中即含3又含7.17.解析:根据集合的定义,由m S ∈,l S ∈,得到2m S ∈,2l S ∈,即2m m ≥,21l ≤,然后利用一元二次不等式的解法化简后逐项判断. 详解:∵非空集合{}S x m x l =≤≤满足:当x S ∈时,有2x S ∈ ∴m S ∈,l S ∈,则2m S ∈,2l S ∈,且2m m ≥,21l ≤ 即0m ≤或1m ≥,01l ≤≤且1m①当1m =时,有1l =,所以{}1s =,故正确;②当12m =时,214m S =∈,所以114l ≤≤,故正确;③当12l =时,2m S ∈,所以212m ≤,所以02m -≤≤,故正确; ④当1l =时,可知10m -≤≤或1m =,故正确; 故选:D 点睛:本题主要考查集合的新定义,元素与集合的关系以及一元二次不等式的解法,还考查了逻辑推理、求解问题的能力,属于中档题.18.解析:根据元素与集合、集合与集合之间的关系,逐项判断,即可得出结果. 详解:因为{|1}M x x =>-,元素与集合之间的符号表示只有∈和∉,故A 错;{}0和∅都是M 的子集,故BC 错,D 正确;故选:D. 点睛:本题主要考查元素与集合之间的关系,以及集合与集合之间的关系,属于基础题型.19.解析:利用正方形是特殊的矩形,矩形是特殊的平行四边形,梯形不是平行四边形,平行四边形也不是梯形等性质,判断集合间的包含关系. 详解:因为正方形一定是矩形,所以选项A 正确;矩形一定是平行四边形,所以选项B 正确; 正方形一定是平行四边形,所以选项D 正确;梯形不是平行四边形,平行四边形也不是梯形,所以选项C 不正确. 故选C . 点睛:本题考查平行四边形的分类,以及梯形的定义.其中两组对边分别平行的四边形是平行四边形,一组对边垂直的平行四边形是矩形,邻边相等的矩形是正方形;一组对边平行,另一组对边不平行的四边形是梯形. 20.。

高职高考数学集合之间的关系

高职高考数学集合之间的关系
a的取值范围是(
)
A.{1}
B.{-1}
C.{0,1}
D.{-1,0,1}
【答案】D
二、填空题
11.选择适当的符号(∈,∉,⊆,⊇,⊈,⫋,=)填空.
(1)0 ∈ {0};
(2)∅ ⫋ {0};
(3)∅ ⫋ {0,1,5};
(4){a,b} ⊆ {d,a,b};
(5)0 ∉ {x|x2-1=0,x∈R};
系是“从属关系”:“属于”或“不属于”,集合与集合的关
系是“包含关系”:“包含”或“不包含”;正确区分子集与
真子集.
【例2】 (1)集合A={-2,2},B={-2,0,2},则 (
A.A⊈B
B.A⫋B
C.A=B
)
D.A∈B
【点评】 由真子集、集合相等的概念,集合与集合的关系
很快排除A、C、D.
(2)已知集合M={x|x2=4}与集合N={-2,2},则下列关系正确的是
)
D.没有关系
4.下列关系表达正确的是 (
)
A.2⫋{x|x<4}
B.{x|x>4且x<0}=∅
C.{(1,2)}∈{(x,y)|x+y=3,x∈N+,y∈N+}
D.(1,2)∉{(x,y)|x+y=3,x∈N+,y∈N+}
【答案】B
5.下列关系正确的是 (
A.0⊆{0}
C.(1,2)⊆{(1,2)}
【答案】B
)
B.(1,2)∈{(1,2)}
D.1∈{(1,2)}
6.集合A={0,1,2}非空真子集的个数是
A.8 B.7 C.6 D.5
【答案】C
(
)

高中数学必修一1-1 集合1-1-2课后习题 含答案 精品

高中数学必修一1-1 集合1-1-2课后习题 含答案 精品

1.1.2集合间的基本关系一、A组1.(2016·浙江温州十校联合体高一期中)如果A={x|x>-1},那么正确的结论是()A.0⊆AB.{0}∈AC.{0}⊆AD.⌀∈A解析:∵0∈A,∴{0}⊆A.答案:C2.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D解析:正方形是邻边相等的矩形.答案:B3.定义集合运算A◇B={c|c=a+b,a∈A,b∈B},若A={0,1,2},B={3,4,5},则集合A◇B的子集个数为()A.32B.31C.30D.14解析:∵A={0,1,2},B={3,4,5},又A◇B={c|c=a+b,a∈A,b∈B},∴A◇B={3,4,5,6,7}.∵集合A◇B中共有5个元素,∴集合A◇B的所有子集的个数为25=32.故选A.答案:A4.已知集合A={2,-1},B={m2-m,-1},且A=B,则实数m=()A.2B.-1C.2或-1D.4解析:∵A=B,∴m2-m=2,即m2-m-2=0,∴m=2或m=-1.答案:C5.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,则实数a的取值集合是()A.{a|a≥4}B.{a|a>4}C.{a|a≤4}D.{a|a<4}解析:将集合A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的取值集合为{a|a≥4}.答案:A6.能正确表示集合M={x|0≤x≤2}和集合N={x|x2-2x=0}的关系的Venn图是()解析:解x2-2x=0,得x=2或x=0,则N={0,2}.又M={x|0≤x≤2},则N⫋M,故M和N对应的Venn 图如选项B所示.答案:B7.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=.解析:集合A,B中均含有元素3,由B⊆A,得B中另一元素m2一定与A中元素-1,2m-1中的一个相等.又-1<0,m2≥0,则m2=2m-1,解得m=1.答案:18.若A=,B={(x,y)|y=ax2+1},且A⊆B,则a=.解析:A=={(2,-1)},∵A⊆B,∴-1=a×22+1,∴a=-.答案:-9.已知集合A={1,a,b},B={a,a2,ab},且A=B,求实数a,b的值.解:∵A=B,且1∈A,∴1∈B.若a=1,则a2=1,这与集合中元素的互异性矛盾,∴a≠1.若a2=1,则a=-1或a=1(舍去).∴A={1,-1,b},∴b=ab=-b,即b=0.若ab=1,则a2=b,得a3=1,即a=1(舍去).故a=-1,b=0.10A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A⫋B,求a的取值范围;(2)若B⊆A,求a的取值范围.解:(1)若A⫋B,由图可知,a>2.(2)若B⊆A,由图可知,1≤a≤2.二、B组1.若x,y∈R,A={(x,y)|y=x},B=,则集合A,B间的关系为()A.A⫋BB.A⫌BC.A=BD.A⊆B解析:∵B=={(x,y)|y=x,且x≠0},∴B⫋A.答案:B2.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值集合是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.⌀解析:∵A⊇B,∴解得3≤a≤4.经检验知当a=3或a=4时符合题意.故3≤a≤4.答案:B3.若B={1,2},A={x|x⊆B},则A与B的关系是()A.A∈BB.B∈AC.A⊆BD.B⊆A解析:∵B的子集为{1},{2},{1,2},⌀,∴A={x|x⊆B}={{1},{2},{1,2},⌀},∴B∈A.答案:B4.已知集合M={x|x2+2x-8=0},N={x|(x-2)(x-a)=0},若N⊆M,则实数a的值是.解析:M={x|x2+2x-8=0}={2,-4}.当a≠2时,N={x|(x-2)(x-a) =0}={2,a}.∵N⊆M,∴a=-4.当a=2时,N={x|(x-2)(x-a)=0}={2},此时N⊆M,符合题意.答案:-4或25.如果集合M={(x,y)|x+y<0,xy>0},P={(x,y)|x<0,y<0},那么M与P的关系为.解析:因为xy>0,所以x,y同号.又因为x+y<0,所以x<0,y<0,即集合M表示第三象限内的点.而集合P也表示第三象限内的点,故M=P.答案:M=P6.知集合A=,B=,C=,则集合A,B,C之间的关系是.解析:∵A=,B==,C=,又{x|x=6m+1,m∈Z}⫋{x|x=3n+1,n∈Z},∴A⫋B=C.答案:A⫋B=C7.(2016·贵州凯里一中高一期中)集合A={x|ax2-2x+2=0},集合B={y|y2-3y+2=0},如果A⊆B,求实数a的取值集合.解:化简集合B得B={1,2}.由A⊆B,知若a=0,则A={x|-2x+2=0}={1}⊆B.若a≠0,当Δ=4-8a<0,即a>时,A=⌀⊆B;当Δ=4-8a=0,即a=时,A={2}⊆B;当Δ=4-8a>0,即a<,且a≠0时,必有A={1,2},所以1,2均为关于x的方程ax2-2x+2=0的实根,即a-2+2=0,4a-4+2=0,这是不可能的.所以实数a的取值集合为.8A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},且B⊆A.(1)求实数m的取值集合;(2)当x∈N时,求集合A的子集的个数.解:(1)①当m-1>2m+1,即m<-2时,B=⌀符合题意.②当m-1≤2m+1,即m≥-2时,B≠⌀.由B⊆A,借助数轴(如图所示),得解得0≤m≤.所以0≤m≤.经验证知m=0和m=符合题意.综合①②可知,实数m的取值集合为.(2)∵当x∈N时,A={0,1,2,3,4,5,6},∴集合A的子集的个数为27=128.。

高中数学必修一1.2 集合间的基本关系-单选专项练习(4)(人教A版,含答案及解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(4)(人教A版,含答案及解析)

1.2 集合间的基本关系1.已知集合,,则的子集个数为 A .B .C .D .2.如果集合|,3n A x x n Z ⎧⎫==∈⎨⎬⎩⎭,1|,3B x x n n Z ⎧⎫==±∈⎨⎬⎩⎭,2|,3C x x n n Z ⎧⎫==±∈⎨⎬⎩⎭,那么下列结论中正确的是( )A .BC ≠B .ABC .C B A =⊆D .A C ⊆ 3.已知集合{}1,2,3A ⊆,且A 中至少有一个奇数,则这样的集合个数为( ). A .4个 B .5个 C .6个 D .7个 4.已知A B ⊆,A C ⊆,{2,0,1,8}B =,{1,9,3,8}C =,则集合A 可以为A .{1,8}B .{2,3}C .{0}D .{9}5.已知集合{}220A x Z x x =∈-++>,则集合A 的真子集个数为( )A .3B .4C .7D .86.下列集合的说法中正确的是( )A .绝对值很小的数的全体形成一个集合B .方程2(1)0x x -=的解集是{1,0,1}C .集合{}1,,,a b c 和集合{},,,1c b a 相等D .空集是任何集合的真子集7.若{}|1P x x =<,{}|0Q x x =>,全集为R ,则 A .P Q ⊆ B .Q P ⊆ C .R Q C P ⊆ D .R C P Q ⊆8.设集合A =1,2,4},B =x|x 2﹣4x+m =0}.若A∩B=1},则集合B 的子集个数为( ) A .1B .2C .3D .49.集合M=16x x m m ⎧⎫=+∈⎨⎬⎩⎭Z ,,N=}1-23n x x n -⎧=∈⎨⎩Z ,,P=126p x x p ⎧⎫=+∈⎨⎬⎩⎭Z ,,则M ,N ,P 之间的关系是( ) A .M=N ⫋P B .M ⫋N=P C .M ⫋N ⫋P D .N ⫋P=M 10.满足的集合的个数为A .6B .7C .8D .911.已知集合{}0,1,2,4,6A =,{}*233nB n =∈<N ,则集合A B 的子集个数为( )A .8B .7C .6D .412.已知集合N =1,3,5},则集合N 的真子集个数为( )A .5B .6C .7D .813.已知集合{}3A x N x =∈<,则( ) A .0A ∉B .1A -∈C .{}0A ⊆D .{}1A -⊆14.已知集合{}{}1,,1,1A xax a R B ==∈=-∣,若A B ⊆,则所有a 的取值构成的集合为( ) A .{}1- B .{}1,1- C .{}0,1 D .{}1,0,1-15.已知S 1,S 2,S 3为非空集合,且S 1,S 2,S 3⊆Z ,对于1,2,3的任意一个排列i ,j ,k ,若x∈S i ,y∈S j ,则x -y∈S k ,则下列说法正确的是( ) A .三个集合互不相等 B .三个集合中至少有两个相等 C .三个集合全都相等D .以上说法均不对16.已知集合S =0,1,2,3,4,5},A 是S 的一个子集,当x∈A 时,若有1x A -∉,且x +1∉A ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的非空子集的个数为( ) A .16 B .17C .18D .2017.下列表示方法正确的是( )A .3∈[0,3)B .0 ⊆[0,3)C .1∈[0,3)D .{2}∈[0,3)18.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,19.已知集合{}220A x x x =+-=,若{}B x x a =≤,且A B ,则a 的取值范围是( )A .1a >B .1a ≥C .2a ≥-D .2a ≤- 20.下列有关集合的写法正确的是( )A .{0}{0,1,2}∈B .{0}∅=C .0∈∅D .{}∅∈∅参考答案1.A详解:试题分析:,所以集合的子集个数为,故选A.考点:集合2.C3.C4.A5.A6.C7.D8.D9.B10.A详解:试题分析:由题意得,满足的集合有:{}{}{}{}{}{}a b c a b d a b e a b c d a b c e a b d e,共有6个,故选A. ,,,,,,,,,,,,,,,,,,,,考点:集合真子集的运算.11.A12.C详解:集合N=1,3,5},则集合N的子集个数328=.除去集合N本身,还有8-1=7个.故选C.13.C14.D15.B16.D17.C19.B 20.D【参考解析】1.2.解析:用列举法分别列出集合,,A B C 即可判断. 详解: 因为集合54211245|,,,,1,,,0,,,1,,,333333333n A x x n Z ⎧⎫⎧⎫==∈=-----⎨⎬⎨⎬⎩⎭⎩⎭, 154211245|,,,,,,,,,,333333333B x x n n Z ⎧⎫⎧⎫==±∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 254211245|,,,,,,,,,,333333333C x x n n Z ⎧⎫⎧⎫==±∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 所以C B A =⊆. 故选:C. 点睛:本题主要考查了集合之间的关系.属于较易题.3.解析:由题得{1},{3},{1,2},{1,3},{2,3},{1,2,3}A =,即得解. 详解:由题得{1},{3},{1,2},{1,3},{2,3},{1,2,3}A =. 所以满足条件的集合有6个. 故选:C 点睛:本题主要考查集合的关系,意在考查学生对这些知识的理解掌握水平.4.解析:由A B ⊆,A C ⊆,则A B C ⊆,又{}1,8B C ⋂=,从而可得答案. 详解:由A B ⊆,A C ⊆,则A B C ⊆. 又{}1,8B C ⋂=,所以{}1,8A ⊆所以选项B 、C 、D 不满足,选项A 满足.点睛:本题考查集合的子集的运用和交集的运算,属于基础题.5.解析:求出集合A ,确定集合A 的元素个数,利用真子集个数公式可得出集合A 的真子集个数. 详解:{}{}{}220120,1A x Z x x x Z x =∈-++>=∈-<<=,所以,集合A 的真子集个数为2213-=. 故选:A. 点睛:本题考查集合真子集个数的计算,同时也考查了一元二次不等式的求解,解答的关键就是确定集合元素的个数,考查计算能力,属于基础题.6.解析:逐项分析选项A,B 不符合集合的三要素,选项C 满足集合三要素,选项D 不符合真子集的定义,即可得出结论. 详解:选项A:不满足集合的确定性,错误; 选项B:不满足集合的互异性,错误;选项C:集合无序性,只需集合元素相同,则集合相等,正确; 选项D: 空集不是本身的真子集,错误. 故选: C 点睛:本题考查对集合概念的理解,以及空集的性质,属于基础题.7.解析:根据集合的基本关系和补集运算,即可求出结果. 详解:因为{}|1P x x =<,所以{}=|1R C P x x ≥,又{}|0Q x x =>, 所以R C P Q ⊆, 故选:D. 点睛:本题主要考查集合之间的基本关系,熟练掌握集合间的基本关系是解题的关键.8.解析:由题意知1是方程x 2﹣4x+m =0的实数根,求出m 的值和集合B ,即知集合B 的子集个数. 详解:集合A =1,2,4},B =x|x 2﹣4x+m =0},若A∩B=1},则1是方程x 2﹣4x+m =0的实数根, ∴m=4﹣1=3,∴集合B =x|x 2﹣4x+3=0}=x|x =1或x =3}=1,3}, ∴集合B 的子集有22=4(个). 故选D . 点睛:本题考查了集合的定义与运算问题,是基础题.9.解析:通分化简,再利用集合之间的包含关系即可求解. 详解: M=616m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,, N=3-23(-1)166n n x x n Z ⎧+⎫==∈⎨⎬⎭⎩,, P=316p x x p Z ⎧⎫+=∈⎨⎬⎩⎭,. 由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数, 所以M ⫋N=P . 故选:B 点睛:本题考查了集合的包含关系,考查了基本知识掌握情况,属于基础题. 10.11.解析:首先确定集合B ,求出A B 后可得其子集个数. 详解:由题意{1,2,3,4,5}B =,{1,2,4}A B ⋂=,其子集个数为328=. 故选:A . 点睛:本题考查集合的运算,考查子集的个数,确定集合中的元素是解题关键. 12.13.解析:根据集合的概念判断. 详解:集合A 是由小于3的自然数组成,0A ∈,1A -∉,只有C 正确,故选:C.14.解析:根据子集的概念求得参数a的值可得.详解:a=时,A=∅满足题意,a≠时,1ax=得1xa=,所以11a=或11a=-,1a=或1a=-,所求集合为{1,0,1}-.故选:D.15.解析:根据条件,若x∈Si ,y∈Sj,则y﹣x∈Sk,从而(y-x)-y=-x∈Si,这便说明Si中有非负元素,从而三个集合中都有非负元素.可以看出若0∈Si ,任意x∈Sj,都有x-0=x∈Sk ,从而说明Sj⊆S k,而同理可得到S k⊆S j,从而便可得出S j=S k,这便得出3个集合中至少有两个相等.详解:解:若x∈Si ,y∈Sj,则y-x∈Sk,从而(y-x)-y=-x∈Si,所以Si中有非负元素,由i,j,k的任意性可知三个集合中都有非负元素,若三个集合都没有0,则取S1∪S2∪S3中最小的正整数a(由于三个集合中都有非负整数,所以这样的a存在),不妨设a∈S1,取S2∪S3中的最小正整数b,并不妨设b∈S2,这时b>a(否则b不可能大于a,只能等于a,所以b-a=0∈S3,矛盾),但是,这样就导致了0<b-a<b,且b-a∈S3,这时与b为S2∪S3中的最小正整数矛盾,∴三个集合中必有一个集合含有0.∵三个集合中有一个集合含有0,不妨设0∈S1,则对任意x∈S2,有x-0=x∈S3,∴S2包含于S3,对于任意y∈S3,有y-0=y∈S2,∴S3包含于S2,则S2=S3,综上所述,这三个集合中必有两个集合相等,故选:B.16.解析:由集合S=0,1,2,3,4,5},结合x∈A时,若有1x A-∉,且x+1∉A,则称x 为A的一个“孤立元素”,我们用列举法列出满足条件的所有集合,即可得出答案.详解:∵当x∈A时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,∴单元素集合都含“孤立元素”.S中无“孤立元素”的2个元素的子集为0,1},1,2},2,3},3,4},4,5},共5个,S中无“孤立元素”的3个元素的子集为0,1,2},1,2,3},2,3,4},3,4,5},共4个,S中无“孤立元素”的4个元素的子集为0,1,2,3},0,1,3,4},0,1,4,5},1,2,3,4},1,2,4,5},2,3,4,5},共6个,S中无“孤立元素”的5个元素的子集为0,1,2,3,4},1,2,3,4,5},0,1,2,4,5},0,1,3,4,5},共4个,S中无“孤立元素”的6个元素的子集为0,1,2,3,4,5},共1个,故S 中无“孤立元素”的非空子集有20个,故选D. 点睛:本题考查的知识点是元素与集合关系的判断,我们根据定义列出满足条件的所有不含”孤立元素”的集合,进而求出不含”孤立元素”的集合个数.17.解析:由元素与集合的关系、集合与集合的关系的表示符号判断即可. 详解:3[0,3)∉,故A 错误;0[0,3)∈,故B 错误;1[0,3)∈,故C 正确;{2}[0,3)⊆,故D 错误. 故选:C. 点睛:本题考查元素与集合、集合与集合关系的符号表示,属于基础题.18.解析:解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 详解:由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a=,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 点睛:本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.19.解析:先求得集合A ,结合A B 求得a 的取值范围. 详解:()()22210x x x x +-=+-=,解得2x =-或1x =,所以{}2,1A =-,由于{}B x x a =≤,A B ,所以1a ≥. 故选:B 点睛:本小题主要考查根据真子集求参数的取值范围,属于基础题.20.解析:试题分析:元素和集合是属于或不属于的关系,空集是没有元素的集合,所以D 选项正确.考点:元素和集合的关系.。

高中数学第一章集合1.2集合之间的关系与运算1.2.2.1交集与并集bb高一数学

高中数学第一章集合1.2集合之间的关系与运算1.2.2.1交集与并集bb高一数学
条件是
.
解析:由题意得A={x|x>a},B={x|x>2},
因为A∪B=B,所以A⊆B.
在数轴上分别表示出集合A,B,如图所示,
则实数a必须在2的右边或与2重合,所以a≥2.
答案:a≥2
12/13/2021
5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=
解析:由于A∩B={2,3},则3∈B,又B={2,m,4},则m=3.
事实上有:A∩(B∪C)=(A∩B)∪(A∩C);
A∪(B∩C)=(A∪B)∩(A∪C).
12/13/2021



3.填写下表:
交集的运算性质
A∩B=B∩A
A∩A=A
A∩⌀=⌀∩A=⌀
如果 A⊆B,则 A∩B=A
并集的运算性质
A∪B=B∪A
A∪A=A
A∪⌀=⌀∪A=A
如果 A⊆B,则 A∪B=B
3.做一做:已知集合M={x|-2≤x<2},N={0,1,2},则M∩N等于(
A.{0}
B.{1}
C.{0,1,2}
D.{0,1}
解析:按照交集的定义求解即可.
M∩N={x|-2≤x<2}∩{0,1,2}={0,1}.
故选D.
答案:D
12/13/2021
)



二、并集
【问题思考】
1.集合A∪B中的元素个数如何确定?
提示:(1)当两个集合无公共元素时,A∪B的元素个数为这两个集
合元素个数之和;
(2)当两个集合有公共元素时,根据集合元素的互异性,同时属于A
和B的公共元素,在并集中只列举一次,所以A∪B的元素个数为两个

人教A版必修1同步精练:1.1.2集合间的基本关系(含答案)

人教A版必修1同步精练:1.1.2集合间的基本关系(含答案)

1.1.2集合间的基本关系1. 集合123{,,,,}n A a a a a =L ,则A 的子集有 个,真子集有 个。

2.(1)满足条件{2,3}{1,2,3,4,5}M ⊆⊆的集合M 有 个。

(2){2,3,7}A ⊂≠,且A 中至多有一个奇数,则这样的集合A 有 A .3个 B .4个 C .5个 D .6个3.(1)设集合2{|,}P y y x x R ==∈,2{(,)|,}Q x y y x x R ==∈,则P 与Q 的关系是A .P Q ⊆B .P Q ⊇C .P Q =D .以上都不对(2)已知集合},61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, },612|{Z p p x x P ∈+==试确定P N M ,,之间的关系.4.已知集合{(,)|2,,}A x y x y x y N =+=∈,写出A 的所有子集。

5.已知集合{|13}A x x =≤≤,{|(1)()0}B x x x a =--=。

(1)若A B ⊆,求实数a 的取值范围;(2)是否存在实数a ,使得A B =成立?6.已知集合{2,4,6,8,9}A =,{1,2,3,5,8}B =,又非空集合C 是这样的一个集合:若各元素都加上2后就变成了A 的一个子集;若各元素都减去2就变成了B 的一个子集,求集合C 。

7.(1)已知集合{1,3,21}A m =--,集合2{3,}B m =,若A B ⊆,则实数m 的取之集合为 。

(2)已知集合}1|{},1|{2====ax x B x x A .若A B ⊆,求实数a 的值;(3)集合{}02},1,1{2=+-=-=b ax x x B A ,若B ≠∅,且B A ⊆,求a 和b 的值.(4)已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求实数m 的范围。

8.设{}042=+=x x x A ,函数{}01)1(222=-+++=a x a x x B . (1)若B A ⊆,求实数a 的取值范围;(2)若A B ⊆,求实数a 的值.。

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含答案及解析)

高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含答案及解析)

1.2 集合间的基本关系1.若集合M 满足{}1M ≠∅,{}*3|1M x x ⊆∈N ,则符合条件的集合M 的个数为( ) A .2B .3C .4D .52.设集合6|2B x Z N ⎧⎫=∈∈⎨⎬+⎩⎭x ,则集合B 的子集个数为( ). A .3B .4C .8D .16 3.满足条件{1,2,3}M{1,2,3,4,5,6}的集合M 的个数是( )A .8B .7C .6D .5 4.集合{|3,}n M x x n ==∈N ,集合{|3,}x x n N n =∈=N ,则集合M 与集合N 的关系为( ) A .M N ⊆ B .N M ⊆ C .MND .MN 且NM5.已知集合{}|11A x x =-≤≤,{}|0B x x a =-≤,若A B ⊆,则实数a 的取值范围是( )A .(],1-∞B .[)1,-+∞C .(],1-∞-D .[)1,+∞6.设集合{}1012U =-,,,,2{|1}A y y x x U ==+∈,则集合A 的真子集个数为A .2B .3C .7D .8 7.集合A=﹣1,5,1},A 的子集中,含有元素5的子集共有A .2个B .4个C .6个D .8个8.已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是 A .A C φ⋂= B .A C C = C .B C B =D .AB C =9.集合{}2,1,2,3A =-的真子集个数为( ) A .16B .15C .14D .1310.已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( ) A .[]1,2B .[]2,1--C .[]22-,D .[]1,1-11.已知集合{}{}2|4,|1.A x x B x ax ====若B A ⊆,则实数a 的值是( )A .12B .2C .11,22-D .110,,22-12.已知函数1()lg1xf x x+=-的定义域为A , 函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于A B 、的关系中,不正确的为A .AB ⊇ B .A B B ⋃=C .A B B =D .B A13.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .7个B .5个C .3个D .8个14.下列集合中表示同一集合的是 A .(){}2,3M =,(){}3,2N =B .2,3M,{}3,2N =C .(){},1M x y y x ==+,{}1N y y x ==+D .{}1M y y x ==+,{}21N y y x ==+15.已知集合{}1,2,{|20}A B x ax ==-=,若B A ⊆,则a 的值不可能是( ) A .0B .1C .2D .316.给出下列关系式:①23Q ⊆;②{}210x x x ∅∈++=;③(){}(){}21,4,23x y y x x -⊆=--;④{}[)22,x x <=+∞,其中正确关系式的个数是( ) A .0 B .1C .2D .317.下列符号表述正确的是( )A .*0N ∈B .1.732Q ∉C .{}0∅∈D .{}2x x ∅⊆≤18.已知集合{2,4}A ,则集合A 的子集个数是( ) A .2B .3C .4D .819.设集合{}2|1P x x ==,则集合P 的非空真子集的个数是( )A .2B .3C .7D .820.已知集合A =a ,b ,c },下列可以作为集合A 的子集的是A .aB .a ,c}C .a ,e}D .a ,b ,c ,d }参考答案1.C2.D3.C4.D5.D6.C7.B详解:试题分析:由集合A中的元素有﹣1,5,1共3个,含有元素5的子集,可能含有﹣1,1,代入公式得结论.解:由集合A中的元素有﹣1,5,1共3个,含有元素5的子集,可能含有﹣1,1,代入公式得:22=4,故选B.考点:子集与真子集.8.C9.B10.B11.D12.D13.A14.B15.D16.B17.D18.C19.A20.B详解:由集合的子集的定义可知:集合A=a,b,c}的子集为:∅,a},b},c},a,b},a,c},b,c},a,b,c},对应选项,则可以作为集合A的子集的是a,c}.故选B.点睛:集合A={}12n a a a ,,,的子集个数为2n ,非空真子集个数为22n -.【参考解析】1.解析:依题可知M 致少有元素1,结合子集定义即可求解. 详解:由题意可知,{}1M =或{1,2}或{1,3}或{1,2,3}. 故选:C2.解析:首先用列举法,分别取出满足题目时x 值,从而得出集合B 的元素,从而得出集B 的子集. 详解: 当666603,12,41,1620212421x x x x =⇒==⇒==⇒==-⇒=+++- 所以集合{}3,2,1,6B =,所以集合B 的子集个数为4216=. 故选D 点睛:本题主要考查就集合中子集的求法:若集合B 中有n 个元素,则集合B 的子集有2n 个,属于基础题.3.解析:根据题意,分析可得集合M 中必须有1,2,3这三个元素,且至少含有4、5、6中的一个但不能同时包含3个元素,即M 的个数应为集合{4,5,6}的非空真子集的个数,由集合的子集与元素数目的关系,分析可得答案. 详解:解:根据题意,满足题意条件的集合M 中必须有1,2,3这三个元素, 且至少含有4、5、6中的一个但不能同时包含3个元素, 则M 的个数应为集合{4,5,6}的非空真子集的个数, 集合{4,5,6}有3个元素,有3226-=个非空真子集; 故选:C . 点睛:本题考查集合间的基本关系,以及非空真子集的个数的运算.4.解析:分析集合M 和N 中元素的性质,进行比较即可得出答案. 详解:由{|3,}n M x x n ==∈N ,可得集合M 中的元素为:1,3,9,27,,3,n ;由{|3,}x x n N n =∈=N ,可得集合N 中的元素为:0,3,6,9,12,,3,n ,比较得1M ∈,但1N ∉,0N ∈,但0M ∉,3M ∈,3N ∈.∴MN 且NM .故选:D. 点睛:本题考查了两个集合关系的判断,准确分析集合中元素的特点并进行比较是解题的关键,属于一般难度的题.5.解析:根据集合的包含关系,即可求得参数a 的取值范围. 详解:集合{}|11A x x =-≤≤,{}|0B x x a =-≤,即{}|B x x a =≤ 因为A B ⊆, 则1a ≥ 即[)1,a ∈+∞ 故选:D 点睛:本题考查了集合的包含关系,求参数的取值范围,属于基础题.6.解析:先求出集合A ,进而求出其真子集的个数. 详解:因为集合{}1012U =-,,,,∴集合{|}A y y x U =∈=1, ∴真子集个数为23﹣1=7个, 故选C . 点睛:本题考查了真子集的概念及性质,考查集合的表示方法:列举法,是一道基础题. 7.8.解析:先求集合C ,再根据集合与集合的关系判断即可. 详解:由题设,{0,2,4}C =,则B C ⊆,故B C B = 选C . 点睛:本题考查的知识点是集合的包含关系判断及应用,属于基础题.9.解析:根据集合真子集的计算公式,直接得出结果. 详解:集合{}2,1,2,3A =-的真子集个数为42115-=. 故选:B. 点睛:本题主要考查求集合的真子集个数,属于基础题型.10.解析:根据题意,求得集合B ,结合A B ⊆,列出不等式组,即可求解. 详解:由题意,集合[]1,2A =,可得{}[]2,2,4B y y x a x A a a ==+∈=++, 因为A B ⊆,所以2142a a +≤⎧⎨+≥⎩,解得[]2,1a ∈--.故选:B.11.解析:计算{}2,2A =-,考虑{}2B =,{}2B =-,B =∅三种情况,计算得到答案. 详解:{}{}2|42,2A x x ===-,B A ⊆,当{}2B =时,21a =,12a =;当{}2B =-时,21a -=,12a =-;当B =∅时,0a =. 即0a =或12a =或12a =-. 故选:D. 点睛:本题考查了根据集合的包含关系求参数,意在考查学生的计算能力,忽略掉空集是容易发生的错误.12.解析:分别求出两函数的定义域,再判断集合关系. 详解: 因为1()lg1xf x x +=-,所以101x x +>-即()()110x x +-> ,解得11x -<< 故{}11A x x =-<<因为()lg(1)lg(1)g x x x =+--,所以1010x x +>⎧⎨->⎩,解得11x -<<故{}11B x x =-<< 所以A B = 故选D. 点睛:本题考查函数的定义域与集合之间的关系,属于简单题.13.解析:根据集合的补集判断集合的个数,进而求得集合的真子集个数. 详解:由题可知,集合A 有三个元素.所以A 的真子集个数为:32-1=7个.选A 点睛:集合中子集的个数为2n ,真子集的个数为2n -1,非空真子集的个数为2n -214.解析:因为有序数对()2,3与()3,2不相同,所以A 错误;由于集合中的元素具有无序性,所以集合M 与集合N 是同一集合,故B 正确;因为集合M 表示的是当1,y x x R =+∈时,所得的有序实数对(),x y 所构成的集合,而集合N 是当1,y x x R =+∈时所得的y 值所构成的集合,所以C 错误;因为M R =,[)1,N =+∞,所以D 错误, 详解:对于A 选项:有序数对()2,3与()3,2不相同,所以集合M 与集合N 不是同一集合,故A 错误; 对于C 选项:由于{}(,)1,M x y y x x R ==+∈,所以集合M 表示的是当1,y x x R =+∈时,所得的有序实数对(),x y 所构成的集合,而由{}1,N y y x x R ==+∈得集合N 是当1,y x x R =+∈时所得的y 值所构成的集合, 所以集合M 与集合N 不是同一集合,故C 错误;对于D 选项,{}1M y y x R ==+=,{}{}[)21,11,N y y x x R y y ==+∈=≥=+∞,所以集合M 与集合N 不是同一集合,故D 错误;对于B 选项:由于集合中的元素具有无序性,所以集合M 与集合N 是同一集合,故B 正确; 故选B. 点睛:本题考查集合所表示的元素的意义,在判断时需分清集合中表示的是点集还是数集,理解元素的具体含义是什么,属于基础题.15.解析:由B A ⊆,分0a =和0a ≠两种情况讨论,结合集合间的关系,即可求解. 详解:由题意,集合{}1,2,{|20}A B x ax ==-=, 因为B A ⊆,当0a =时,集合B 为空集,此时满足B A ⊆;当0a ≠时,集合2{|20}{}B x ax a =-==,可得21a或22a=,解得1a =或2a =, 综上可得,实数a 的值为{}0,1,2,所以则a 的值不可能是3. 故选:D. 点睛:本题主要考查了根据集合的包含关系求解参数问题,其中解答中熟记集合间的包含关系,合理分类讨论求解是解答的关键,着重考查推理与运算能力,属于基础题.16.解析:对于①,23Q ∈;对于②,{}210x x x ∅⊆++=;对于③,点(1,4)-在抛物线223y x x =--上,对于④,{}[)22,x x <⊆+∞.详解:对于①,元素与集合不是包含关系,故①不正确;对于②,{}210x x x ∅∉++==∅,故②不正确;对于③,点(1,4)-在抛物线223y x x =--上,故(){}(){}21,4,23x y y xx -⊆=--正确;对于④,{}[)22,x x <⊆+∞,故④不正确. 故选:B. 点睛:本题考查了元素与集合的关系,考查了集合与集合的关系,考查了空集,属于基础题.17.解析:根据元素与集合、集合与集合的关系可判断各选项的正误. 详解:对于A 选项,0N *∉,A 选项错误;对于B 选项,1.732Q ∈,B 选项错误; 对于C 选项,{}0∅⊆,C 选项错误;对于D 选项,{}2x x ∅⊆≤,D 选项正确. 故选:D. 点睛:本题考查元素与集合、集合与集合关系的判断,属于基础题.18.解析:根据子集的定义依次列出集合的子集即可得出答案. 详解:集合{}2,4A =的子集分别是:φ,{}2,{}4,{}2,4,共有4个子集. 故选:C. 点睛:本题考查集合子集的概念,属于基础题.19.解析:解出集合P ,再写出集合P 的非空真子集即可. 详解:集合{}2|1P x x ==,即{}1,1P =-,集合P 的非空真子集有{}{}1,1-, 共2个. 故选:A . 点睛:本题考查的是集合子集,真子集,是基础题. 20.。

1.2 集合间的基本关系(基础知识+基本题型)(含解析)

1.2 集合间的基本关系(基础知识+基本题型)(含解析)

1.2 集合间的基本关系(基础知识+基本题型) 知识点一 子集1.子集定义 一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”) 图示或 结论 (1)任何一个集合是它本身的子集,即A A ⊆;(2)对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆.2.V enn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图.表示集合的Venn 图的边界是封闭曲线,它可以是圆、矩形、椭圆,也可以是其他封闭曲线.提示:(1)注意符号“∈”与“⊆”的区别. “⊆”只用于集合与集合之间,如{0}N ⊆,而不能写成0N ⊆;“∈”只能用于元素与元素之间,如0N ∈,而不能写成{0}N ∈.(2)“A 是B 的子集”:集合A 中的任何一个元素都是集合B 中的元素,即由任意x A ∈能推出x B ∈.(3)当A 不是B 的子集时,我们记作“A B ”(或“B A ”),读作“A 不含于B ”(或“B 不包含A ”),此时A 中至少存在一个元素不是B 中的元素,用图形语言表示如图1.1-2所示.例如,集合{,,}A a b c =不是集合{,,,,}B b c d e f =的子集,因为集合A 中的元素a 不是集合B 中的元素.知识点二 集合相等如果集合A 是集合B 的子集()A B ⊆,且集合B 是集合A 的子集()B A ⊆,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.拓展:(1)若A B ⊆,且B A ⊆,则A B =;反之,若A B =,则A B ⊆,且B A ⊆,这就给出了证明两个集合相等的方法,即欲证A B =,只需要证A B ⊆与B A ⊆均成立即可.(2)若两个集合相等,则这两个集合中所含的元素完全相同,与元素的排列顺序无关.(3) 要判断两个集合是否相等,对于元素较少的有限集,可用列举法将元素列举出来,看两个集合中的元素是否完全相同;对于元素较多的有限集或无限集,应从“互为子集”入手进行判断.()A B B A A A AB B B 1.12-图知识点三 真子集定义 如果集合A B ⊆,但存在元素x B ∈,且x A ∈/,我们称集合A 是集合B 的真子集,记作A B (或B A )图示结论(1)若A B ⊆,且A B ≠,则AB ; (2)若AB ,且BC ,则A C . 提示(1)在证明AB ,时,应先证明A B ⊆,再证明B 中至少存在一个元素a ,使得a A ∉即可. (2) A B 对任意x A ∈都有x B ∈,但存在0x B ∈,且0x A ∉.(3)注意符号“⊆”与“”的区别. A B ⊆⇒A B =或A B ,例如,若集合{}1,2A =,{}1,2,3B =,则A 是B 的子集,也是真子集,用A B ⊆与A B 均可,但用AB 更准确. 知识点四 空集我们把不含任何元素的集合叫做空集,记为φ,并规定:空集是任何集合的子集.在这个规定的基础上,结合子集和真子集的有关概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课堂例题】
例1.设,,A B C 是三个集合,若A B ⊆且B C ⊆,试证A C ⊆.
例2.试判定下列两个集合的包含关系或相等关系并简述理由.
(1)∅ {|23}x x -<<-;
(2){|5}x x > {|6}x x >;
(3){|n n 是12的正约数} {1,2,3,4,6,8,12};
(4){|n n 是4的正整数倍} {|2,}n n k k Z +
=∈.
例3.求出所有符合条件的集合C
(1){1,2,3}C ⊆;
(2){,}C
a b ;
(3){1,2,3}{1,2,3,4,5}C ⊆.
(选用)例4.已知{|21,},{|A x x k k Z B x x ==+∈=是被4除余3的整数},判断,A B 之间的关系并证明之.
.
【知识再现】
1.对于两个集合A 与B ,
(1)如果 ,那么集合A 叫做集合B 的子集,记作________或________,读作 或者_________________;
(2)如果A 是B 的子集并且___________________________________,那么集合A 与集合B 相等,记作 ;
(3)如果A 是B 的子集并且___________________________________,那么集合A 叫做集合B 的真子集,记作____________或______________.
2.空集∅是__________________的子集;空集∅是__________________的真子集.
【基础训练】
1.(1)下列写法正确的是( )
(A ){0}∅ (B )0∅ (C ){0}∅∈ (D )0∈∅
(2)下列四个关于空集的命题中:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ⊂∅≠,则.A ≠∅ 其中正确的个数是( )
(A )0 (B )1 (C )2 (D )3
2.用恰当的符号填空(,,=⊆⊇)
(1){1,3,5} {5,1,3}; (2){|(3)(2)0}x x x -+= 3{|
0}3
x x x -=+; (3){|2}x x > {|2}x x ≥; (4){|,}2n x x n Z =∈ 1{|,}2
x x n n Z =+∈. 3.(1)已知2{,}{2,2}x y x x =,则x = ,y = .
(2)2{1,3,}{1,}x x ⊇,则实数x ∈ . 4.指出下列各集合之间的关系,并用文氏图表示:
{|A x x =是平行四边形},{|B x x =是菱形},
{|C x x =是矩形},{|D x x =是正方形}
5.类比“⊆”、“⊂≠”的定义,请给出符号“⊆”的定义:
如果 ,则称集合A 不是集合B 的子集,用符号“A B ⊆”表示,读作“A 不包含于B ”.
6.已知集合M 满足{0,1,2,3,4}M ⊆且{0,2,4,8}M ⊆,
写出所有符合条件的集合M .
7.已知2{1},{|30}A B x x x a ==-+=,
①若A
B ,求实数a 的值;②是否存在实数a 使得A B =?
【巩固提高】
8.已知2{0,,}{,,1}b
a a
b a a +=,求实数,a b .
9.已知集合2{|60}M x x x =+-=,关于y 的方程20ay +=的
解集为N ,且N M ⊆,求实数a 的值.
(选做)10. 已知集合1
{|,},6P p p n n Z ==+∈
1
1
{|,},{|,}2326m
s Q q q m Z R r r s Z ==-∈==+∈,
判断集合,,P Q R 之间的关系并证明.
【温故知新】
11.用列举法表示“mathematics ”中字母构成的集合;
用描述法表示集合{2,2,6,10,14,18,}-.
【课堂例题答案】
例1.证:任取x A ∈,因为A B ⊆,所以x B ∈,因为x B ∈且B C ⊆,所以x C ∈,因此A C ⊆ 证毕.
例2.,,,=⊇⊆⊆
例3.(1),{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}∅
(2),{},{}a b ∅
(3){1,2,3,4},{1,2,3,5},{1,2,3,4,5}
【知识再现答案】
1.(1)若集合A 中的任意元素都属于集合B ,,A B B A ⊆⊆,A 包含于B ,B 包含于A
(2)B 是A 的子集,A B =
(3)B 中至少有一个集合不属于A ,A
B B A ,
2.任何集合;任何非空集合.
【习题答案】
1.,A B
2.,,,=⊇⊆⊇
3.(1)
1,12

(2){ 4.,D C A D B A
5.集合A 中至少有一个元素不属于集合B
6.,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4}∅
7.2a =,不存在
8.1,0a b =-=
9.2{0,1,}3a ∈-
10.P Q R =
证明: 613231{|,},{|,},{|,}666
n m s P p p n Z Q q q m Z R r r s Z +-+==
∈==∈==∈ 任取x P ∈,613(21)266
n n x ++-==,所以x Q ∈,因此P Q ⊆; 任取x Q ∈,323(1)166
m m x --+==,所以x R ∈,因此Q R ⊆; 任取x R ∈,313(1)266
s s x ++-==,所以x Q ∈,因此R Q ⊆; 因此P Q R ⊆=
在集合Q 中取2m =得23q =,因此23
Q ∈,但是26136n +=无整数解,所以23P ∉ 因此P Q R = 证毕 11.{,,,,,,,},{|22,}m a t h e i c s x x k k N =-+∈ D C B A。

相关文档
最新文档