2020届中职数学第9章《立体几何》单元检测试题及答案【基础模块下册】

合集下载

中职数学基础模块下册第九章《立体几何》单元检测试题及参考答案

中职数学基础模块下册第九章《立体几何》单元检测试题及参考答案

中职数学基础模块下册第九章《立体几何》单元检测试题及参考答案中的夹角的正弦值。

解答:1)由于A1B1与CD平行,所以∠A1BC=∠ABCD=90°,又因为AB=1,BC=2,所以A1B1=√5.在平面A1B1C1D1中,A1B1与A1D1垂直,所以∠A1B1D1=90°,又因为A1B1=√5,A1D1=2√2,所以cos∠A1B1D1=√2/2,因此∠A1B1D1=45°。

所以∠A1BC1=∠A1B1D1=45°,所以∠A1BD=90°-45°=45°。

2)由于BC1与CC1D1垂直,所以cos∠BCC1D1=BC1/CC1D1=2/3,所以∠BCC1D1≈48.19°。

又因为BC1与BC垂直,所以cos∠ABC1=sin∠BCC1D1=sin48.19°≈0.7431,所以sin∠ABC1≈0.6682.16、(10分)一个正四面体的棱长为a,求其高和侧面积。

解答:设正四面体的高为h,则由勾股定理可得:h^2=a^2-(a/2)^2=a^2/4×3所以h=a√3/2.正四面体的侧面是四个全等的正三角形,所以侧面积为4×(a^2√3/4)=a^2√3.所以正四面体的高为a√3/2,侧面积为a^2√3.17、(10分)如图所示,四棱锥ABCDV的底面是边长为a的正方形,V是底面正方形中心,AV=VB=VC=VD=h,求四棱锥的侧面积和体积。

解答:首先连接AV、BV、CV、DV,可以得到四个全等的三角形,所以四棱锥的侧面积为4×1/2×a×h=2ah。

由勾股定理可得:h^2=(a/2)^2+(h-VG)^2又因为VG=h/2,所以h^2=(a/2)^2+(h/2)^2所以h=√(5/4)a。

四棱锥的底面积为a^2,所以体积为1/3×a^2×h=1/3×a^2×√(5/4)a=(√5/12)a^3.17、解:(1)因为PA垂直于平面ABC,所以PA垂直于AC和AB,即PA垂直于BC的平面,即BC垂直于PA,即BC垂直于PC。

(完整word版)中职数学第九章立体几何复习题

(完整word版)中职数学第九章立体几何复习题

(完整word版)中职数学第九章立体几何复习题第九章立体几何复习题一、选择题:1.设P为平面α外一点,则下述结论中,正确的是().A、过点P可作无数条直线与α垂直B、过点P只能作一条直线与α成60°的角C、过点P只有一条直线与α平行D、过点P有无数条直线与α平行2.两两相交的四条直线所确定平面的个数最多的是().A、4个B、5个C、6个D、8个3.如图,在直二面角α—PQ—β中,直角△ACB在α内,斜边AB 在棱PQ上,若AC与平面α内,斜边AB在棱PQ上,若AC与平面β成30°的角,则BC与β所成的角为().A、60°B、45°C、30°D、90°4.若△ABC在平面α内,P是平面α外一点,则图中异面直线的对数是( ).A、2对B、3对C、4对D、5对5.如果直线l和直线m没有公共点,那么这两条直线的位置关系是( ).A、共面B、平行C、异面直线D、可能是平行直线,也可能是异面直线6.若点E、F、G、H分别是空间四边形ABCD四边中点,EH和FG的位置关系是( ).A、异面直线B、平行直线C、相交直线D、相交直线或异面直线7.已知a、b是异面直线,c∥b,那么a与c ( ).A一定是平行直线 B一定是相交直线 C一定是异面直线 D不可能是平行直线8.分别在两个相交平面内的两条直线的位置关系是( ).A、异面直线B、平行直线C、相交直线D、以上三种情况均有可能9.直线a与直线b、c所成的角都相等,则b、c的位置关系是().A、异面直线B、平行C、相交D、以上三种情况均有可能10.如果a、b是异面直线,那么与a、b都平行的平面有()。

A.有且只有一个B.有两个C.有无数个D.不一定存在11.下列结论中,错误的是()。

A.在空间内,与定点的距离等于定长的店的集合是球面B.球面上的三个不同的点,不可能在一条直线上C.过球面上的两个不同的点只能做一个大圆1D.球的体积是这个球的表面积与球半径的312.设直线m//平面α,直线n在α内,则()。

中职数学(基础模块)下册第九章立体几何单元测试卷含答案

中职数学(基础模块)下册第九章立体几何单元测试卷含答案

中职数学(基础模块)下册第九章立体几何单元测试卷含答案一、、选择题1.下列条件不能确定一个平面的是()A.两条平行线B.两条相交线C.一条直线和该直线外一点 D.三个点2.平行于同一条直线的所有直线( )。

A.都相交B.互相平行C.既不相交也不平行 D.都在一个平面内3.直线l在平面α内用集合符号可表示为( ).A.l∈α B. l∩α C. α⊆l D. l⊆α4.下面说法正确的是( ).A.平面α是一个平行四边形B.平面β的长为3m,宽为2mC. 一个平面可以将空间分成两部分D. 一条线段在一个平面内,但其延长线可以不在这个平面内5.下面可以确定一个平面的条件是()A. 经过两点B.经过三个不同的点C.经过两条直线D.经过不在一条直线上的三点6. 以下四个命题中,正确的是( )A.不重合的两条直线确定一个平面B.两两相交的三条直线确定一个平面C.若线段AB在平面α内,则直线AB也在平面α内D.若线段AB在平面α内,则直线AB与平面α没有公共点7.若点M在直线l上,直线l在平面α内,则M,l,α之间的关系用符号可表示为( )A.M∈l,l∈αB.M∈l,l⊆αC. M⊆l,l⊆αD. M⊆l,l∈α8. 下列说法正确的是( )①平行于同一直线的两条直线平行;②平行于同一平面的两条直线平行;⑧垂直于同一直线的两条直线平行;④垂直于同一平面的两条直线平行.A.①④B. ①②④C. ①②③D. ②③9.在空间中,直线与直线的位置关系( )A.相交B.平行C.异面 D.相交、平行或异面10.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线和平面外的一条直线D.不在同一平面内的两条直线11.给出下列四个命题:①若直线a不平行于b,则a与b一定相交;②若直线a与b不相交,则a∥b;③若a,b为异面直线,则a不平行于b;④若a ,b 为异面直线,则a 与b 一定不相交.其中,正确命题的个数为( )A.1个 B .2个 C .3个 D .4个12.如图所示, 正方体ABCD-A'B'C'D'的对角线AC'与棱BC 的位置关系是( )A .平行B .相交C .共面 D.异面13.下面说法正确的是( ).A.过直线外一点与这条直线平行的直线有无数条B.如果两条直线没有交点,那么这两条直线平行C .空间四边形的四个顶点一定不共面D.四条线段首尾顺次连接而成的四边形一定是平面图形14. 垂直于同一条直线的两条直线( )A.相交B.平行C.异面D.相交、平行或异面15. 在长方体1111D C B A ABCD 中, 直线AC 与11B C 的关系为( )A.平行 B .垂直 C .异面 D.在同一个平面内16.已知直线a ∥平面α,直线b 在平面α内,则( )A. a//bB.a 和b 相交C.a 和b 异面D. a 和b 平行或异面17.以下条件中,能判定直线l ⊥平面α的是( )A.直线l 与平面α内一个三角形的两边垂直B .直线l 与平面α内的一条直线垂直C.直线l 与平面α内的两条直线垂直D.直线l 与平面α内的无数条直线垂直18.若直线l在平面α外,则( ).A. l//αB.l和α至少有一个公共点C. l和α相交D. l和α至多有一个公共点19.两条直线都与一个平面平行,则这两条直线的位置关系是( ).A.异面 B.相交C.平行 D.可能共面,也可能异面20.若a,b为直线,α为平面,则下列命题中,错误的是( ).A. 若a∥b,a⊥α,则b⊥αB. 若a⊥α,b⊥α,则a∥bC. 若a⊥α,b⊆α,则a⊥bD. 若a⊥b,a⊥α,则b⊥α21.在一个平面内,与这个平面的斜线垂直的直线( ).A.只有一条B.有无数条C.有相交的两条D.一条都没有22.空间中过直线外一点与该直线平行的平面有()A.1个B.2个C.3个 D.无数个23.下列条件中能判断两个平面平行的是( )A. 两个平面与同一条直线平行B. 两个平面与同一个平面垂直C.一个平面内的两条直线平行于另一个平面D. 一个平面内的任意一条直线都平行于另一个平面24.若平面α∥平面β,α⊆β,b⊆β,直线a,b的位置关系是( ) A.异面 B.不相交 C.平行 D.垂直25.都与第三个平面垂直的两个平面( ).A.互相垂直B.相交C.互相平行D.如果相交,那么它们的交线垂直第三个平面26.下列命题中,错误的是( )A. 平行于同一个平面的两个平面平行B.平行于同一条直线的两个平面平行C.一个平面与两个平行平面相交,则交线平行D. 一条直线与两个平行平面中的一个相交,则必与另一个也相交27. 已知平面α与β,γ都相交,则这三个平面可能有( ).A. 1条或2条交线B. 2条或3条交线C.仅2条交线 D. 1条或2条或3条交线28.下面四种说法中,正确的个数为()①如果两个平面不相交,那么它们就没有公共点;②如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行;③如果一个平面内有无数条直线都平行于另一个平面,那么这两个平面平行;④如果一条直线在两个平行平面中的一个平面内,则在另一个平面内有且只有一条直线与己知直线平行A.1个B.2个C.3个D.4个29.过平面外的两个点并且与这个平面垂直的平面()A. 有两个B.有无数个C. 有唯一的一个D.个数与两个点的位置有关30.如果一条直线上的两点到同一平面的距离相等,那么这条直线和这个平面的位置关系是()A. 直线在平面内B.直线与平面平行C.直线和平面相交 D.以上情况都有可能参考答案1—5 DBDCD6—10 CBADD11—15 BDCDC16—20 DADDD21—25 BDDBD26—30 BDADD。

职业高中第九章立体几何测试题

职业高中第九章立体几何测试题

职业高中第九章立体几何测试题第九章《立体几何》测试题(时间:120分钟;分数:150分)一、选择题(12小题,每题5分,共60分)1.下列命题中不正确的是()(A)不在同一条直线上的三点确定一个平面.(B)若线段AB在平面内,则直线AB不一定在平面内.(C)经过两条相交直线的平面有且只有一个.(D)两条平行直线确定一个平面.2.直线m上有四点A、B、C、D,点E是直线m外一点,则A、B、C、D、E五个点一共可以确定直线()条(A)5 (B)4 (C)6 (D)73.已知直线m,n,,平面、,下面给出的四个条件能够推出的是()(A)(B)(C),(D),4.已知点A,点B是直线a上两点,点C,点D是直线b上的两点,如果a,b是异面直线,则直线AC和直线BD的位置关系为()(A)平行(B)相交(C)异面(D)平行或异面5. 点P是外的一点,则直线AB、AC、BC、PA、PB、PC这六条直线一共组成异面直线()对(A)5 (B)4 (C)3 (D)26.若正方体的棱长为a,则直线AC和的距离为()(A)(B)(C)2a (D)a7.已知a,b是异面直线,直线,那么c与b()(A)一定是异面直线. (B)一定是相交直线.(C)不可能是平行直线. (D)不可能是相交直线.8. 在正方体中与是异面直线的棱共有()条.(A)4 (B)6 (C)8 (D)129.已知,,且,则b与的关系是()(A)(B)相交但不垂直(C)(D)位置不确定10. 二面角的一个面内一点P到棱的距离是它到另一个面距离的2倍,则这个二面角的度数是()(A)(B)(C)(D)11. 在正方体中,与二面角相等的二面角是()(A)二面角(B)二面角(C)二面角(D)二面角12. 在棱长为2的正方体中,M、N分别是和的中点,若为直线CM、DN所成的角,则等于()(A)(B)(C)(D)二、填空题(6小题,每题5分,共30分)13.直线在上取3个点,在上取2个点,有着5个点能确定个平面.14.如果平面外的一条直线上有两个点到平面的距离相等,那么这条直线和此平面的位置关系是 .15. 在的二面角的一个面内有一点,它到另一个面的距离为10cm,则它到棱的距离为.16. 二面角的一个面内一点P到棱的距离是它到另一个面距离的2倍, 则这个二面角的度数是.17.如下图,平面,,则图中直角三角形的个数是 .18.在正方体中,棱长为1,平面与平面ABCD所成二面角的正切值是 .三、解答题(共60分)19.(8分) 已知平面平面,,求证: .20.(8分)在的二面角的一个面内有一点,它到另一个面的距离为10cm,求它到棱的距离.21.(10分)如图,已知的二面角,点,点A到的距离AB=15,求点A到棱的距离.22.(10分) 空间四边形ABCD中,平面平面,AB=AD ,E为BD的中点,如图所示.求证:平面平面 .23.(12分)如图所示,△ABC为直角三角形,∠C=90°,EC⊥平面ABC,AC=6,BC=8,EC=,求二面角E—AB—C的大小.ECBA24.(12分)如图所示正方体中,P为CD中点,M为中点,N为BC中点.(1)求证:.(2)求证:平面平面.(3)求二面角M-DN-C的正切值.第九章测试题答案一、选择题(12小题,每题5分,共60分)1. B2.A3.C5.C6.D7.C8.B9.D 10.A 11.D12.B二、填空题(6小题,每题5分,共30分)13. 个14.平行、相交15. 16.17. 18.三、解答题(共60分)19.(8分)解过直线b作平面,使与相交于直线c,过直线b作平面,使与交于直线d(如下图)因为所以所以而d在平面内,c不在平面内,所以,且c在内,平面平面所以所以20.(8分)解如下图,设,B为A在内的射影,在内过A作AC垂直棱于C,连接BC、AB,则AB=10cm ,由三垂线定理知,BC垂直于棱所以为二面角的平面角,=21.(10分)解:连接BO 因为所以所以平面又因为所以所以为二面角的平面角所以在中,22.(10分) 证明在中,因为AB=AD ,E 为BD 的中点所以又因为平面平面 , 平面平面所以平面又平面所以平面平面 ,23.(12分)解:作CD ⊥AB 于D ,连结DE .因为EC ⊥平面ABC ,AB ?平面ABC ,所以EC ⊥AB ,所以AB ⊥平面ECD ,又因为ED ?平面ECD ,所以AB ⊥DE ,则∠EDC 是二面角E —AB —C 的平面角.因为AC =6,BC =8,∠ACB =90°,所以AB =10.又因为CD ·AB =AC ·BC所以5241086==?=AB BC AC CD 在Rt ECD 中,1tan ==∠CDECEDC ,∠EDC =45°.24.(12分)(1)略(2)略(3)过点C 作于E ,连接ME ,则所以即为二面角M-DN-C 的平面角在中,设正方体棱长为2a ,则MC=a ,。

【中职数学】第九章 立体几何总复习单元测试题

【中职数学】第九章 立体几何总复习单元测试题

第九章 立体几何总复习单元测验卷命题人:赖斌 审核人:温惠萍 份数:220份 命题时间:2020.09第Ⅰ卷(选择题 共70分)一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B.1、两个平面只要有三个公共点,那么这两个平面重合………………………………(A B )2、若直线//a 平面α,直线//b 平面α,则b a //…………………………………(A B )3、若两条斜线段相等,则它们在平面上的射影也相等………………………………(A B )4、直线与平面没有公共点,则直线与平面一定平行…………………………………(A B )5、过平面外一点可作无数条直线与已知平面垂直……………………………………(A B )6、垂直于同一平面的两条直线一定平行………………………………………………(A B )7、若线段AB 在平面α内,则直线AB 也平面α内…………………………………(A B )8、如果两个角的两边分别平行,那么这两个角相等或互补…………………………(A B )9、如果一条直线和一个平面平行,那么这条直线和平面内的任何一条直线都平行. (A B )10、由一条直线出发的两个平面构成的图形称为二面角……………………………(A B )二、单项选择题:本大题共8小题,每小题5分,共40分。

11、直线l 与平面α内的两条直线垂直,那么l 与平面α的位置关系是………………( )A . 平行B . α⊆lC . 垂直D . 以上都有可能12、如果直线a ⊥b ,且a ⊥平面α,则…………………………………………………( ) A . b //平面α B . α⊆b C . b ⊥平面α D . b //平面α或α⊆b13、空间同垂直于一条直线的两条不重合的直线的位置关系………………………( ) A . 一定是异面直线 B . 不可能平行 C . 不可能相交 D . 异面、共面都有可能 14、若直线l 上有两点到平面α的距离相等且α⊄l ,则直线l 与α的位置关系为( ) A . 平行 B . 相交 C . 平行或相交 D . 不能确定 15、线段AB 的长为2(A ∈α),它在平面内的射影长为1,则线段AB 所在的直线与平面α所成的角是…………………………………………………………………………………( )A . 30°B . 60°C . 120°D . 150°16、异面直线所成角的范围是…………………………………………………………( )A . (0°,90°]B . [0,2π) C . (0,2π) D . [0°,90°]17、正方形ABCD 的边长为12,PA ⊥平面ABCD ,PA=12,则点P 到对角线BD 的距离为…………………………………………………………………………………………( ) A . 123 B . 122 C . 63 D . 6618、在棱长为1的正方体ABCD-A 1B 1C 1D 1中,如果M 是B 1C 1的中点,则线段AM 的长是( )A . 21B . 23C . 3D . 23第Ⅱ卷(非选择题 共80分)三、填空题:本大题共6小题,每小题5分,共30分. 19、两条的直线可以且只可以确定一个平面. 20、三条平行的直线最多可确定_________个平面,最少可确定_________个平面.21、E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,则AC 与平面EFGH 的位置关系是 .22、正方体1111D C B A ABCD -中,E 、F 分别是11C B 、1CC 的中点,则B A 1与EF 所成的角为__________.23、如图PA ⊥矩形ABCD 所在的平面,PA =1cm , AB =3cm ,则异面直线PA 与BC 间的距离是 ,点P 到BC 的距离是 .24、线段AB 两个端点与平面α的距离分别为4CM 和6CM ,则AB 中点M 到α的距离为__________.四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.25、如图,已知P A ⊥平面ABC ,QC ⊥平面ABC ,P A =QC ,求证:PQ // AC .班级:_____________________姓名:_____________________座位号:_________________***************************密*********************封*********************线****************************26、已知ABCD为矩形,PA⊥平面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PDC27、在空间四边形ABCD中,M、N分别是AB、CD的中点,且MN=7,BD=6,AC=10,求AC、BD所成的角.28、所图所示,ABCD是平行四边形,P在平面ABCD之外,M是PC中点,求证:P A //平面BMD .29、所图所示,P是△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于点E,AF⊥PC于点F,求证:PC⊥EF .30、A为ΔBCD所在平面外一点,平面EFGH与AD、AC、BC、BD分别交于E、F、G、H,且四边形EFGH为矩形.(1)求证:CD∥面EFGH;(2)求AB与CD所成的角.。

中职立体几何试题及答案

中职立体几何试题及答案

中职立体几何试题及答案一、选择题(每题3分,共30分)1. 空间中,下列说法正确的是()。

A. 两条异面直线一定相交B. 两条异面直线一定平行C. 两条异面直线既不相交也不平行D. 两条异面直线可能相交也可能平行答案:C2. 一个长方体的长、宽、高分别为a、b、c,其体积为()。

A. abcB. ab+bc+acC. a+b+cD. a*b*c答案:A3. 一个球的半径为r,其表面积为()。

A. 4πrB. 4πr²C. 2πrD. 2πr²答案:B4. 一个圆柱的底面半径为r,高为h,其体积为()。

A. πr²hB. 2πrhC. πr²D. πrh答案:A5. 一个圆锥的底面半径为r,高为h,其体积为()。

A. πr²hB. 1/3πr²hC. 2πrhD. 1/2πr²h答案:B6. 一个棱锥的底面为正方形,边长为a,高为h,其体积为()。

A. a²hB. 1/2a²hC. 1/3a²hD. 1/4a²h答案:C7. 一个棱柱的底面为矩形,长为a,宽为b,高为h,其体积为()。

A. a*b*hB. 2ab*hC. 2a*b*hD. 2ab答案:A8. 一个棱锥的底面为三角形,边长为a,高为h,其体积为()。

A. 1/2a²hB. 1/3a²hC. 1/4a²hD. 1/6a²h答案:B9. 一个棱柱的底面为三角形,边长为a,高为h,其体积为()。

A. 1/2a²hB. 1/3a²hC. 1/4a²hD. 1/6a²h答案:B10. 一个棱锥的底面为正五边形,边长为a,高为h,其体积为()。

A. 1/2a²hB. 1/3a²hC. 1/4a²hD. 1/5a²h答案:B二、填空题(每题4分,共20分)1. 一个长方体的长、宽、高分别为3cm、4cm、5cm,则其体积为____cm³。

职中数学第九章 立体几何

职中数学第九章  立体几何

第九章 立体几何一、 判断题:(每小题2分,共20分)1.三个点确定一个平面。

( )2.三角形是一个平面。

( )3.经过一点和一条直线有且只有一个平面。

( )4.平行于同一条直线的两条直线平行。

( )5.过直线外一点和这条直线平行的直线有且只有一条。

( )6.一条直线和一个平面内的一条直线平行,一定和这个平面平行。

( )7.一条直线和一个平面平行,就和这个平面内的所有直线都没有公共点。

( )8.若一个平面内有一条直线平行于另一个平面,则这两个平面平行。

( )9.若两个平面没有公共点,则这两个平面平行。

( )10.矩形的平行射影一定是矩形。

( )一、判断下列命题的真假:(每小题2分,共20分)1、在空间一组对边平行且相等的四边形是平行四边形。

( )2、空间两个向量一定共面,三向量不一定共面。

( )3、长方体的对角线相等。

( )4、过平面外一点可以作无数条直线与这个平面平行。

( )5、两个平面只要三点重合,那么这两个平面一定重合为一个平面。

( )6、如果两个平面相交,那么它们的交点不一定在交线上。

( )7、已知直线a//平面α,且直线b//平面α,则a//b 。

( )8、任给三个向量,空间任一向量都可用这三个向量表示。

( )9、过平面外一点可以作无数个平面与这个平面平行。

( )10、正方形的平行射影一定是菱形。

( )1、两条直线无公共点是这两条直线平行的( )A 、充分而非必要条件B 、必要而非充分条件C 、充要条件D 、既不充分也不必要条件2、在空间四边形ABCD 中,如果E 、H 分别是AB 、AD 边上的点,且41==HD AHEB AE,F 、G 分别是BC 、CD 的中点。

那么四边形EFGH 是( )A 、平行四边形B 、梯形C 、矩形D 、菱形3、三条直线相交于一点,可以确定的平面个数是( )A 、1个B 、3个C 、4个D 、1个或3个4、下列正确的命题是( )A 、矩形的平行射影一定是矩形B 、过平面外一条直线可作无数个平面与该平面平行C 、在空间,若OA//O 1A 1,OB//O 1B 1,则∠AOB=∠A 1O 1B 1D 、空间四条直线a,b,c,d ,若a//b ,c//d ,且a//b,则b//c.5、三条直线两两垂直,则下列命题中正确的是( )A 、三条直线必共点B 、其中必有两条直线异面C 、三条直线不可能在同一平面内D 、其中必有两条直线在同一平面内6、四面体ABCD 的每条棱长都等于a ,F ,G 分别是AD 、DC 的中点,则FG •BA=( ) A 、a B 、-221a C 、-241a D 、241a 7、在平行六面体ABCD-A 1B 1C 1D 1中,三个向量共面的是( )A 、1,1,BB 1 B 、AB ,AD ,AA 1C 、B 1B ,AC 1,DB 1D 、AD ,A 1B 1,CC 18、在正方体ABCD-A 1B 1C 1D 1中,下列不正确的是( )A 、<AC CD 1>=60ºB 、<AB ,C 1A 1>=135ºC 、<AB ,AD >=90º D 、<AB ,BA >=180º9、已知A (3,-2,1),B (-2,3,5)两点,有一点P 在0 轴上,且|PA|=|PB|,则P 的坐标是( )A 、(-512,0,0) B 、(-1,0,0) C 、(-52,0,0) D 、(2,0,0) 10、在棱长为1的正方体ABCD-A 1B 1C 1D 1中,AC 1•BC=( )A 、0B 、1C 、3D 、26、空间中的四点,如果其中任意三点都不共线,那么经过其中三点的平面( )A 、 可能有三个,也可能有一个B 、可能有二个,也可能有三个C 、可能有四个,也可能有一个D 、可能有4个,也可能有两个7、异面直线a 、b 分别在两个平面上α、β,α∩β=C ,则直线C ( )A、与a、b都相交B、与a、b都不相交C、至少与a、b中的一条相交D、至多与a、b中的一条相交8、已知直线L⊥平面α,直线m⊂平面β,有下列四个命题(1)α∥∥m (2)α⊥β⊥m(3)L∥m α⊥β(4)α∥β⊥m其中正确命题是()A、(1)(2)B、(3)(4)C、(2)(4)D、(1)(3)9、下列命题中错误的是()A、若一直线垂直于一平面,则此直线必垂直于这平面上的所有直线B、若一平面通过另一个平面的一条垂线,则这两个平面互相垂直C、若一直线垂直于一个平面的一条垂线,则此直线平行于这个平面D、若一平面内的一条直线和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直。

中职数学《立体几何》总复习专项测试题

中职数学《立体几何》总复习专项测试题

第九章立体几何总复习专项测试题一、判断题(立体几何基本概念)1、在一个平面内有三条直线和另一个平面平行,那么这两个平面平行…………(A B)2、分别在两个平行的平面内的两条直线一定平行…………………………………(A B)3、不存在与两条异面直线都相交的两条直线………………………………………(A B)4、平面就是平行四边形………………………………………………………………(A B)5、过直线外一点可以作无数条直线与这条直线平行………………………………(A B)6、空间内不相交的两条直线是异面直线……………………………………………(A B)7、在空间中,互相垂直的两条直线一定是相交直线………………………………(A B)8、过空间一点与已知直线垂直的直线有且只有一条………………………………(A B)9、空间内垂直同一条直线的两条直线一定平行……………………………………(A B)10、求两条异面直线所成的角的大小与在空间内选取的点的位置有关……………(A B)11、与两条异面直线都分别相交的两条直线一定是异面直线………………………(A B)12、平行于同一条直线的两条直线必平行……………………………………………(A B)13、平行于同一个平面的两条直线必平行……………………………………………(A B)14、垂直于同一条直线的两条直线必平行……………………………………………(A B)15、垂直于同一个平面的两条直线平行………………………………………………(A B)16、平行于同一个平面的两平面必平…………………………………………………(A B)17、垂直于同一个平面的两平面平行…………………………………………………(A B)18、如果一个平面内的两条直线和另一个平面平行,那么这两个平面平行…………(A B)二、填空题(柱、锥、球)①棱柱:侧面积:_________________;全面积:________________;体积:______________ .②棱锥:侧面积:_________________;全面积:________________;体积:______________ .③圆柱:侧面积:_________________;全面积:________________;体积:______________ .④圆锥:侧面积:_________________;全面积:________________;体积:______________ .⑤球:表面积:_____________________________;体积:__________________________ .1、正四棱柱的底面边长为3cm,高为4cm,则它的侧面积为_____;全面积_____;体积_____ .2、一个四棱锥的底面是长为4cm宽为3cm的矩形,侧棱长都为5cm,则它的体积为_______ .3、已知圆柱OO′的母线l = 4cm,表面积为42πcm2,则圆柱OO′的底面半径r=________cm .4、圆锥的母线长为10,高为8,则它的表面积为____________;体积为______________ .5、一个平面截球,得到的截面面积为36π,且球心到截面的距离为8,则该球的体积为_____ .再试牛刀:1、如果直线21//l l ,2l //平面α,那么1l _________平面α.2、设直线a 与b 是异面直线,直线c //a ,则b 与c 的位置关系是_____________.3、正四棱锥底面边长为a ,侧面积是底面积的2倍,则它的体积是____________ .4、圆柱的底面半径为2cm ,高为5cm,则这个圆柱的体积为___________cm 3 .5、圆锥的母线长12cm ,母线和轴的夹角30°,则圆锥的侧面积为______;全面积为:_______ .三、选择题(确定了答案再选)1、设P 为平面α外一点,则下述结论中,正确的是( ).A.过点P 可作无数条直线与α垂直B.过点P 只能作一条直线与α成60°的角C.过点P 只有一条直线与α平行D.过点P 有无数条直线与α平行2、两两相交的四条直线所确定平面的个数最多的是( ).A.4个B.5个C.6个D.8个3、如图,在直二面角α—PQ —β中,直角△ACB 在α内,斜边AB 在棱PQ 上,若AC 与平面α内,斜边AB 在棱PQ 上,若AC 与平面β成30°的角,则BC 与β所成的角为( ).A.60°B.45°C.30°D.90°4、若△ABC 在平面α内,P 是平面α外一点,则图中异面直线的对数是( ).A 、2对 B.3对 C.4对 D.5对5、如果直线l 和直线m 没有公共点,那么这两条直线的位置关系是( ).A.共面B.平行C.异面直线D.可能是平行直线,也可能是异面直线6、若点E 、F 、G 、H 分别是空间四边形ABCD 四边中点,EH 和FG 的位置关系是( ).A.异面直线B.平行直线C.相交直线D.相交直线或异面直线7、已知a 、b 是异面直线,c ∥b ,那么a 与c ( ).A 一定是平行直线B 一定是相交直线C 一定是异面直线D 不可能是平行直线8、分别在两个相交平面内的两条直线的位置关系是( ).A.异面直线B.平行直线C.相交直线D.以上三种情况均有可能9、直线a 与直线b 、c 所成的角都相等,则b 、c 的位置关系是( ).A.异面直线B.平行C.相交D.以上三种情况均有可能10、如果a 、b 是异面直线,那么与a 、b 都平行的平面有( ).A.有且只有一个B.有两个C.有无数个D.不一定存在11、下列结论中,错误的是( ).A.在空间内,与定点的距离等于定长的点的集合是球面B.球面上的三个不同的点,不可能在一条直线上C.过球面上的两个不同的点只能做一个大圆D.球的体积是这个球的表面积与球半径的31 12.设直线m //平面α,直线n 在α内,则( ).A.m //nB.m 与n 相交C.m 与n 异面D.m 与n 平行或异面四、简答题1、(直线与直线的位置关系)已知空间四边形OABC的边长和对角线长都为1,D、E分别为OA、BC的中点,连结DE .(1)求证:DE是异面直线OA和BC的公垂线;(2)求异面直线OA和BC的距离;(3)求点O到平面ABC的距离.2、(直线与平面的位置关系)已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45º,求证:MN⊥平面PCD.3、(平面与平面的位置关系)已知二面角α- -β的平面角是锐角θ,若点C∈α,C到β的距离为3,C到棱AB的距离为4,试求sin2θ的值.∆中,AB=AC=2,且∠A=90º(如图(1)所示),以BC边上的高AD为折4、(翻折问题)已知ABC痕使∠BDC=90º.(如图(2)所示)①求∠BAC;②求点C到平面ABD的距离;③求平面ABD与平面ABC所成的二面角的正切值.高考仿真:1、如图,平面α∩β=CD,EA⊥α,EB⊥β,且A∈α,B∈β.求证:(1)CD⊥平面EAB;(2)CD⊥直线AB.2、已知正方体ABCD-A1B1C1D1.(1)求直线DA1与AC1的夹角;(2)求证:AC1⊥平面A1BD.3、已知:在60º二面角的棱上,有两个点A、B,AC、BD分别在这个二面角的两个面内,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD的长.4、已知等腰梯形ABCD,AB∥CD,上底=4,下底=6,高=3,沿它的对角线AC折成60º的二面角,求B、D两点之间的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15、夹在两个平行平面间的平行线段________________. 16、四条线段首尾顺次连接,最多要以确定_____个平面 17、若 a,b 分别为长方体相邻两个面的对角线,则 a 与 b 的关系是________. 18、已知球的体积为 36 ,则此球的表面积为________.
三.解答题(共 6 题,共计 38 分)
题号 1 2 3 4 5 6 7 8 9 10
答案 C D D D B C A C D C
二、填空题(共 8 小题,每题 4 分,共 32 分)
11.1 个或 3 个; 15. 相等 ;
12. 平行 ; 16. 4 ;
13. 2 3 ; 3
17. 相交或异面
14. 4 ;
18. 36 .
三.解答题(共 6 题,共计 38 分)
22、(6 分)一个正三棱锥的底面边长为 6,侧棱长为 4,求这个三棱锥的侧面积和体积。
P
C A
B
23、(6 分)如图,在直角三角形 ABC 中,ACB=90o,AC=BC=1,若 PA平面 ABC,
2
尘埃数学课堂
且 PA= 2 。(1)证明 BCPC (2)求直线 BP 与平面 PAC 所成的角。
A、空间任意三点确定一个平面; B、两条垂直直线确定一个平面;
C、一条直线和一点确定一个平面; D、两条平行线确定一个平面
4、如果直线 ab,且 a平面,则 ( )
A、b//平面
B、b
C、b平面
5、两个球的体积比为 8:27,则这两个球的表面积比是(
D、b//平面或 b )
A、2:3
B、 4:9
C、8:27
PE PA2 AE 2 42 32 7
A
正三棱锥
P-ABC
的侧面积 S
3S PAC
3
1 2
6
7 9
7
C
E
D
O
B
4
尘埃数学课堂
正三棱锥
P-ABC
的体积
V
=
1 3
S ABC
PO
1 3
1 2
6
3
32 6
3
23.(1)证明:PA平面 ABC,所以 PA AC, PA AB
由题知,
PC 2 PA2 AC 2 2 1 3 , AB2 AC 2 BC 2 11 2
D、 2 2 : 3 3
6、圆柱的轴截面面积为 4 ,则它的侧面积为 ( )
A. 4 3
B. 2
C. 4
D. 8
7.长方体 ABCD A1B1C1D1 中,直线 AC 与平面 A1B1C1D1 的关系( )
A.平行
B.相交
C.垂直
D.无法确定
8、空间四面体 A-BCD, AC=BD,E、F、G、H 分别为 AB、BC、CD、DA 的中点,则四
PB2 PA2 AB2 2 2 4 而由已知得 BC 2 1
PCB 中, PC 2 BC 2 PB2 ,所以 PCB 是直角三角形,BCPC 。
(2) 由 BC AC, BC PC 知,BC 平面PAC ,BPC 就是直线 BP 与平面 PAC 所成的
角。由(1)知, RtPCB 中, PC 3, BC 1 tan BPC BC 1 3 PC 3 3
24、(8 分)如图所示,长方体 ABCD A1B1C1D1 中, AB 1, BC 2, C1C 3 ,求
(1) A1B 与 C1D1 所成的角的度数;
D1
C1
A
B1
(2) BC1 与平面 CC1D1D 所成的角的度数。
D
C
A
B
3
尘埃数学课堂
第九章《立体几何》参考答案
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)
边形 EFGH 是 ( )
A、平行四边形 B、矩形 C、菱形 D、正方形
9、如果平面的一条斜线段长是它在这平面上射影的 3 倍,
那么这条斜线与平面所成角的正切值为( )
A. 2 B. 2 C. 4 D. 2 2 10、如图,是一个正方体,则 B1AC=
()
A、30o
B、45o
C、60o
D、75o
第9题
尘埃数学课堂
2020 届中职数学第九章《立体几何》单元检测
(满分 100 分,时间:90 分钟)
一.选择题(3 分*10=30 分)
1、不共面的四个点可以确定的平面个数是 ( )A、1B、3来自C、4D、无数
2、垂直于同一要直线的两条直线一定 ( )
A.平行
B.相交
C.异面
D.以上都有可能
3、下列命题正确的是( )
交 BC 于点 D,则由题可知 POA 90 ,AB=BC=CA=6,PA=4
P
AD ( AB)2 (BC)2 62 32 3 3
AO 2 AD 2 3 , PO (PA)2 ( AO)2 42 (2 3)2 2 3
取 AC 中点 E,连接 PE,则由正三棱锥 P-ABC 知: PE AC
19、(6 分)画出长为 4cm,宽为 4cm,高为 5cm 的长方体的直观图。 20、(6 分)如图,空间四边形 ABCD 中, AB CD , AH 平面BCD 求证: BH CD .
A
D
B
H
C
21、(6 分)长方体一个顶点上的三条棱长分别是 3,4,5,且它的顶点都在同一个球面 上,求主穿上球面的表面积。
tan BPC 30 .
24、解:(1) ABCD A1B1C1D1 是长方体, AB // C1D1
A1B 与 C1D1 所成的角即为 A1BA
………(2 分)
由已知 A1A
3,
AB
1,
A1BA
3
………(2 分)
(2) CC1 为 BC1 在平面 CC1D1D 内的射影, BC1C 即是 BC1 与平面 CC1D1D 所成
1
尘埃数学课堂
二.填空题(4 分*8=32 分)
11、三条直线相交于一点可以确定平面的个数是_________.
12、垂直于同一条直线的两个平面的位置关系是_________.
13、已知平面//,且、间的距离为 1,直线 L 与、成 60o 的角,则夹在、之间
的线段长为
.
14、在正方体 ABCD A1B1C1D1 中,与棱 AA’异面的直线共有_____条.
19、略
20、 AH 平面BCD CD AH ,又 AB CD ,所以 CD 平面ABH ,而 BH 平面ABH
所以, BH CD
21、解:长方体的体对角线即为球的直径,所以 2r 32 42 52 r 5 2 ,所以球 2
的表面积 s球 =4 r2 50 .
22 解:正三棱锥 P-ABC 中,过点 P 做 PO 底面 ABC,交底面 ABC 于点 O,连接 AO 并延长,
相关文档
最新文档