元素与集合之间的基本关系

合集下载

元素与集合的概念

元素与集合的概念

元素与集合的概念1. 元素的概念在数学中,元素是指集合中的一个个体或成员。

元素可以是任何事物、对象、数字等。

元素是集合的构成部分,一个集合可以包含多个元素。

1.1 定义元素的定义可以通过集合论的角度进行解释。

在集合论中,元素是指集合中的一个个体,该个体可以是任何事物、对象、数字等。

元素是集合的基本构成单位,集合中的每个元素都是独立的,没有重复。

1.2 重要性元素在数学中起着非常重要的作用,它是集合论的基础概念之一。

元素的概念使得我们能够将不同的个体或事物进行分类和组织,从而建立起数学中的各种集合。

元素的概念也是数学中许多重要理论和定理的基础,例如集合的交并运算、集合的包含关系等。

1.3 应用元素的概念在数学中有广泛的应用。

以下是一些常见的应用场景:•集合论:元素是集合论的基本概念,集合论研究的对象就是集合和其中的元素之间的关系和性质。

•数论:元素可以是整数、有理数、实数等,用于研究数的性质和规律。

•几何学:元素可以是点、线、面等几何图形的基本构成单位,用于研究几何图形的性质和关系。

•概率论:元素可以是随机试验的结果,用于研究随机事件的概率和统计规律。

2. 集合的概念集合是由一些确定的元素组成的整体,是数学中最基本的概念之一。

集合可以包含有限个元素,也可以包含无限个元素。

集合可以用不同的方式表示和描述,例如列举法、描述法、集合运算等。

2.1 定义集合的定义可以从直观和集合论两个角度进行解释。

•直观定义:集合是由一些确定的元素组成的整体。

集合中的元素可以是任何事物、对象、数字等。

集合中的元素是独立的,没有重复。

•集合论定义:集合是一个确定的对象,该对象的性质是一个个体是否属于该对象。

例如,集合A表示所有满足某个条件的元素的集合,可以表示为A={x|x满足某个条件}。

2.2 重要性集合在数学中起着非常重要的作用,它是数学的基础概念之一。

集合的概念使得我们能够将不同的元素进行分类和组织,从而建立起数学中的各种结构和理论。

1.1.2集合间的基本关系

1.1.2集合间的基本关系

知识要 点
1.子集的概念 .
一般地,对于两个集合A、 , 如果集合A中 一般地,对于两个集合 、B, 如果集合 中任 意一个元素都是集合 中的元素,我们就说这两个 意一个元素都是集合B中的元素 都是集合 中的元素, 集合有包含关系,称集合 为集合 为集合B的子集. 集合有包含关系,称集合A为集合 的子集.
回顾旧知
1.集合元素的特征有哪些 集合元素的特征有哪、无序性
2.元素与集合之间的关系是什么 如何表示 ∈或 ∉ 元素与集合之间的关系是什么?如何表示 元素与集合之间的关系是什么 如何表示? 3.集合的表示法有哪些 列举法、描述法、文氏图法、 集合的表示法有哪些? 列举法、描述法、文氏图法、 集合的表示法有哪些 大写字母法
解: ∅ ⊆ A, 当B = ∅,有a - 1 > 2a + 1, 即a < -2 ∵ ∴ 2a + 1 ≥ a - 1 当B ≠ ∅时,有 a - 1 ≥ -4 2a + 1 ≤ 5 ∴ -2 ≤ a ≤ 2 综上所述,a的取值范围a ≤ 2.
4.设集合 设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B的真 设集合 , , 是 的真 子集,实数a的取值范围 的取值范围( 子集,实数 的取值范围( a≤1 ).
注 意
由此可见,集合A是集合 的子集,包含了A是 由此可见,集合 是集合B 的子集,包含了 是 是集合 B的真子集和 与B相等两种情况 的真子集和A与 相等两种情况 相等两种情况. 的真子集和 与实数中的关系类比是:≤ 与实数中的关系类比是:
思考4 思考
的实数根能够组成集合! 方程 x 2 + 1 = 0 的实数根能够组成集合! 那你们能找出它的元素吗? 那你们能找出它的元素吗?

集合和元素的关系

集合和元素的关系

集合和元素的关系集合是数学中的一个基本概念,它是由一些特定元素组成的整体。

集合中的元素可以是任何事物,可以是数字、字母、人、动物等等。

集合和元素之间有着密切的关系,本文将从不同的角度来探讨集合和元素之间的关系。

一、集合包含元素集合是由元素构成的,一个集合可以包含多个元素,也可以只有一个元素。

例如,{1, 2, 3}就是一个包含了三个元素的集合,而{1}则是一个只包含了一个元素的集合。

集合中的元素是无序的,即元素之间没有顺序关系。

二、元素属于集合集合中的元素都属于这个集合,也可以说集合包含了这些元素。

例如,集合{1, 2, 3}中的元素1属于这个集合,元素2也属于这个集合。

元素和集合之间是一种包含关系。

三、集合的元素不重复集合中的元素是互不相同的,即集合中不存在重复的元素。

例如,{1, 2, 2, 3}这个集合中的元素2出现了两次,但在集合中只算一个元素,所以这个集合的元素个数为3个。

四、集合的关系运算集合之间可以进行一系列的关系运算,包括并集、交集、差集和补集等。

这些运算是基于集合和元素之间的关系进行的。

并集是指将两个集合中的所有元素合并在一起,形成一个新的集合。

例如,集合A={1, 2, 3},集合B={3, 4, 5},则A和B的并集为{1, 2, 3, 4, 5}。

交集是指两个集合中共有的元素构成的集合。

例如,集合A={1, 2, 3},集合B={3, 4, 5},则A和B的交集为{3}。

差集是指属于一个集合但不属于另一个集合的元素构成的集合。

例如,集合A={1, 2, 3},集合B={3, 4, 5},则A和B的差集为{1, 2},即A中的元素去掉B中的元素。

补集是指全集中除去集合中元素后剩余的元素构成的集合。

补集是相对于全集来说的,全集是包含了所有元素的集合。

例如,全集为{1, 2, 3, 4, 5},集合A={1, 2, 3},则A的补集为{4, 5}。

通过这些关系运算,我们可以对集合和元素进行更加灵活的操作和计算。

集合的概念及运算

集合的概念及运算

注: 集合与集合的关系特例:
设集合A={1, 2, 3}, B={x | xA}, 则 AB, B. 亦可 B. (4)集合的运算
①交集: 由所有属于集合A且属于集合B的元素组成的集合 叫做集合 A 与 B 的交集, 记作A∩B, 即 A∩B={x | x∈A, 且x∈B}. ②并集: 由所有属于集合A或属于集合B的元素组成的集合 叫做集合 A 与 B 的并集, 记作A∪B, 即 A∪B={x | x∈A, 或 x∈B}. ③补集: 设 S 是一个集合, A 是 S 的一个子集(即AS), 由 S 中所有不属于 A 的元素组成的集合, 叫做 S 中子集 A 的补集 (或余集), 记作 CsA, 即 CsA={x | x∈S, 且 xA}.
2-x-1=0}, 得 a≥- 1. 由 A={ x | ax 13.解: 4 ∵对任一 x0∈A, 必有 x0B, ∴AB; 又 B 中元素为方程 a(ax2-1)2-1=x 即 a3x4-2a2x2-x+a-1=0 的实根, ∴由 AB 知 a3x4-2a2x2-x+a-1 含有因子 ax2-x-1. ∴a3x4-2a2x2-x+a-1=0 即为 (ax2-x-1)(a2x2+ax-a+1)=0. ∵A=B, ∴a2x2+ax-a+1=0 无实根或其实根为 ax2-x-1=0 的实根. 由 a2x2+ax-a+1=0 无实根得: a< 3 4;
10.集合 M={m | m=2a-1, aZ} 与 N={n | n=6b1, bZ} 之间的 关系是 N M .
11.已知 R 为全集, A={x | log 1(3-x)≥-2}, B={x | x 5 ≥1}, 求 +2 2 CRA∩B. (-2, -1)∪{3} 12.调查 100 名有携带药品出国的旅游者, 其中 75 人带有感冒 药, 80 人带有胃药, 那么既带感冒药又带胃药的人数的最大值 和最小值分别为多少? 解: 设既带感冒药又带胃药的人数为 x, 既不带感冒药又不带 胃药的人数为 a. 记这100名出国旅游者组成全集 I , 其中带感冒药的人组成集 合 A, 带胃药的人组成集合 B. 则 x=card(A∩B) 且 card(A)=75, card(B)=80, 依题意得: a+card(A)+card(B)-x=100, 0≤a≤20. ∴x=a+55, 0≤a≤20. ∴55≤x≤75. 故既带感冒药又带胃药的人数的最大值为 75, 最小值为 55. 13.已知函数 f(x)=ax2-1, aR, xR, 设集合 A={x | f(x)=x}, 集 合 B={x | f[f(x)]=x}, 且 A=B, 求实数 a 的取值范围.

元素与集合的关系符号

元素与集合的关系符号

元素与集合的关系符号属于关系可以用符号“∈”来表示,意思是一些元素属于一些集合。

例如,若要表达元素x属于集合A,可以写作x∈A。

这表示x是A中的一个元素。

不属于关系可以用符号“∉”来表示,意思是一些元素不属于一些集合。

例如,若要表达元素y不属于集合B,可以写作y∉B。

这表示y不是B中的一个元素。

除了属于关系和不属于关系外,数学中还有其他一些表示元素与集合关系的符号,下面我们一一进行介绍。

1.包含关系包含关系表示一个集合包含另一个集合,记作“⊆”。

若集合A包含集合B,可以写作A⊆B。

这意味着集合A的所有元素都属于集合B。

2.真包含关系真包含关系表示一个集合严格包含另一个集合,记作“⊂”。

若集合A真包含集合B,可以写作A⊂B。

这意味着集合A包含集合B的所有元素,且A与B不相等。

3.不真包含关系不真包含关系表示一个集合不严格包含另一个集合,记作“⊆”。

若集合A不真包含集合B,可以写作A⊆B。

4.并集关系并集关系表示将两个集合中的所有元素合并在一起形成一个新集合,记作“∪”。

若集合A和集合B的并集为集合C,可以写作C=A∪B。

这意味着集合C包含了A和B的所有元素。

5.交集关系交集关系表示两个集合中共有的元素集合,记作“∩”。

若集合A和集合B的交集为集合C,可以写作C=A∩B。

这意味着集合C包含了A和B 共有的元素。

6.补集关系补集关系表示一个集合中不属于另一个集合的元素集合,记作“∁”或“-”。

若集合A与宇集U的补集为集合B,可以写作B=∁A或B=-A。

这意味着集合B包含了所有不属于A的元素。

除了以上介绍的基本关系符号外,还有一些其他表示元素与集合关系的符号,如差集关系、相等关系等。

集合的基本概念元素集合之间的关系

集合的基本概念元素集合之间的关系

第一章集合第一节集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。

集合中的每个对象叫做这个集合的元素。

1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1.下列各组对象能确定一个集合吗?(1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.()4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2.用适当的符号(∈∉,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10cm 的三角形2方程组23211x y x y -=⎧⎨+=⎩的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表示同一集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1用列举法表示下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2用描述法表示下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。

数学人教版高中一年级必修1 元素与集合、集合与集合的关系

数学人教版高中一年级必修1 元素与集合、集合与集合的关系

第一周 元素与集合、集合与集合的关系重点知识梳理1.集合元素的三个特性:确定性,互异性,无序性. ①确定性:集合中的元素必须是明确的,不能含糊不清;②互异性:一个集合中的元素是唯一的,不能有相同元素,相同元素只能出现一次; ③无序性:即一个集合中的元素出现没有顺序,只要两个集合的元素完全相同,这两个集合就是相同的.2.元素与集合的关系:集合的元素通常用小写的拉丁字母表示,元素与集合是从属关系,如a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ,a 不属于集合A ,记作a ∉A . 3.集合间的基本关系(1)子集:如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作A ⊆B . (2)真子集:如果A ⊆B 且A ≠B ,那就说集合A 是集合B 的真子集,记作A B .(3)相等:如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,即A =B . (4)常用结论①任何一个集合是它本身的子集,即A ⊆A ;②空集是任何集合的子集,空集是任何非空集合的真子集; ③如果A ⊆B ,B ⊆C ,那么A ⊆C ; ④如果A ⊆B ,同时B ⊆A ,那么A =B .典型例题剖析例1 已知集合A ={x |ax 2-2x -1=0,x ∈R },若集合A 中至多有一个元素,求实数a 的取值范围.【方法指导】集合A 中至多有一元素,即为对应方程至多只有一根,这样通过讨论方程根的情况来求a 的取值范围即可.【解析】(1)当a =0时,方程只有一个根-12,则a =0符合题意;(2)当a ≠0时,关于x 的方程ax 2-2x -1=0是一元二次方程,则该方程有两个相等的实数根或没有实数根,所以Δ=4+4a ≤0,解得a ≤-1,所以实数a 的取值范围是{a |a ≤-1}. 综上所述,实数a 的取值范围是{a |a =0或a ≤-1}. 【提示】以下解法是错误的:由于集合A 中至多有一个元素,则一元二次方程ax 2-2x -1=0有两个相等的实数根或没有实数根,所以Δ=4+4a ≤0,解得a ≤-1,所以实数a 的取值范围是{a |a ≤-1}.错误原因 方程ax 2-2x -1=0不一定是一元二次方程,若方程不是一元二次方程,则不能利用判别式Δ判断其实根的个数.淘出优秀的你2【小结】本题体现了转会与化归的思想,解答时将问题转化为关于x 的方程ax 2-2x -1=0的实数根的个数问题,这样就容易解决了.同时,要注意若方程的二次项系数含有字母,则需对其是否为零进行讨论.变式训练 已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A 是单元素集(只含有一个元素的集合),求a 的值及集合A ; (2)求集合P ={a ∈R |a 使得A 至少含有一个元素}. 【解析】(1)当a =0时,A ={23},符合题意;当a ≠0时,要使方程有两个相等的实根,则Δ=9-8a =0,即a =98,此时A ={43}.综上所述,当a =0时,A ={23};当a =98时,A ={43}.(2)由(1)知,当a =0时,A ={23}含有一个元素,符合题意.由a ≠0时,要使方程有实根,则Δ=9-8a ≥0,即a ≤98.综上所述,P ={a ∈R |a 使得A 至少含有一个元素}={a |a ≤98}.例2 已知-3∈A ,A 中含有的元素有a -3,2a -1,a 2+1,求a 的值. 【解析】由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0; 当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或a =-1.变式训练 已知互异的两数a ,b 满足ab ≠0,集合{a ,b }={a 2,b 2},则a +b 等于( ) A .2 B .1 C .0 D .-1 【答案】D【解析】由{a ,b }={a 2,b 2},则⎩⎪⎨⎪⎧a =a 2b =b 2① 或⎩⎪⎨⎪⎧a =b 2b =a 2,② 由①得⎩⎪⎨⎪⎧a =0或a =1b =0或b =1,∵ab ≠0,∴a ≠0且b ≠0,即a =1,b =1,此时集合{1,1}不满足条件. 由②两式相减得a 2-b 2=b -a ,∵两数a ,b 互异,∴b -a ≠0,即a +b =-1,故选D.例3 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 【解析】A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}, 且B ⊆A .①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2, 由B ⊆A ,得⎩⎪⎨⎪⎧m ≥2m +1≥-22m -1≤5,解得2≤m ≤3. 由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.【小结】对于这类含有字母参数的集合的包含关系,应注意空集是任何集合的子集,如本题中,应讨论集合B 为空集的情形.变式训练 已知集合P ={x |x 2+x -6=0},集合Q ={x |ax +1=0},且Q ⊆P ,求实数a 的取值构成的集合A .【解析】∵x 2+x -6=0, ∴(x +3)(x -2)=0, 即x =-3或x =2. ∴P ={-3,2}. 又∵Q ={x |ax +1=0}, 当a =0时,Q =∅,满足Q ⊆P ; 当a ≠0时,有-1a =-3或-1a =2,∴a =13或a =-12,故a =0或a =13或a =-12.∴A ={-12,0,13}.跟踪训练1.若集合A ={x ∈R |ax 2+ax +1=0}其中只有一个元素,则a 等于( ) A .4 B .2 C .0 D .0或42.集合⎩⎨⎧⎭⎬⎫x ∈N *|12x ∈Z 中含有的元素个数为( )淘出优秀的你4A .4B .6C .8D .123.若集合A ={x |ax 2+(a -6)x +2=0}是单元素集合,则实数a 等于( ) A .2或18 B .0或2 C .0或18D .0或2或184.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4 D .05.集合A 满足关系式(a ,b )⊆A ⊆{a ,b ,c ,d ,e },则集合A 的个数是( ) A .5 B .6 C .7 D .86.若非空数集A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( ) A .{a |1≤a ≤9} B .{a |6≤a ≤9} C .{a |a ≤9}D .∅7.若集合A ={x |x 2-5x +6≤0},集合B ={x |ax -2=0,a ∈Z },且B ⊆A ,则实数a =________.8.若集合M ={}1,m 2,集合N ={2,4},M ∪N ={1,2,4},则实数m 的值的个数是________.9.如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________________. 10.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则有序实数对(a ,b )的值为________. 11.设集合A ={3,3m 2},B ={3m,3},且A =B ,则实数m 的值是________.12.已知集合A ={x |2a -2<x ≤a +2},B ={x |-2≤x <3}且A ⊆B ,求实数a 的取值范围. 13.已知由实数构成的集合A 满足条件:若a ∈A ,则1+a1-a∈A (a ≠0且a ≠±1),则集合A 中至少有几个元素?证明你的结论.参考答案1.A 当a =0时,方程为1=0不成立,不满足条件;当a ≠0时,Δ=a 2-4a =0,解得a =4. 故选A.2.B 由题意,集合⎩⎨⎧⎭⎬⎫x ∈N *|12x ∈Z 中的元素满足x 是正整数,且12x 是整数,由此列出下表根据表格,可得符合条件的x 共有6个,即集合⎩⎨⎭⎬x ∈N *|12x ∈Z 中有6个元素,故选B.3.D a =0时,-6x +2=0,x =13,只有一个解,集合A ={13},满足题意.a ≠0时,方程ax 2+(a -6)x +2=0有两个相等实根. 判别式Δ=0, Δ=(a -6)2-8a =0, a 2-20a +36=0, 解得a =2或a =18, ∴实数a 为0或2或18. 故选D.4.B 集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A , a =2∈A,6-a =4∈A ,∴a =2, 或者a =4∈A,6-a =2∈A ,∴a =4, 综上所述,a =2,4. 故选B.5.D 由题意知集合A 中的元素a ,b 必取,另外可从c ,d ,e 中取,满足题意的集合A 的个数等于集合{c ,d ,e }的子集个数,因为{c ,d ,e }的子集个数为23=8,则集合A 的个数是8. 故选D. 6.B 7.0或1 8.49.x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.淘出优秀的你610.(0,1)或(14,12)解析 ∵M ={2,a ,b },N ={2a,2,b 2},且M =N ,∴⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 即⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12,当a =0,b =0时,集合M ={2,0,0}不成立, ∴有序实数对(a ,b )的值为(0,1)或(14,12)故答案为(0,1)或(14,12).11.0解析 依题意,3m =3m 2,所以m =0或m =1.当m =1时,违反元素互异性(舍去). 12.解析 由已知A ⊆B 可得, (1)当A =∅时,有2a -2≥a +2⇒a ≥4. (2)当A ≠∅时,由A ⊆B 得⎩⎪⎨⎪⎧2a -2<a +2,2a -2≥-2,a +2<3⇒⎩⎪⎨⎪⎧a <4,a ≥0,⇒0≤a <1a <1. 综合(1)(2),实数a 的取值范围是{a |a ≥4或0≤a <1}. 13.解析 ∵a ∈A ,则1+a1-a ∈A ,∴1+1+a 1-a 1-1+a1-a =-1a ∈A ,进而有1+⎝⎛⎭⎫-1a 1-⎝⎛⎭⎫-1a =a -1a +1∈A ,∴又有1+a -1a +11-a -1a +1=a ∈A .∵a ∈R ,∴a ≠-1a.假设a =1+a1-a ,则a 2=-1,矛盾,∴a ≠1+a 1-a.类似方法可得a 、1+a 1-a 、-1a 和a -1a +1四个数互不相等,故集合A 中至少有四个元素.。

元素与集合

元素与集合

元素与集合1. 特征:确定性,无序性,互异性。

2. 集合中元素的关系:.3. 一些常见的集合 符号:N ,+N ,Z, Q, R, C,4. 集合的表示法:列举法,描述法,图示法。

描述法中:特别注意元素的代表形式。

}|),{(},|{},|{222x y y x x y y x y x ===均表示不同的集合。

集合之间的关系:1.包含于⊂,真包含于⊂。

相等、子集、真子集。

2.空集φ是任何集合的子集。

3.特别的:{φ}与φ的关系。

集合的基本运算:A ∪B,A ∩B,A CU(补集)。

集合的运算性质:A ∩A=_____;A ∩B=____(交换律); A ∩φ =____;A ∩B____A\B;若AB ⊆,则A ∩B=_____; A ∪A=_____;A ∪B=_____(交换律);A ∪φ=_____;A\B____(A ∪B);若A B ⊆,则A ∪B_____; A ∪ACU=_____;A ∩ACU=_______;)(A CC UU=______;φCU=_____;UCU=_______;_____)(_____;)(==B A B A C C U U;()()______;_____;______;)(____;)(====C B A C B A C B A C B A命题 量词 逻辑命题是能判断真假的语句;:存在:所有的;∃∀:逻辑连接词:或、且、非;pp p q p ⌝∨∧,,;命题的否定:()())(,:),(,,,,x p m x x p m x x p m x x p m x ⌝∈∀∈∃⌝∈∃∈∀的否定为的否定为:qp q p p q q p p q q p q p ⇔⇒⇒⇒的充要条件。

即是的必要条件。

是的充要条件,是.,,四种命题的关系:原命题:若p 则q;否命题:若非p ,则非q ; 逆命题: q 则p;逆否命题: 非p ,则非q ;一元二次不等式及其解法1. 若一元二次不等式b ax >,⎭⎬⎫⎩⎨⎧<≥=<<>>R b b a abx a abx a 解集为解集为则则解集为若,0,0,0.,0,,0.φ2. 不等式组()βα<;(1).{}βαβα<<<>x x x 解集为,, (2).φβα解集为><x x(3).{}ββα>>>x x x 解集为.,(4).{}αβα<<<x x x 解集为3.一元二次不等式,4),0(022ac b a c bx ax -=∆≠>++其中21,x x 是方程c bx ax ++2=0(0≠a )的两个根,且21x x <.(1) 当时,o a >()()()∞+∞<∆+∞-∞=∆∞+⋃∞>∆,解集为若(,解集为若,解集为若-,0),2)2,(0-,0,21aba b x x (2) 当时,o a <_______,0_______0_____,0解集为若,解集为若解集为若<∆=∆>∆4.一元()3,,0,0*22110≥∈≠∈>++++--n N n a R a a x a xa x a n n n n n n n次不等式可为()()()()()()()()()()的解集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课元素与集合之间的关系
、考点
1、 集合、元素
某些指定的对象集在一起就成为一个集合(常用大写字母表示),其中每一个对 象叫做元素(常用小写字母表示)。

元素三要素:确定性、互异性、无序性。

2、 集合与元素之间的关系 (1) 如果a 是集合A 的元素,就说a 属于A ,记做a A 。

(2) 如果a 不是集合A 的元素,就说a 不属于A ,记做a A 。

3、 集合的表示法:列举法、描述法 4、 集合的分类:空集、有限集、 5、 常用数集 实数集:R 有理数
集: 整数集:Z 自然数集:
正整数集:
6集合与集合之间的关系 7、集合之间的运算
、典型例题
o 无限集 A 、( 0,2 ) B 、[0,2] C
{0,2}
D

{0,1,2} 2、设 P = {1,2,3,4}
, Q= {4,5,6,7,8},
定义 P*Q = {(a , b)|a € 中兀素的个数为(
)
A. 4 B
.5 C
19
D
.20
3、已知集合A={
(x , y ) |x , y 为实数, 且x 2
y 2
1} , B={(: y=x},则 A B 的兀素个数为()
A
、0
B 、1
C 、
2 D 、3
4、设集合A x
x-a 1, x R , B
x x -b 2, x R , 必满足( )
|x , y 为实数,且
B ,则实数a , b
a-b
a-b
5、已知集合A Rx 2
,集合 B x R x -m x-2
0 ,且
A B -1, n
,则m
1 已知集合 A={x||x|
< 2, x R},
3
A
B
P , b € Q a 工 b},贝U P*Q x , y ) 若A
a b
a b 3 B={x| 、、x w 4, x Z},则 A B=()
m 的取值范围.
三、课堂作业
1、用列举法表示下列集合:
7、 由实数x ,- x ,寸7,—扳3所组成的集合里面元素最多有
8、 某班有36名同学参加数学、物理、化学课外探究小组,每名同学
至多参加两
个小组,已经参加数学、物理、化学课外探究小组的人数分别是 26、15、13, 同时参加数学和物理小组的有 6人,同时参加物理和化学小组的有 4人,则同时 参加数学和化学小组的有 _______________ 。

四、课后作业
4、 设集合 M k {x € R|x w 3 3} , a = 2 6,则( )
3 1 , ^, 4,| — 2|,0.5这些数组成的集合有 5个元素;
⑷集合{(x , y)|xy w 0, x ,
A. 0 个 B . 1 个 C
下列集合中,不同于另外三个集合的是
A. {0} B . {y|y 2= 0} C
6、已知集合 A x x -3x-10
0 , B
{x|m 1 < x < 2m 1},且 A
B A ,求实数
(1)、{( x, y) |0 x 2,0 y
2, x, y Z}
M {0,1,2},
P {x|x
(2)、 2、已知集合A={1、
含元素的个数为
A 、3
a b,a,
b M,a
b}
3、设 U=R M={x| A 、[0,1 )
4 、下列关系式中, ① a € {a , b} 已知集
2、3、4、
)。

5},B={ (x,y )|x A ,
y A x-y A},则B 中所
2
x -x w 0},函数 B 、( 0,1 )
正确的序号是
②0€
?
(QA )
( C U B)= _______
6、求集合xx 5 0与集合
f(x) 、8
1 、
----- 的定义域为 x 1
[0,1] D
③{x|x 1 2w 0} =
?
x 2
x x-5 0, x
、10
D,则M (C
U
D
)=()
④{x|x 2
+ 2x + 5= 0} =
?
R 有公共元素的 yy x 1,x A ,则
a 的取值范围。

个.
1、 2、 x + y = 1
方程组
x — y = 9
A. ( — 5,4) B
下列命题正确的有
的解集是( )
.(5 , - 4) C )
.{( - 5,4)} D . {(5 , - 4)}
=x 2
- 1}是同一个集合; y € R}是指第二和第四象限内的点集.
.2个 D . 3个 ( ) .{x|x = 0} D . {x = 0}
A. a?M
B. a € M C . {a}
€ M D . {a|a = 2 6} € M
5、 集合{(x , y)|y = 2x — 1}表示(
)
A. 方程 y = 2x — 1
B. 点(x , y)
C. 平面直角坐标系中的所有点组成的集合
D. 函数y = 2x — 1图象上的所有点组成的集合
7、 若x R ,则3, x , x 2
-2x 中的x 应满足什么条件
12
8、 已知集合 A = {x |
€ N, x € N},试用列举法表示集合 A.
6 — x
9、 设M {xx 2
2x 3 0} N {xax 1 0},若MUN M ,求所有满足条件的 a 的集合。

10、 已知集合 A = {x| — 3< x w 4}, B = {x|2m — 1w x w m + 1},且B?A.求实数 m 的取值范围
(1) 很小的实数可以构成集合;
(2) 集合{y|y = x 2-1}与集合{(x , y)|y
3 6 1
6、若 M {xx
2x 3 0} N {x ax 1 0},则
1 3-2”2。

相关文档
最新文档