元素与集合之间的基本关系#(优选.)

合集下载

集合之间的基本关系 -回复

集合之间的基本关系 -回复

集合之间的基本关系 -回复
1. 包含关系:集合A包含集合B,表示B中的元素都属于A,用符号表示为B ⊆ A。

2. 相等关系:集合A与集合B相等,表示A和B拥有完全相同的元素,用符号表示为
A = B。

3. 真包含关系:集合A真包含集合B,表示A包含B且A与B不相等,用符号表示为
B ⊂ A。

4. 交集关系:集合A与集合B的交集,表示A和B中共有的元素的集合,用符号表示为A ∩ B。

5. 并集关系:集合A与集合B的并集,表示A和B所有元素的集合,用符号表示为A ∪ B。

6. 差集关系:集合A与集合B的差集,表示A中除去与B共有的元素剩下的元素的集合,用符号表示为A - B。

7. 对称差集关系:集合A与集合B的对称差集,表示A和B中除去共有的元素,剩下的元素的集合,用符号表示为A △ B。

8. 互斥关系:集合A与集合B互斥,表示A和B没有共有的元素,用符号表示为A ∩
B = ∅。

9. 子集关系:集合A是集合B的子集,表示A中的所有元素都属于B,用符号表示为
A ⊆ B。

10. 空集关系:空集是任何集合的子集,用符号表示为∅⊆ A。

集合的基本概念元素集合之间的关系

集合的基本概念元素集合之间的关系

集合的基本概念元素集合之间的关系第⼀章集合第⼀节集合的概念⼀、要点透析(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的。

我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集。

集合中的每个对象叫做这个集合的元素。

1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:⼀些元素集在⼀起就形成⼀个集合(简称集)2、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A3、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出)例1.下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数()(2)好⼼的⼈()(3)1,2,2,3,4,5.()4、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q ……(2)“∈”的开⼝⽅向,不能把a A ∈颠倒过来写5、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:⾮负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作?注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0的集,表⽰成*Z例2.⽤适当的符号(∈?,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程210x -=的所有解组成的集合,可以表⽰为{1,1}-注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表⽰⼀个元素,{}a 表⽰⼀个集合,该集合只有⼀个元素例3、设a,b 是⾮零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{|()}x A P x ∈含义:在集合A 中满⾜条件()P x 的x 的集合例如,不等式32x ->的解集可以表⽰为:{|32}x R x ∈->或{|32}x x ->所有直⾓三⾓形的集合可以表⽰为:{|}x x 是直⾓三⾓形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有⼀个元素,求a 的值,并把这个元素写出来;(3)若A 中⾄多有⼀个元素,求a 的取值范围3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?(1)有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?(三)有限集与⽆限集有限集:含有有限个元素的集合⽆限集:含有⽆限个元素的集合空集:不含任何元素的集合,记作?,如:2{|10}x R x ∈+=⼆、题型解析(⼀)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四⼤发明B.地球上的⼩河流C.⽅程210x -=的实数解D.周长为10cm 的三⾓形2⽅程组23211x y x y -=??+=?的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表⽰同⼀集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6⽤适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满⾜的条件为(⼆)集合的表⽰⽅法1⽤列举法表⽰下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ??+=-=?????④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2⽤描述法表⽰下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017?±±±±(三)集合的分类1关于x 的⽅程0ax b +=,当a ,b 满⾜条件_____时,解集是有限集;当a ,b 满⾜条件_____时,解集是⽆限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表⽰同⼀个集合;(2)由1,2,3组成的集合可表⽰为{1,2,3}或{3,2,1};(3)⽅程2(1)(2)0x x --=的所有解的集合可表⽰为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的⽅法表⽰下列集合:(1)⼆次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的⾃变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试⽤列举法表⽰集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ??≠≠≠≠-??????且③12(,)13x x x y y y ??≠≠≠≠-??????或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-?-++≠其中不能表⽰“在直⾓坐标系xOy 平⾯内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯⼀实施解},试⽤列举法表⽰集合A。

高中数学_集合间的基本关系教学设计学情分析教材分析课后反思

高中数学_集合间的基本关系教学设计学情分析教材分析课后反思

学情分析学生在初中阶段的学习中,已经有了对集合的初步认知,在本节的学习中学生可能会对集合的基本关系会有所混淆,通过不断的练习巩固来达到标准要求。

高中学生虽有好奇,好表现的因素,厌烦空洞的说教所以一定要用生动活泼的方式讲解知识学生对于新的知识的接受能力参差不齐,要采用分类教学的方法,各个辅导,重点内容,多练,多复习,巩固所学知识。

整个教学效果还是很乐观,学生反映迅速。

教学反思集合间的基本关系是在前面学习了集合的概念、表示方法及集合与元素的关系后来研究集合之间的一种关系,它为后面学好集合的运算起着非常重要的作用。

这一节课,首先复习结合的含义与表示再利用类比的思想引入集合之间有何关系,通过例子说明集合有包含相等等关系,引入本节课的内容。

讲解子集、相等、真子集、空集概念时,让学生认真读概念,理解概念中的关键字。

通过反例深刻理解概念中关键字并记住。

同时,对概念的三种语言进行点明,概念用文字语言,符号语言及图形语言有机结合,逐步使学生由文字语言向符号语言、图形语言过渡。

上课时还注意将抽象概念与实例相结合,鼓励同学们积极发言,举例子来理解概念,尤其是空集的例子。

学生大多举的是方程无解的例子。

有的认为{0}是空集,组织学生讨论,让学生自己辩论后认为它不是空集,加深学生的理解。

最后,我与学生共同将子集、相等、真子集等的性质进行了总结,还通过一一列举得出例子的推广,n个元素组成的集合有个子集,个真子集,个非空子集等。

通过本节课教学,有以下想法:我们要重视学生学习兴趣的引导,要在课堂上给学生更多的时间考虑问题,充分发挥学生的主动积极性。

本节内容是选自新人教 A 版高中数学必修 1 第 1 章第 1 节第 2 部分的内容。

在此之前,学生已经接触过集合的一些基本概念,本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用。

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。

集合间的基本关系及运算

集合间的基本关系及运算

1.2集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆B或B⊇A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B。

3、真子集:如果A⊆B,且A≠B,那么集合A称为集合B的真子集,A⊂≠B.4、设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作C AS5、元素与集合、集合与集合之间的关系6、有限集合的子集个数(1)n个元素的集合有n2个子集(2)n个元素的集合有n2-1个真子集(3)n个元素的集合有n2-1个非空子集(4)n个元素的集合有n2-2个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A⋂B。

8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A⋃B。

9、集合的运算性质及运用【知识应用】1.理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x∈A能推出x∈B。

【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1},B=Z(2)A={1,3,5,15},B={x|x是15的正约数}【L】例2.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m取值范围。

【C】例3.已知集合A⊆{0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一一写出。

2.解题方法:证明2个集合相等的方法:(1)若A、B两个集合是元素较少的有限集,可用列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足的条件是否一致,若均一致,则两集合相等。

(2)利用集合相等的定义证明A⊆B,且B⊆A,则A=B.【J】例1.下列各组中的两个集合相等的有()(1)P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z}(2)P={x|x=2n-1,n∈N+},Q={x|x=2n+1,n∈N+}(3)P={x|2x -x=0},Q={x|x=1(1)2n +-,n ∈Z}【L 】例2.已知集合A={x|x=12k π+4π,k ∈Z},B={x|x=14k π+2π,k ∈Z},判断集合A 与集合B 是否相等。

高中数学《集合间的基本关系》--教学设计

高中数学《集合间的基本关系》--教学设计

1.2 集合间的基本关系教材分析:本节内容来自人教版高中数学必修一第一章第一节集合第二课时的内容。

集合论是现代数学的一个重要基础,是一个具有独特地位的数学分支。

高中数学课程是将集合作为一种语言来学习,在这里它是作为刻画函数概念的基础知识和必备工具。

本小节内容是在学习了集合的含义、集合的表示方法以及元素与集合的属于关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合间的基本运算的基础,因此本小节起着承上启下的关键作用.通过本节内容的学习,可以进一步帮助学生利用集合语言进行交流的能力,帮助学生养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力,通过Venn图理解抽象概念,培养学生数形结合思想。

教学目标:A.了解集合之间包含与相等的含义,能识别给定集合的子集;B.理解子集、真子集的概念;C.能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想。

核心素养:1.数学抽象:集合间的关系的含义;2.逻辑推理:由集合的元素的关系推导集合之间的关系;3.数学运算:由集合与集合之间的关系求值;4.直观想象:体会直观图示对理解抽象概念的作用,体会数形结合的思想。

教学重难点:1.教学重点:集合间的包含与相等关系,子集与其子集的概念;2.教学难点:属于关系与包含关系的区别.教学过程:牛刀小试1:下图中,集合A 是否为集合B 的子集?牛刀小试2判断集合A 是否为集合B 的子集,若是则在( )打√,若不是则在( )打×:①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} ( × ) ③A={0}, B={x | x 2+2=0} ( × ) ④A={a,b,c,d}, B={d,b,c,a} ( √ )思考2:与实数中的结论 “若a ≥b,且b ≥a,则a=b ”。

集合的基本概念元素集合之间的关系

集合的基本概念元素集合之间的关系

第一章集合第一节集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。

集合中的每个对象叫做这个集合的元素。

1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1.下列各组对象能确定一个集合吗?(1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.()4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2.用适当的符号(∈∉,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10cm 的三角形2方程组23211x y x y -=⎧⎨+=⎩的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表示同一集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1用列举法表示下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2用描述法表示下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。

数学人教版高中一年级必修1 元素与集合、集合与集合的关系

数学人教版高中一年级必修1 元素与集合、集合与集合的关系

第一周 元素与集合、集合与集合的关系重点知识梳理1.集合元素的三个特性:确定性,互异性,无序性. ①确定性:集合中的元素必须是明确的,不能含糊不清;②互异性:一个集合中的元素是唯一的,不能有相同元素,相同元素只能出现一次; ③无序性:即一个集合中的元素出现没有顺序,只要两个集合的元素完全相同,这两个集合就是相同的.2.元素与集合的关系:集合的元素通常用小写的拉丁字母表示,元素与集合是从属关系,如a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ,a 不属于集合A ,记作a ∉A . 3.集合间的基本关系(1)子集:如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作A ⊆B . (2)真子集:如果A ⊆B 且A ≠B ,那就说集合A 是集合B 的真子集,记作A B .(3)相等:如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,即A =B . (4)常用结论①任何一个集合是它本身的子集,即A ⊆A ;②空集是任何集合的子集,空集是任何非空集合的真子集; ③如果A ⊆B ,B ⊆C ,那么A ⊆C ; ④如果A ⊆B ,同时B ⊆A ,那么A =B .典型例题剖析例1 已知集合A ={x |ax 2-2x -1=0,x ∈R },若集合A 中至多有一个元素,求实数a 的取值范围.【方法指导】集合A 中至多有一元素,即为对应方程至多只有一根,这样通过讨论方程根的情况来求a 的取值范围即可.【解析】(1)当a =0时,方程只有一个根-12,则a =0符合题意;(2)当a ≠0时,关于x 的方程ax 2-2x -1=0是一元二次方程,则该方程有两个相等的实数根或没有实数根,所以Δ=4+4a ≤0,解得a ≤-1,所以实数a 的取值范围是{a |a ≤-1}. 综上所述,实数a 的取值范围是{a |a =0或a ≤-1}. 【提示】以下解法是错误的:由于集合A 中至多有一个元素,则一元二次方程ax 2-2x -1=0有两个相等的实数根或没有实数根,所以Δ=4+4a ≤0,解得a ≤-1,所以实数a 的取值范围是{a |a ≤-1}.错误原因 方程ax 2-2x -1=0不一定是一元二次方程,若方程不是一元二次方程,则不能利用判别式Δ判断其实根的个数.淘出优秀的你2【小结】本题体现了转会与化归的思想,解答时将问题转化为关于x 的方程ax 2-2x -1=0的实数根的个数问题,这样就容易解决了.同时,要注意若方程的二次项系数含有字母,则需对其是否为零进行讨论.变式训练 已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A 是单元素集(只含有一个元素的集合),求a 的值及集合A ; (2)求集合P ={a ∈R |a 使得A 至少含有一个元素}. 【解析】(1)当a =0时,A ={23},符合题意;当a ≠0时,要使方程有两个相等的实根,则Δ=9-8a =0,即a =98,此时A ={43}.综上所述,当a =0时,A ={23};当a =98时,A ={43}.(2)由(1)知,当a =0时,A ={23}含有一个元素,符合题意.由a ≠0时,要使方程有实根,则Δ=9-8a ≥0,即a ≤98.综上所述,P ={a ∈R |a 使得A 至少含有一个元素}={a |a ≤98}.例2 已知-3∈A ,A 中含有的元素有a -3,2a -1,a 2+1,求a 的值. 【解析】由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0; 当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或a =-1.变式训练 已知互异的两数a ,b 满足ab ≠0,集合{a ,b }={a 2,b 2},则a +b 等于( ) A .2 B .1 C .0 D .-1 【答案】D【解析】由{a ,b }={a 2,b 2},则⎩⎪⎨⎪⎧a =a 2b =b 2① 或⎩⎪⎨⎪⎧a =b 2b =a 2,② 由①得⎩⎪⎨⎪⎧a =0或a =1b =0或b =1,∵ab ≠0,∴a ≠0且b ≠0,即a =1,b =1,此时集合{1,1}不满足条件. 由②两式相减得a 2-b 2=b -a ,∵两数a ,b 互异,∴b -a ≠0,即a +b =-1,故选D.例3 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 【解析】A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}, 且B ⊆A .①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2, 由B ⊆A ,得⎩⎪⎨⎪⎧m ≥2m +1≥-22m -1≤5,解得2≤m ≤3. 由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.【小结】对于这类含有字母参数的集合的包含关系,应注意空集是任何集合的子集,如本题中,应讨论集合B 为空集的情形.变式训练 已知集合P ={x |x 2+x -6=0},集合Q ={x |ax +1=0},且Q ⊆P ,求实数a 的取值构成的集合A .【解析】∵x 2+x -6=0, ∴(x +3)(x -2)=0, 即x =-3或x =2. ∴P ={-3,2}. 又∵Q ={x |ax +1=0}, 当a =0时,Q =∅,满足Q ⊆P ; 当a ≠0时,有-1a =-3或-1a =2,∴a =13或a =-12,故a =0或a =13或a =-12.∴A ={-12,0,13}.跟踪训练1.若集合A ={x ∈R |ax 2+ax +1=0}其中只有一个元素,则a 等于( ) A .4 B .2 C .0 D .0或42.集合⎩⎨⎧⎭⎬⎫x ∈N *|12x ∈Z 中含有的元素个数为( )淘出优秀的你4A .4B .6C .8D .123.若集合A ={x |ax 2+(a -6)x +2=0}是单元素集合,则实数a 等于( ) A .2或18 B .0或2 C .0或18D .0或2或184.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4 D .05.集合A 满足关系式(a ,b )⊆A ⊆{a ,b ,c ,d ,e },则集合A 的个数是( ) A .5 B .6 C .7 D .86.若非空数集A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( ) A .{a |1≤a ≤9} B .{a |6≤a ≤9} C .{a |a ≤9}D .∅7.若集合A ={x |x 2-5x +6≤0},集合B ={x |ax -2=0,a ∈Z },且B ⊆A ,则实数a =________.8.若集合M ={}1,m 2,集合N ={2,4},M ∪N ={1,2,4},则实数m 的值的个数是________.9.如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________________. 10.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则有序实数对(a ,b )的值为________. 11.设集合A ={3,3m 2},B ={3m,3},且A =B ,则实数m 的值是________.12.已知集合A ={x |2a -2<x ≤a +2},B ={x |-2≤x <3}且A ⊆B ,求实数a 的取值范围. 13.已知由实数构成的集合A 满足条件:若a ∈A ,则1+a1-a∈A (a ≠0且a ≠±1),则集合A 中至少有几个元素?证明你的结论.参考答案1.A 当a =0时,方程为1=0不成立,不满足条件;当a ≠0时,Δ=a 2-4a =0,解得a =4. 故选A.2.B 由题意,集合⎩⎨⎧⎭⎬⎫x ∈N *|12x ∈Z 中的元素满足x 是正整数,且12x 是整数,由此列出下表根据表格,可得符合条件的x 共有6个,即集合⎩⎨⎭⎬x ∈N *|12x ∈Z 中有6个元素,故选B.3.D a =0时,-6x +2=0,x =13,只有一个解,集合A ={13},满足题意.a ≠0时,方程ax 2+(a -6)x +2=0有两个相等实根. 判别式Δ=0, Δ=(a -6)2-8a =0, a 2-20a +36=0, 解得a =2或a =18, ∴实数a 为0或2或18. 故选D.4.B 集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A , a =2∈A,6-a =4∈A ,∴a =2, 或者a =4∈A,6-a =2∈A ,∴a =4, 综上所述,a =2,4. 故选B.5.D 由题意知集合A 中的元素a ,b 必取,另外可从c ,d ,e 中取,满足题意的集合A 的个数等于集合{c ,d ,e }的子集个数,因为{c ,d ,e }的子集个数为23=8,则集合A 的个数是8. 故选D. 6.B 7.0或1 8.49.x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.淘出优秀的你610.(0,1)或(14,12)解析 ∵M ={2,a ,b },N ={2a,2,b 2},且M =N ,∴⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 即⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12,当a =0,b =0时,集合M ={2,0,0}不成立, ∴有序实数对(a ,b )的值为(0,1)或(14,12)故答案为(0,1)或(14,12).11.0解析 依题意,3m =3m 2,所以m =0或m =1.当m =1时,违反元素互异性(舍去). 12.解析 由已知A ⊆B 可得, (1)当A =∅时,有2a -2≥a +2⇒a ≥4. (2)当A ≠∅时,由A ⊆B 得⎩⎪⎨⎪⎧2a -2<a +2,2a -2≥-2,a +2<3⇒⎩⎪⎨⎪⎧a <4,a ≥0,⇒0≤a <1a <1. 综合(1)(2),实数a 的取值范围是{a |a ≥4或0≤a <1}. 13.解析 ∵a ∈A ,则1+a1-a ∈A ,∴1+1+a 1-a 1-1+a1-a =-1a ∈A ,进而有1+⎝⎛⎭⎫-1a 1-⎝⎛⎭⎫-1a =a -1a +1∈A ,∴又有1+a -1a +11-a -1a +1=a ∈A .∵a ∈R ,∴a ≠-1a.假设a =1+a1-a ,则a 2=-1,矛盾,∴a ≠1+a 1-a.类似方法可得a 、1+a 1-a 、-1a 和a -1a +1四个数互不相等,故集合A 中至少有四个元素.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课 元素与集合之间的关系
一、考点
1、集合、元素
某些指定的对象集在一起就成为一个集合(常用大写字母表示),其中每一个对象叫做元素(常用小写字母表示)。

元素三要素:确定性、互异性、无序性。

2、集合与元素之间的关系
(1)如果a 是集合A 的元素,就说a 属于A ,记做a ∈A 。

(2)如果a 不是集合A 的元素,就说a 不属于A ,记做a ∉A 。

3、集合的表示法:列举法、描述法。

4、集合的分类:空集、有限集、无限集
5、常用数集
实数集:R
有理数集:Q
整数集:Z
自然数集:N
正整数集:*
N 或+N
6、集合与集合之间的关系
7、集合之间的运算 二、典型例题
1、已知集合A={x||x|≤2,x ∈R},B={x|x ≤4,x ∈Z},则A I B=()
A 、(0,2)
B 、[0,2]
C 、{0,2}
D 、{0,1,2}
2、设P ={1,2,3,4},Q ={4,5,6,7,8},定义P*Q ={(a ,b)|a ∈P ,b ∈Q ,a ≠b},则P*Q 中元素的个数为( )
A .4
B .5
C .19
D .20
3、已知集合A={(x ,y )|x ,y 为实数,且1y x 22=+},B={(x ,y )|x ,y 为实数,且y=x},则A I B 的元素个数为()
A 、0
B 、1
C 、2
D 、3
4、设集合{}R A ∈<=x 1a -x x ,,{}R B ∈>=x 2b -x x ,,若B A ⊆,则实数a ,b 必满足( )
A 、3b a ≤+
B 、3b a ≥+
C 、3b -a ≤
D 、3b -a ≥
5、已知集合{}32x R x <+∈=A ,集合()(){}02-x m -x x <∈=R B ,且()n 1-,=B A I ,则=m __________,=n __________。

6、已知集合{}
2x x -3x-100A =≤,{|121}B x m x m =+-≤≤,且A B A ⋃=,求实数m 的取值范围.
三、课堂作业
1、用列举法表示下列集合:
(1)、},,20,20|),{(Z y x y x y x ∈<≤<≤
(2)、
_;__________},,,|{},
2,1,0{=≠∈+===b a M b a b a x x P M 2、已知集合A={1、2、3、4、5},B={(x,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为( )。

A 、3
B 、6
C 、8
D 、10
3、设U=R ,M={x|2x -x ≤0},函数1
1)(-=x x f 的定义域为D ,则)(D C M U I =( ) A 、[0,1) B 、(0,1) C 、[0,1] D 、{1}
4、下列关系式中,正确的序号是__________.
①a ∈{a ,b} ②0∈ø ③{x|x 2≤0}=ø ④{x|x 2
+2x +5=0}=ø 5、已知集合R U =,⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧=+=142y 2x x A ,{}A x B ∈+==,1x y y ,则)()(B C A C U U I =________
6、求集合{}05x x >+与集合{}
R ∈<x 05-x x ,有公共元素的a 的取值范围。

7、由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.
8、某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已经参加数学、物理、化学课外探究小组的人数分别是26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有______人。

四、课后作业
1、方程组⎩⎪⎨⎪⎧ x +y =1x -y =9的解集是( )
A .(-5,4)
B .(5,-4)
C .{(-5,4)}
D .{(5,-4)}
2、下列命题正确的有( )
(1)很小的实数可以构成集合;
(2)集合{y|y =x 2-1}与集合{(x ,y)|y =x 2-1}是同一个集合;
(3)1,32,64,|-12
|,0.5这些数组成的集合有5个元素; (4)集合{(x ,y)|xy ≤0,x ,y ∈R}是指第二和第四象限内的点集.
A .0个
B .1个
C .2个
D .3个
3、下列集合中,不同于另外三个集合的是( )
A .{0}
B .{y|y 2=0}
C .{x|x =0}
D .{x =0}
4、设集合M ={x ∈R|x ≤33},a =26,则( )
A .a ∉M
B .a ∈M
C .{a}∈M
D .{a|a =26}∈M
5、集合{(x ,y)|y =2x -1}表示( )
A .方程y =2x -1
B .点(x ,y)
C .平面直角坐标系中的所有点组成的集合
D .函数y =2x -1图象上的所有点组成的集合
6、若}01{}032{2=-==--=ax x N x x x M ,则2
2-31________B 7、若R ∈x ,则{}
x 2-x x 32,,中的x 应满足什么条件?
8、已知集合A ={x |126-x
∈N ,x ∈N },试用列举法表示集合A ..
9、设}01{}032{2=-==--=ax x N x x x M ,若M N M =U ,求所有满足条件的a 的集合。

10、已知集合A ={x|-3≤x ≤4},B ={x|2m -1≤x ≤m +1},且B ⊆A.求实数m 的取值范围.
最新文件 仅供参考 已改成word 文本 。

方便更改。

相关文档
最新文档