一元函数微分
一元函数微分学(二)

根据罗尔定理,在(0, ζ3)中至少存在一点 ζ,使得 F’(ζ)=0,即 f’(ζ)+2ζf’(ζ)+
ζf’’( ζ)=0,得证。
会用罗尔定理、拉格朗日中值定理
证明一些简单的等式或不等式。
1
f(x)在[1,2]上连续,
(1,2)上可导,f(1)= ,f(2)=2,证明:
(2) 在开区间 ( a , b ) 内可导,
(3) f (a) f (b) .
则 y f (x) 在开区间 ( a , b ) 内至少存在一点 ,使得 f ( ) =0
罗尔(Rolle)中值定理的几何意义
罗尔定理的几何意义
拉格朗日(Lagrange)中值定理
定理(
拉格朗日定理 ): 设函数 y f (x) 满足下列条件
f(ζ)、ζf’( ζ),可以考虑原函数为 ζekζ f(ζ),经求导比较,k 取 2。
设 F(x)=x 2 f’(x),F(0)=0。
1
因为 f(0)=0,f(1)=1,f(2)=-1,在(0,1)存在一点 ζ1,f(ζ1)= , 在(1,2)
3
1
存在一点 ζ2,f(ζ2)= 。
3
根据罗尔定理,在(ζ1, ζ2)中至少存在一点 ζ3,使得 f’(ζ3)=0,则 F(ζ3)=0。
lim
→0 ln(1 + )
ln 1 + −
→0
2
lim
洛必达(L’Hospital)法则求未定式的极
限
lim
→0
1 − 2
1 + 2
洛必达(L’Hospital)法则求极限
若f(x)在x=1处的某个邻域中还有连续的一阶导数,且f(1)=1,f’(1)=0,
第2章 一元函数微分学

第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。
一元微分

一、一元函数微分法1、重要导数表:1,1(ln )',()',1,x a x x a x ax >⎧=-=⎨-<⎩1[()]'(1)()n n x a x a n x a x a ---=+--,[ln(x +=22221111(arctan )',ln(ln )',2x a x a a x a a a x x a -==++- [ln sec tan ]'sec ,[ln csc cot ]'csc ,[ln csc ]'cot ,[ln sec ]'tan θθθθθθθθθθ+=-=-==()()(1)()11(1)!()!,()ln ,[ln()](),()n m n x n x n n n n n m n mn m n x n n m a a a x a x a x a A x n m++->⎧-⎪===±==⎨±±⎪<⎩)2sin()(sin )(πn ax a ax n n +=,)2cos()(cos )(πn ax a ax n n +=. 2、一元函数微分法:设)(x f y =二阶可导,且'0y ≠,则'()1'x y y =,3''()'''x y y y =-;设(),()x t y t 二阶可导,若()y y x =由(),()x x t y y t ==所确定,则'()'()'()y x y t x t = ,3''()['()'()]()[()()()()]()y x d y t x t dx t y t x t y t x t x t '''''''==-;()0b a d f t dt dx =⎰,()()()[()]'()[()]'()g x h x d f t dt f g x g x f h x h x dx =-⎰; ()()()0[()()][()][()]nn kn k k n k u x v x C u x v x -==⋅∑,注意用麦克劳林展开式求()(0)n f ; 2[()()]()[()]()[()],[()()][()()()()]().d u x v x v x d u x u x d v x d u x v x v x du x u x dv x x =+=-二、多元函数微分法1、多元复合函数的求导法:[(),()]z f u x v x = ,则全导数dz z du z dv dx u dx v dx∂∂=⋅+⋅∂∂,或'()'()'()u v z x u x f v x f =+ [(),(,)]z f u x v x y = ,则'()x u x v z u x f v f =+,y y v z v f =[(,),(,)]z f u x y v x y = ,则x x u x v z u f v f =+,y y u y v z u f v f =+()()()()xx x u x x v x xx u xx v x x uu x uv x x vu x vv xx u xx vz u f v f u f v f u u f v f v u f v f u f v f =+++=+++++222uv vuf f x uu x x uv x vv xx u xx v u f u v f v f u f v f =++++=;222yy y uu y y uv y vv yy u yy v z u f u v f v f u f v f =++++()xy x y uu x y x y uv x y vv xy u xy v yx z u u f u v v u f v v f u f v f z =+++++=.2、隐函数的求导法(两端求导法与公式法): 公式法1:(,)0F x y =,若0y F ≠,则存在()y y x =,且'()x y y x F F =-公式法2:(,,)0F x y z =,若0z F ≠,则存在(,)z z x y =,且x x z y y z z F F z F F =-=-, 若(,,)0F x y z =确定(,),(,),(,)x x y z y y x z z z x y ===,则1y z x x y z ∙∙=-. 3、多元函数高阶混合偏导数的求导法:若多元函数高阶混合偏导数连续,则其结果与求导次序无关. 4、多元函数的求微法: 若[(,),(,)]z f u x y v x y = 可微,则u v x y dz z du z dv z dx z dy =+=+若(,,)0(,,)0F x y z G x y z =⎧⎨=⎩确定()()y y x z z x =⎧⎨=⎩,则由00x y z xy z F dx F dy F dz G dx G dy G dz ++=⎧⎨++=⎩计算'(),'()y x z x .三、一(多)元函数性态1、函数的奇偶性:()'()'()()f x f x f x f x ⇒⇒为可导的奇(偶)函数为偶(奇)函数,为奇函数为偶函数;()()()()0()()f x f x x xaaf x f t dt a f t dt f x ⇒=⇒⎰⎰连续连续奇(偶)偶(奇()),奇(偶)偶(奇); 若(,)(,)f x y f x y -= ,则(,)f x y 为x I ∈(I 为关于原点对称的区间)上的奇(偶)函数.2、函数的周期性:()(0)()'()'()()f T f f x T f x T f x Tf x T =⇒⇒为周期的导函数为周期的函数,周期为周期为;()0()()()()().Tf t dt f x x x aaf t dt T f x T f x T f t dt T =⎰⇒⇒⎰⎰连续周期为周期为,为周期的连续函数周期为3、函数的单调性(含局部):'()'()()0()()f x a f a f x a ><⇒在处连续必在处充分小的邻域内单调增减.()()()f x f x 单调区间的分界点可能为驻点,尖点连续但一导不存在,间断点;视条件而定;4、函数的凹凸性(含局部):''()''()()0()()();f x a f a f x a ><⇒在处连续必在处充分小的邻域内是向上凹凸的()()f x f x 的拐点必为连续的坐标点,其横坐标可能为二导零点,二导不存在点;视条件而定;00000''()0(''()/),''()(,());f x f x f x x x f x ==⇒在两邻的符号相反为拐点00''()0000000''()''()0,'''()0(,());lim 0(,())f x x x x f x f x f x x f x A x f x x x →=≠⇒=≠⇒-在处连续为拐点为拐点;32201()lim ''(1'),()()ds ds K x y y R x s K x α→∆===+=∆弧微分曲率半径. 5、函数的极值性(局部):()()f x f x 的极值点必含于定义域,其可能为驻点,尖点,间断点;若可导,其极值点必为驻点;00000'()0('()/),'()()(),()();f x f x f x x x f x ==⇒在两邻由正到负由负到正为极大小点为极大小值00'()00000'()'()0,''()()0();lim ()0()f x x x x f x f x f x x A x x x →=<>⇒=<>⇒-在处连续为极大小点为极大小点;000000200()()''()lim ()0()'()0,lim ()0().()n x x x x f x f x f x A x f x A x x x x x →→-=<>⇒==<>⇒--为极大小点;为极大小点设),(y x f z =在其驻点),(00y x 的某邻域内有二阶连续偏导数,则02<-B AC 时无极值;02>-B AC 时有极值,且当0<A 时有极大值,当0>A 时有极小值.6、条件极值:一般有三个方法:一是降元法;二是升元法--拉格朗日乘数法;三是几何法(1)在所给条件0),,(=Φz y x 下, 求目标函数),,(z y x f u =的极值. 引进拉格朗日函数 ),,(),,(),,,(z y x z y x f z y x L Φ+=λλ(2)若所给的限制条件有两个(,,)0x y z Φ=和(,,)0x y z ψ=,求目标函数),,(z y x f u =的极值. 引进拉格朗日函数 (,,,)(,,)(,,)(,,)L x y z f x y z x y z x y z λλμ=+Φ+ψ. 7、多元函数的最大值与最小值(闭区域上的连续函数一定取得最大值和最小值): (1) 求函数),(y x f 在D 内所有驻点处的函数值; (2) 求),(y x f 在D 的边界上的最大值和最小值; (3) 将前两步得到的所有函数值进行比较,其中最大者即为最大值, 最小者即为最小值. 注:在证明不等式(,)DA f x y dB σ≤≤⎰⎰的问题时,需将),(y x f 在D 上的最值问题与积分估值定理联合考虑.四、典型例题例1、设[ln(f x +=)]1[ln(2x x f ++''.解:[ln([ln()][ln(f x df x d x x '=+=,则[ln('[ln()]ln(f x df x d x ''=+= 注:[(())]'(())'()(())f u x f u x u x f u x ''=≠.例2、函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为0.1,则(1)f '=0.5. 提示:22[()]'2'()dy f x x xf x x =∆=∆.例3、设)(x f y =是由方程组⎩⎨⎧=+-++=01sin 3232y t e t t x y 所确定的隐函数,求202|t d ydx =.解:⎩⎨⎧='+''-+-=''⇒⎩⎨⎧=-'++='0)()()2(sin cos 6)(0)1sin )((cos 26)(2t y t y y t e t e t x t e t y t e t t x y yy y 因e t y t x t y t t t ='='====000)(,6)(,1)(,有 2002)(,6)(e t y t x t t =''=''==而 223()[]()()()()()()()d y t d y y t x t y t x t dt x t dx x t x t ''''''''-=='',故 220(23)4x d y e e dx =-=. 例4、设232+-=x x xy ,求)(n y .解: ])2(2)1(1[!)1()21(2)11(11)()()(++-++⋅-=-++=n n n n n n x x n x x y .注:可用麦克劳林展开式求()(0)n y . 例5、设,siny x eu x-=则2111(2,)(2,)(,)xy yx y x d u u u x dx πππ=⎛⎫=== ⎪⎝⎭2()e π.例6、设)(),(xyg yx xy f z +=, f 具有二阶连续偏导数,g 具有二阶连续导数, 求xy z .解:1221x yz yf f g y x'''=+-, 111122212222223111()()xy x x y z f y xf f f xf f g g y y y y x x '''''''''''''=+--+--- 112212323211x y xyf f f f g g y y x x'''=-+---例7、设函数),(v u F 可微,(,)0F x z z y αβ=确定了(,)z z x y =,其中αβ、为常数,且满足0αβ≠,则x y xz yz βα+=z αβ.提示:运用两端求导法与公式法的过程中,要注意链式法则,本题也可用全微分法. 例8、设),(t x f y =,而t 是由方程0),,(=t y x F 所确定的y x ,的函数,若,F f 都具有一阶连续偏导数,试求'()y x .解:方程的两边求微分得0x t xy t dy f dx f dtF dx F dy F dt =+⎧⎪⎨++=⎪⎩,解之得'()y x =x t t x t t y f F f F F f F -+.例9、设函数),(y x f z =在点)1,1(处可微, ,1)1,1(=f (1,1)2,(1,1)3x y f f ==,)),(,()(x x f x f x =ϕ, 求13)(=x x dx d ϕ 解:1)1,1())1,1(,1()1(===f f f ϕ. 322()3()()3()[(,(,))(,(,))(,)]x y d d d x x x x f x f x x f x f x x f x x dx dx dxϕϕϕϕ===+ 23()[(,(,))(,(,))((,)(,))]x y x y x f x f x x f x f x x f x x f x x ϕ=++故13)(=x x dx d ϕ=3(1)[(1,1)(1,1)((1,1)(1,1))]51x y x y f f f f ϕ++=. 例10、设(,)u x y 二阶偏导数连续,且0xx yy u u -=,(, 2)u x x x =,2(, 2)x u x x x =, 求(, 2)xx u x x ,(, 2)xy u x x ,(, 2)yy u x x .解:等式x x x u =)2,(两端对x 求导,得(,2)2(,2)1x y u x x u x x +=,则21(,2)(1)2y u x x x =-这两个等式,对x 求导得(,2)2(,2)2xx xy u x x u x x x +=, (,2)2(,2)yx yy u x x u x x x +=- 由已知条件得,xx yy xy yx u u u u ==, 故解得x u u yy xx 34-==, x u xy 35= . 例11、设(,)ax y z u x y e +=,0xy u =,试确定常数a ,使0xy x y z z z z --+=.解:(),(),[()()]ax y ax y ax y x x y y x x xy y z e u au z e u u z e u au u au +++=+=+=++++ ,由0xy u =,可得(1)01ax y xy x y y z z z z e a u a +--+=-=⇒=.例12、对螺旋线θρe =在)2,(),(2πθρπe =处的切线的直角坐标方程为2πe y x =+.例13、设()f x 连续,在0x 可导,且200()f x x =,()00'2f x x >,则存在0>δ ,使得(C )(A )20()f x x -在00()x x δ+,内单增 (B )20()f x x -在00()x x δ-,内单减(C )对任意的00()x x x δ∈+,有2()f x x >(D )对任意的00()x x x δ∈-,有2()f x x > 提示:令2()()F x f x x =-.例14、曲线()234(1)(2)(3)(4)f x x x x x =----的一个拐点为(C )(A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0)例15、设()f x 在0x =某邻域内有二阶连续导数,且"0()lim11cos x xf x x→=-,则(C ) (A )'(0)0f =,且(0)f 是()f x 的极值(B )'(0)0f ≠,但(0)f 是()f x 的极值(C )"(0)0f =,且(0,(0))f 是曲线()y f x =的拐点 (D )"(0)0f ≠,但(0,(0))f 是曲线()y f x =的拐点例16、设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A ) (A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<D )0dy y <∆<例17、()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()0xf t dt ⎰是(B )(A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数(D )在x =0间断的偶函数提示:令()()(),000,0f x x f x f x +>⎧⎪=⎨+=⎪⎩,()()0000lim lim 0x x x x f t dt f t dt +++→→==⎰⎰ 例18、求证:(1)()0()()()(),f x a T Taf x f x T f x dxf x dx +=+=⎰⎰可积(2)()0()()()()f x nT Tf x f x T f x dxn f x dx =+=⎰⎰可积.提示:(1)令0()()(),a T TaF a f x dx f x dx +=-⎰⎰a R ∈用求导法,这比用换元法方便(2)令0()()()nT T G n f x dx n f x dx =-⎰⎰,用求导法错误,因n Z ∈,用换元法方便111(1)0()()()()()n n n x kT u nT k T T T TkTk k k f x dx f x dx f kT u du f x dx n f x dx ---=++=====+==∑∑∑⎰⎰⎰⎰⎰.例19、设)(u ϕ是连续的正值函数,试证明:⎰--=ccdu u u x x f )()(ϕ在],[c c -上是上凹的.证明:⎰⎰-+-=-cxxcdu u u x du u u x x f )()()()()(ϕϕ⎰⎰⎰⎰---+-=xc xcxcxcdu u u du u x du u u du u x )()()()(ϕϕϕϕ⎰⎰>=''+='-ucxcx x f du u du u x f 0)(2)(,)()()(ϕϕϕ,故,原题得证.例20、数列21{(12)}n n +中的最大项为916.提示:设21()(12),[1,)x f x x x +=∈+∞,令()0f x '=,则在2ln 2x =处()f x 取得最大值,又2223<<,而19(2),(3)216f f ==,故该数列的最大值为第三项:169. 例21、设)(x f 二阶导数连续,且xe xf x x f x --='--''-11)()1(2)()1(, 试问(1)若)1( ≠=a a x 是极值点时,是极小值点还时极大值点?(2)若1=x 是极值点时,是极大值点还是极小值点?提示:(1)将0)(='a f 代入xe xf x x f x --='--''-11)()1(2)()1(,得1()(1)1)(0)af a e a a -''=--≠,则)(x f 在a x =取极小值;(2)由1()2()(1)1)xf x f x e x -'''-=--,知11lim ()2lim ()1x x f x f x →→'''-=则,01)1(>=''f 又0)1(='f ,故1=x 为)(x f 的极小值点. 例22、已知函数),(y x f 在点(0,0)的某个邻域内连续, 且1)(),(lim22200=+-→→y x xyy x f y x , 则(A )A 点(0,0)不是(,)f x y 的极值点.B 点(0,0)是),(y x f 的极大值点.C 点(0,0)是),(y x f 的极小值点.D 无法判断点(0,0)是否为),(y x f 的极值点?提示:由),(y x f 在点(0,0)的连续性及1)(),(lim22200=+-→→y x xyy x f y x ,知0)0,0(=f .且α+=+-1)(),(222y x xy y x f ,其中0lim 00=→→αy x ,则222222)()(),(y x y x xy y x f ++++=α 令x y =, 得22(,)()f x x x o x =+,令x y -=, 得22(,)()f x x x o x -=-+.从而),(y x f 在(0,0)点的邻域内始终可正可负, 又0)0,0(=f , 由极值定义选(A).例23、 2(,)()x z x y e ax b y -=+-满足条件20b a =≥时,(1,0)z -为其极大值. 提示:由必要条件知,2b a =,再由充分条件知0a >,经验证0a =也可以. 例24、已知()f u 具有二阶导数,且(0)1f '=, )(x y y =由11y y xe --=所确定, 设(ln sin )()z f y x g x =-=,判定()g x 在0x =处的极值性.提示:在11y y xe --=中, 令0=x 得(0)1y =,将其两边对x 求导,110y y y e xe y --''--=, 再对x 求导得111210y y y y y e y e y xe y xe y ----'''''''----= 将1,0==y x 代入上面两式得(0)1,(0) 2.y y '''=='()(cos )(ln sin )z x y y x f y x ''=--,222''()(cos )(ln sin )[()sin ](ln sin )z x y y x f y x y y y y x f y x '''''''=--+-+-将(0)1y =,(0)1(0)2y y '''==,,(0)1f '=代入上面两式得0'()0,x z x ==0''()1x z x ==.例25、求由方程010422222=--+-++z y x z y x 确定的函数),(y x f z =的极值.[解一] ⎩⎨⎧='-+'+='--'+0422204222y y x x z z z y z z z x )(a由函数极值的必要条件知0,0='='y x z z ,将其代入)(a 得驻点)1,1(-P .又 z z A Pxx-=''=21 ,0=''=P xy z B ,zz C P yy -=''=21因为 2210(2)AC B z -=>- )2(≠z ,故)1,1(-=f z 为极值. 将1,1-==y x 代入方程010422222=--+-++z y x z y x ,得6,221=-=z z 将21-=z 代入)(b 中可知0A >,故2)1,1(-=-=f z 为极小值. 将61=z 代入)(b 中可知0A <,故6)1,1(=-=f z 为极大值. [解二] 配方法. 22)1()1(162+---±=-y x z显然,6=z 为极大值, 2-=z 为极小值.例26、已知函数(,)z f x y = 的全微分ydy xdx dz 22-=,并且(1,1)2f =.求(,)f x y 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值. 解:2222()dz xdx ydy d x y C =-=-+,则22(,)z f x y x y C ==-+,再由(1,1)2f =,得 C=2, 故 .2),(22+-=y x y x f令20,20x y f x f y ===-=得可能极值点为(0,0),且(0,0)2f =再考虑其在边界曲线1422=+y x 上的情形:令22(,)(,)(1)4y L x y f x y x λ=++-, 由2212(1)0,20,1024x y y L x L y x λλ=+==-+=+-=() 得可能极值点为(0,2)±,(1,0)± ,而,2)2,0(-=±f 3)0,1(=±f , 可见(,)z f x y =在区域D 内的最大值为3,最小值为-2.推广:求证:2214y x σ+≤≤≤⎰⎰.例27.求曲线1:0z C y ⎧=⎪⎨=⎪⎩2230:0x y C z +-=⎧⎨=⎩之间的距离.解:任取1(s C ∈,2(32,,0)t t C -∈,则222(23)D d s t t s ==+-++由2(23)10,4(23)20s t D s t D s t t =+-+==+-+=,得唯一驻点1(,1)2P ,从几何意义知d 客观存在,故所求距离为1(,1)22d =.注:(1)d =3.从几何意义上知,(,,)P x y z 到12(1,2,0),(3,1,2)P P --的距离之和最小为123PP =.(2)函数(,)f u v =. 提示:该题可转化为在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短,作椭圆切线平行于已知直线求解,或以椭圆方程为条件,其上点到直线的距离平方为目标函数,用拉格朗日乘数法完成.例28.求函数xyz f = 在条件0,1222=++=++z y x z y x 下的极值.解 令)()1(222z y x z y x xyz L +++-+++=μλ有 02=++=μλx yz L x , 02=++=μλy xz L y ,02=++=μλz xy L z 得 z z y y x x μλμλμλ+=+=+222222,又0,1222=++=++z y x z y x得z x =, 解得驻点)61,62,61(1-P ,)61,62,61(2--P 。
一元函数的导数与微分

一元函数的导数与微分一、引言函数是数学中极为重要的概念之一,而在微积分中,导数和微分是对函数进行研究和描述的核心概念。
本文将介绍一元函数的导数与微分的概念、性质和计算方法。
二、导数的概念在数学中,函数的导数表示函数在某一点的瞬时变化率。
设函数y=f(x),其中x为自变量,y为因变量。
函数f(x)在点x处的导数记为f'(x),定义为当自变量的增量趋于0时,函数值的增量与自变量增量的比值的极限,即f'(x) = lim(∆x→0)(f(x+∆x)-f(x))/∆x。
三、导数的性质1. 可导性:如果函数f(x)在某一点x上有导数f'(x),则称函数f(x)在点x可导。
2. 奇偶性:若函数f(x)是偶函数,则其导数f'(x)是奇函数;若函数f(x)是奇函数,则其导数f'(x)是偶函数。
3. 乘积法则:设函数u(x)和v(x)在点x可导,则(u(x)v(x))' =u'(x)v(x) + u(x)v'(x)。
4. 商积法则:设函数u(x)和v(x)在点x可导,v(x)≠0,则(u(x)/v(x))' =(u'(x)v(x) - u(x)v'(x))/v^2(x)。
5. 链式法则:设函数u(x)和v(x)在点x可导,则复合函数(u(v(x)))' = u'(v(x))v'(x)。
四、微分的概念函数的微分是对函数的局部线性近似的描述。
设函数y=f(x),其中x为自变量,y为因变量。
函数f(x)在点x处的微分记为dy,定义为dy = f'(x)dx。
五、微分的性质1. 微分与导数的关系:当自变量的增量dx趋于0时,函数值的增量dy与dx的比值的极限等于函数的导数,即dy/dx = f'(x)。
2. 链式法则:对复合函数而言,其微分等于各个内部函数的微分之积,即d(u(v(x))) = u'(v(x))v'(x)dx。
一元函数微分学1.2 函数的性质

练习 1:判断下列函数的奇偶性
(1) y x x , (2) y x2 , (3) y x x2.
答 案 :(1)奇函数 , ( 2)偶函数, ( 3)非奇非偶函数 .
练习 2:判断下列说法的正确性 (1)两个奇函数的和、差、积、商(有意义)仍为奇函数, (2)两个偶函数的和、差、积、商(有意义)仍为偶函数, (3)一个奇函数与一个偶函数的乘积是奇函数.
答案: x 4k 1或 x 4k 2,其中k Z .
4. 有界性 定义 设函数 y f (x)在区间I 内有意义, 若对任意的 x I ,都有 f (x) A( A为常数),则称函数 f (x)在区
间I 内是有上界的,并称 A叫函数在区间I 内的上界. 若对任意的 x I ,都有 f (x) B(B为常数),则称函数 f (x)在区
(a, b) 内单调递减,并称 (a, b) 叫函数的单调递减区间.
称单调递增与单调递减这种特性叫函数的单调性,单调递增 区间与单调递减区间统称函数的单调区间.
例如,函数 y x2在(,0)内单调递减,在(0,)内单调递
增.
从图形上看,递增函数就是当 x自左向右变化时,函数的图 形逐步向上延伸,因此也叫单调上升;递减就是当 x自左向右变 化时,函数的图形逐步向下延伸,因此也叫单调下降.(如下图)
(1) y sin 1 , x
(2) y 1 x2,
(3)
y
1 x2
,
(4) y 2x 3.
注意:同一个函数,可能在某些范围内是有界的,而在
另一些范围内是无界的.
例如,设 f (x) 1 ,当1 x 2时,有1 f (x) 1,
x
2
第二章-一元函数微分学.docx

第二章一元函数微分学导数的概念定义设函数y=f(x)在点x 0的某一邻域内有定义,若自变量x 在点X 。
处的改变 量为△ x(x 0+Ax 仍在该邻域内).函数y 二f(x)相应地有改变量△『= f(xo+Z\x)・f(xo),若果极限点Xo 处的导数,记作 ____ 或 _________ f '(Xo),即f(x 0)= ___________________ . 此时称函数y 二f(x)在点Xo 处可导.如果上述极限不存在,则称函数y 二f(x)在点 X 。
处不可导.下面是两种等价形式:f'(Xo)= __________________ = ___________________ •当 Xo =0,W: r (0)= _____________ ,如果y 二f(x)在开区间(a,b)内每一点都可导,则称函数f(x)在开区间(a,b)内可导, 由于对于(a,b)内每一点x,都对应一个导数值F(x),因此又称此F(x)为函数f(x) 在(a,b)内的 __简称为 _____ ,记作 __ 或一—.f(x)在点x 0的导数f'(xo)可以看做是导数f'(x)在点x=x 0处的函数值,即 f(x 0)= • 注意:f'(xo)工[f(x°)y■.・ /(兀0 +山)一/(旺)如果y=f(x)在点X 。
及其左侧邻域内有定义,当hm —T —存在时,则称该极值为f(x)在点X 。
处的 ______ 记为—.同理,定义右导数性质 函数y=f(x)在点x 0处可导<・・> ________左导数与右导数常用于判定分段函数在其分段点处的导数. 导数的几何意义 如果函数y 二f(x)在点X 。
处的导数F(x°)存在,则在几何上表明曲线尸f(x)在点 (xo, f(x 0))处存在切线,且切线斜率为_•可导函数与连续性的关系函数y 二f(x)在点xo 处可导,是函数y 二f(x)在点xo 处连续的 _______ 条件. 如u 二u(x),v=v(x)都在x 处可导,由导数的定义可以推得u±v 在x 处也可导,且 (u±vf= ________ (导数的和差运算公式).导数的运算3.1基本初等函数的导数公式c'=_(c 为常数)(兀")‘二 ________ ( n G R) (a x y= ________________(e x y = _________ (logx) = ------------------------------ (In xY = ____________(sin x)f = _________ (cos xY = ______________ (tan x)z = _____________(cot x)f = _________ (arcsin x)f - ____________ (arccos x)z = ____________存在,则称此极限值为函数沪f(x)在2.(arctan x\ = _________ {arc cot xY = ______________________________3.2导数的四则运算法则设u二u(x),v=v(x)都在X处可导侧(cuf= ___ (c 为常数) (u±vf= ___________ (uvf= ________________(;)z= _______ (vHO) (^= ___________ ( vHO ,c 为常数)3.3反函数的求导法则设函数x=(p(y)在某个区间内单调町导,且啓(y)H0,则其反函数y二f(x)在其对应区间内也可导,且有f(x)= ____ •3.4复合函数的求导法则设y = f(u)z u = g(x)复合成y =f[g(x)],若u二g(x)在点x处可导"二f(u)在相应点u = g(x)可导,则复合函数y =f[g(x)]在点x可导,且有链式法则旷 -------- = ---------3.5隐函数的求导法则设y=f(x)是由方程F(x,y) = 0确定的.求V只须直接由方程F(x’y) = 0关于x求导,将y看做是______ 依复合函数链式法则求之.3.6由参数方稈确定的函数的求导法则设y二y(x)是由{ 所确定的.其中(p⑴,叭t)为可导函数,且卩⑴H O,则空_ 一一------ 一--------3.7对数求导法对于幕函数y = 或y由若干个函数连乘、除、开方所构成,通常可以先用—改变函数类型.如y = u:两端取对数:___________ ,化幕指函数为隐函数,如y =N),两端取对数:化为隐函数,然后利用隐函数的求导法则求导.3.8高阶导数二阶及二阶以上的导数统称为高阶导数,对于求n阶导数,需要注意从屮找出规律,以便得到n阶导数的________ .常见n阶导数公式:(a x)(n) = _______ (e x)(n) = ______________ (x n)(n) = ______________(x w )(fl ) = ____ (正整数 m<n )(sin 工)(")= _____ _______(cos x )(n ) = ________ _______4. 洛必达法则 4.1未定型〃訂的极限⑴设函数f(x)与F(x)满足以下条件:① 在点X 。
一元函数微分学

第二章一元函数微分学一.先回顾导数的定义:设函数在内有定义,如果极限存在,则称在处可导,称为函数的可导点,且称上述极限值为函数在处的导数,记为:或;或简记为.注意导数的本质是瞬时变化率,它还有另外两种常见的等价定义:1.=;2.;要特别关注处的导数有特殊形式:(更特别地,要知道两个重要的结论:1.可导必连续;2。
函数在处可导的充要条件是对于分段函数在分段点处的可导性,一定从要考察其左、右导出发.例1.已知=A,试求下列极限的值(1)(2)。
例2.研究函数在处的可导性.解:因为同理,可求得.由于,所以在处不可导。
(记住这个结论)练习:设在处可导,求的值.解:(一)因为在处可导,从而在处也连续.所以,即(二)由得.例3.已知,试求在处的导数.解:因为,所以,由此例可见,在导数存在的情况下,求导问题就归结为求一个型的极限.故求导就是求极限,不必多举例,今后很少针对具体函数计算在一点处的导数值.如把函数在一点处可导的概念推广到一个区间,则可得到导函数的概念.大家要牢记基本导数表(共十五、六条)。
这里的每一条都是根据导数的定义推出来的,请大家在下面自己试着也推推.如:,求.二.导数的几何意义关于导数的几何意义,主要考察的题型有两种。
一种题型是选择题或判断题。
比如:若函数在处可导,则曲线在处必有切线;(√);反之,若曲线在处有切线,则在处必可导,则(×).另一种题型是根据几何意义找切线.例4.求曲线与直线垂直的切线.解:设切点.切线斜率由题意,即故切线方程为下面举一个复杂点的,把前面的知识点窜起来.例5.设为连续函数,且求曲线在点处的切线方程。
(08年研究生考试题)解:由于,且故(前面已讲过理由)而,所以,切线方程为三.导数的四则运算四则求导法则非常简单,但不注意的话,容易犯错误。
下面举几个小例子.例6.求的导数.注意:部分同学可能会犯下面的错误:.例7.设求此题应先化简再求导:注意:个别同学容易把幂函数求导与指数函数求导的公式搞混.例8.求的导数.解:.四.反函数求导法则若函数,其反函数为.若在的某邻域内连续、严格单调且,则在点可导,且.例9.求的导数.解:设原函数,则其反函数为.根据反函数求导法则.有.五.复合求导法则大家可能还有印象,复合函数的导数是.(与直接套用基本导数表相比,这个2从何而来?)如果记,则,故此题恰好满足等式:(*)这是否是巧合的?我们说不是.事实上,(*)式正揭示出了复合函数的求导法则.定理:若函数在可导,而函数在对应的处也可导,则复合函数在处也可导,且或(或.注意:复合函数的链式求导法则可推广至复合两次以上的情形,如:对函数,如记,则各变量间的关系是:有上式可通过连续使用两次链式法则得到。
第二章 一元函数微分学

第二章 一元函数微分学一.与导数的定义有关的考点 先回顾导数的定义: 设函数()x f y =在()x U内有定义,如果极限()()x x x f x f x x 000lim--→存在,则称()x f y =在x 0处可导,x 0称为函数()x f 的可导点,且称上述极限值为函数()x f 在x 0处的导数,记为:|0x dx dy x =或|0x dx dfx =;或简记为()x f 0'. 注意导数的本质是瞬时变化率,它还有另外两种常见的等价定义: 1.()x f 0'=()()xf x f x x x ∆-∆+→∆000lim;2.()()()00lim.x fh f f x hx xx →+-'=;要特别关注0x =处的导数有特殊形式:()()()00lim.x f x f f x→-'=(更特别地,()()()()()000lim.00x f x f f f x→-'==如。
要知道两个重要的结论:1.可导必连续;2。
函数()x f y =在x 0处可导的充要条件是()()//00.f x f x -+=对于分段函数在分段点处的可导性,一定从要考察其左、右导出发.例1.已知()x f 0'=A ,试求下列极限的值 (1)()());(lim000A xf x f x x x -=∆-∆-→∆(2)。
()());4(3lim000A xx f x f x x x =∆∆--∆+→∆例2.研究函数()||x x f =在0=x 处的可导性. 解:因为()()()/000lim lim 1000x x f x f x f x x---→→---===-- 同理,可求得()10/=+f .由于()()00//f f +-≠,所以()||x x f =在0=x 处不可导。
(记住这个结论)练习:设()()2,0,1,0.axe xf x b x x ⎧≤⎪=⎨->⎪⎩在0x =处可导,求,a b 的值. 解:(一)因为()f x 在0x =处可导,从而()f x 在0x =处也连续.所以,()()0lim lim ,x x f x f x -+→→=即 1.b = (二)()()()/00010limlim ;0ax x x f x f e fa x x---→→--===- ()()()()22/001120limlim lim 2.0x x x f x f x x xfx xx+--+→→→----====-- 由()()//00f f -+=,得2a =-.例3. 已知()x x f 2=,试求()x f 在2=x 处的导数.解:因为2224lim lim(2)42x x x x x →→-=+=-,所以,()2 4.f '=由此例可见,在导数存在的情况下,求导问题就归结为求一个0型的极限.故求导就是求极限,不必多举例,今后很少针对具体函数计算在一点处的导数值. 如把函数在一点x 0处可导的概念推广到一个区间,则可得到导函数的概念.大家要牢记基本导数表(共十五、六条)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分 一元函数微分[选择题]容易题 1—39,中等题40—106,难题107—135。
1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=∆,则当0→h 时,必有( )(A) y d 是h 的同价无穷小量. (B) y y d -∆是h 的同阶无穷小量。
(C) y d 是比h 高阶的无穷小量. (D) y y d -∆是比h 高阶的无穷小量. 答D2. 已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0<x 时,0)(,0)(<''>'x f x f , 则在),0(+∞内有( )(A )0)(,0)(<''>'x f x f 。
(B )0)(,0)(>''>'x f x f 。
(C )0)(,0)(<''<'x f x f 。
(D )0)(,0)(>''<'x f x f 。
答C3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( )(A )必要条件。
(B) 充分条件。
(C )充要条件。
(D )既非必要,又非充分条件。
答B4.设n 是曲线x x x y arctan 222-=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈∀≤x x x f ,则0=x 必是)(x f 的( )(A )间断点。
(B )连续而不可导的点。
(C )可导的点,且0)0(='f 。
(D )可导的点,但0)0(≠'f 。
答C6.设函数f(x)定义在[a ,b]上,判断何者正确?( )(A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( )(A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( )(A )0x 点的自向量的增量 (B )0x 点的函数值的增量(C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f =)(,其定义域是0≥x ,其导数的定义域是( )(A )0≥x (B )0≠x (C )0>x (D )0≤x 答C10.设函数)(x f 在点0x 不可导,则( )(A ))(x f 在点0x 没有切线 (B ))(x f 在点0x 有铅直切线 (C ))(x f 在点0x 有水平切线 (D )有无切线不一定 答D11.设'=''='''>f x f x f x ()(),()00000 , 则( ) (A) x 0是'f x ()的极大值点 (B) x 0是f x ()的极大值点 (C) x 0是f x ()的极小值点 (D) (,())x f x 00是f x ()的拐点[D]12. (命题I ): 函数f 在[a,b]上连续. (命题II ): 函数f 在[a,b]上可积. 则命题II 是命 题 I 的( )(A )充分但非必要条件 (B )必要但非充分条件 (C )充分必要条件(D )既非充分又非必要条件(答 B )13.初等函数在其定义域内( )(A )可积但不一定可微 (B )可微但导函数不一定连续 (C )任意阶可微 (D )A, B, C 均不正确 (答 A )14. 命题I ): 函数f 在[a,b]上可积. (命题II ): 函数 |f| 在[a,b]上可积. 则命题I 是命 题 II 的 ( )(A )充分但非必要条件 (B )必要但非充分条件 (C )充分必要条件(D )既非充分又非必要条件(答 A ) 15.设 )(x u ey = 。
则 ''y 等于( )(A ) )(x u e (B ) )(x u e)(''x u(C ))(x u e)]('')('[x u x u + (D ))(x u e )](''))('[(2x u x u +(答 D )16.若函数 f 在 0x 点取得极小值,则必有( )(A ) 0)('0=x f 且 0)(''=x f (B )0)('0=x f 且 0)(''0<x f (C ) 0)('0=x f 且 0)(''0>x f (D )0)('0=x f 或不存在 (答 D ) 17. ≠)('a f ( )a x a f x f A a x --→)()(lim)(; xx a f a f B x ∆∆--→∆)()(lim ).(0;t a f a t f C t )()(lim ).(0--→; ss a f s a f D S )2()2(lim ).(0--+→ 答(C ) 陆小 18. y 在某点可微的含义是:( ) (A ) a x a y ,∆≈∆是一常数; (B ) y ∆与x ∆成比例(C ) x a y ∆+=∆)(α,a 与x ∆无关,0→α)0(→∆x .(D ) α+∆=∆x a y ,a 是常数,α是x ∆的高阶无穷小量).0(→∆x 答( C )19.关于dy y =∆,哪种说法是正确的?( )(A ) 当y 是x 的一次函数时dy y =∆. (B )当0≈∆x 时,dy y =∆ (C ) 这是不可能严格相等的. (D )这纯粹是一个约定. 答( A )20.哪个为不定型?( )(A )0∞ (B )∞0 (C )∞0 (D )0∞ 答( D )21.函数f x x x x x ()()=---232不可导点的个数为(A) 0(B) 1(C) 2(D) 3[C]22.若)(x f 在0x 处可导,则=--→hx f h x f h )()(lim 000( )(A ))(0x f '-; (B ))(0x f -'; (C ))(0x f '; (D ))(0x f -'-.答案:A23.)(x f 在),(b a 内连续,且),(0b a x ∈,则在0x 处( ) (A ))(x f 极限存在,且可导;(B ))(x f 极限存在,且左右导数存在;(C ))(x f 极限存在,不一定可导; (D ))(x f 极限存在,不可导.答案:C24.若)(x f 在0x 处可导,则|)(|x f 在0x 处( )(A )必可导;(B )连续,但不一定可导;(C )一定不可导;(D )不连续.答案:B25.设|)(|)()(0x x x x f ϕ-=,已知)(x ϕ在0x 连续,但不可导,则)(x f 在0x 处( ) (A )不一定可导;(B )可导;(C )连续,但不可导; (D )二阶可导. 答案:B26.设)()()(bx a g bx a g x f --+=,其中)(x g 在),(+∞-∞有定义,且在a x =可导,则)0(f '=( )(A )a 2; (B ))(2a g '; (C ))(2a g a ';(D ))(2a g b '.答案:D27.设))(cos()(cos x f x f y ⋅=,且f 可导, 则y '=( )(A ))())(sin(sin )(cos x f x f x x f '⋅⋅';(B )+⋅'))(cos()(cos x f x f ))](sin([)(cos x f x f -⋅;(C )-⋅⋅'-))(cos(sin )(cos x f x x f )())(sin()(cos x f x f x f '⋅⋅; (D )-⋅'))(cos()(cos x f x f )())(sin()(cos x f x f x f '⋅⋅.答案:C28.哪个为不定型?( ) (A )0∞ (B )∞0 (C )∞0 (D )0∞ 答( D )29.设)100)(99()2)(1()(----=x x x x x x f ,则).()0('=f( A ) 100 (B ) 100! (C ) -100 (D ) -100! 答案:B30.设)(x f 的n 阶导数存在,且)()(lim)()1(a f ax x f n n a x =--→,则)()()1(=-a f n(A ) 0 ( B ) a (C ) 1 (D ) 以上都不对答案: A31.下列函数中,可导的是( )。
( A ) x x x f =)( (B ) x x f sin )(=(C ) ⎪⎩⎪⎨⎧>≤=0,0,)(2x x x x x f (D ) ⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f 答案:A32.初等函数在其定义域区间内是( )( A ) 单调的 (B ) 有界的 (C ) 连续的 (D ) 可导的 答案:C33.若)(x f 为可导的偶函数,则曲线)(x f y =在其上任意一点),(y x 和点),(y x -处 的切 线斜率( )(A ) 彼此相等 (B ) 互为相反数(C ) 互为倒数 ( D )以上都不对 答案:B34. 设函数)(x f y =在点0x 可导,当自变量由0x 增至x x ∆+0时,记y ∆为)(x f 的增量, dy 为)(x f 的微分,则)(→∆-∆xdyy (当0→∆x 时)。
(A ) 0 ( B ) 1- (C ) 1 (D ) ∞答案:A 35. 设xx x f log log log )(=,则)()('=x f(A )2)(log log log x x x x - (B ) 2)(log log log 1x x x- (C )2)(log log log x x x x + ( D ) 2)(log log log 1x x x+答案:B36.若⎩⎨⎧>-≤.1,;1,)(2x b ax x x x f 在x =1处可导,则a b , 的值为( )。