人教版初一数学下册代入消元法练习题
【人教版】七年级数学下册:8.2.1消元(代入法)

∴方程组的解是
x=1 y=2
谈谈思路
例1 解方程组
2y – 3x = 1 ① x=y-1 ②
解: 把②代入①得:
变: 2y – 3x = 1 ① x–y=–1 ②
2y – 3(y – 1)= 1
2y – 3y + 3 = 1
2y – 3y = 1 - 3
-y=-2
y= 2
把y = 2代入②,得
x=y–1=2–1=1
是关于x、y的二元一次方程,
求 m2 n2 的值。
• 4、如图所示,将长方形ABCD的一个 角折叠,折痕为AE,∠BAD比∠BAE大 48°.设∠BAE和∠BAD的度数分别为x ,y 度,那么x,y所适合的一个方程组是 C ()
A y x 48 B y x 48 D
y x 90
再见
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。
100×2y+250y=22500000
整体代入法
解得 y=50000
把y=50000代入① ,得 x=20000
xy
20000 50000
再议代入消元法
5x2y 500x250y22500000
上面解方程组的过程可以 5 x
解:把①代入② ,得 4x+(3x-9)=12
数学人教版七年级下册同步训练:8.2---8.4练习题含答案

8.2 消元——解二元一次方程组一、单选题1.用代入法解方程组{26345x y x y -=+=-较简单的方法是( ) A.消y B.消x C.消x 和消y 一样 D.无法确定2.若关于,x y 的二元一次方程组5,9,x y k x y k +=⎧⎨-=⎩①②的解也是二元一次方程236x y +=的解,则k 的值为( )A.34-B.34C.43D.43-3.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是( )A .﹣1B .1C .﹣5D .54.方程组3276211x y x y +=⎧⎨-=⎩的解是( )A.15x y =-⎧⎨=⎩B.12x y =⎧⎨=⎩C.31x y =⎧⎨=-⎩D.212x y =⎧⎪⎨=⎪⎩5.用“代入消元法”解方程组2327y x x y =-⎧⎨-=⎩①②时,把①代入②正确的是( )A.3247x x -+=B.3247x x --=C.3227x x -+=D.3227x x --=6.若关于x 的方程243x m -=和2x m +=有相同的解,则m 的值是( ) A .10 B .10- C .8 D .8-7.以1,{1x y ==-为解的二元一次方程组是( )A. 0{1x y x y +=-= B. 0{1x y x y +=-=-C. 0{2x y x y +=-=D. 0{2x y x y +=-=-8.解方程组{332,266,x y x y +=-=①②用加减法消去y ,需要( )A.2⨯-①②B.32⨯+⨯①②C.23⨯⨯①-②D.2⨯+①②9.,a b 满足方程组{28,27,a b a b +=+=则b a -的值为( ) A.1 B.0 C.-1 D.2 二、填空题10.若{6,20,x y x y -=+=则32x y += .11.若关于,x y 的二元一次方程组{4,2x y k x y k-=+=的解也是二元一次方程36x y -=的解,则k = .12.方程34x y -=中,有一组解x 与y 互为相反数,则3x y +=_______. 13.方程组10216x y x y +=⎧⎨+=⎩的解是 .三、解答题14.用加减消元法解下列方程组: (1){2340,5;x y x y +=-=-①②(2){433,3215.x y x y +=-=①②15.对于任意实数,a b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=+.例如:3423410.⊗=⨯+= (1)求25()⊗-的值;(2)若()2,x y ⊗-=且21,y x ⊗=-求x y +的值.参考答案1.答案:A由方程26x y -=,得26y x =-,故消y 更简单。
人教版七年级数学下册第八章二元一次方程组课时分层练习题及答案(每课时2-3套)

8.1 二元一次方程组基础题知识点1 认识二元一次方程(组)1.下列方程中,是二元一次方程的是(D )A .3x -2y =4zB .6xy +9=0C .1x +4y =6D .4x =y -242.下列方程组中,是二元一次方程组的是(A )A .⎩⎪⎨⎪⎧x +y =42x +3y =7 B .⎩⎪⎨⎪⎧2a -3b =115b -4c =6C .⎩⎪⎨⎪⎧x 2=9y =2x D .⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.(龙口市期中)在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为(C )A .-2B .2或-2C .2D .以上答案都不对4.写出一个未知数为a ,b 的二元一次方程组:答案不唯一,如⎩⎪⎨⎪⎧2a +b =1,a -b =2等.5.已知方程x m -3+y2-n=6是二元一次方程,则m -n =3.6.已知xm +n y 2与xym -n的和是单项式,则可列得二元一次方程组⎩⎪⎨⎪⎧m +n =1m -n =2.知识点2 二元一次方程(组)的解7.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是(B )A .⎩⎪⎨⎪⎧x =0y =-12 B .⎩⎪⎨⎪⎧x =1y =1 C .⎩⎪⎨⎪⎧x =1y =0 D .⎩⎪⎨⎪⎧x =-1y =-1 8.(丹东中考)二元一次方程组⎩⎪⎨⎪⎧x +y =5,2x -y =4的解为(C )A .⎩⎪⎨⎪⎧x =1y =4B .⎩⎪⎨⎪⎧x =2y =3C .⎩⎪⎨⎪⎧x =3y =2D .⎩⎪⎨⎪⎧x =4y =1 9.若⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程ax ―3y =1的解,则a 的值为(D )A .-5B .-1C .2D .7知识点3 建立方程组模型解实际问题10.(温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是(A )A .⎩⎪⎨⎪⎧x +y =7x =2y B .⎩⎪⎨⎪⎧x +y =7y =2xC .⎩⎪⎨⎪⎧x +2y =7x =2yD .⎩⎪⎨⎪⎧2x +y =7y =2x 11.(盘锦中考)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x 吨,一辆小货车一次可以运货y 吨,根据题意所列方程组正确的是(A )A .⎩⎪⎨⎪⎧2x +3y =15.55x +6y =35B .⎩⎪⎨⎪⎧2x +3y =355x +6y =15.5C .⎩⎪⎨⎪⎧3x +2y =15.55x +6y =35D .⎩⎪⎨⎪⎧2x +3y =15.56x +5y =35 中档题12.(大名县期末)若方程x |a|-1+(a -2)y =3是二元一次方程,则a 的取值范围是(C ) A .a >2 B .a =2 C .a =-2 D .a <-213.(萧山区期中)方程y =1-x 与3x +2y =5的公共解是(B )A .⎩⎪⎨⎪⎧x =-3y =-2B .⎩⎪⎨⎪⎧x =3y =-2C .⎩⎪⎨⎪⎧x =-3y =4D .⎩⎪⎨⎪⎧x =3y =2 14.(内江中考)植树节这天有20名同学种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是(D )A .⎩⎪⎨⎪⎧x +y =523x +2y =20B .⎩⎪⎨⎪⎧x +y =522x +3y =20C .⎩⎪⎨⎪⎧x +y =202x +3y =52D .⎩⎪⎨⎪⎧x +y =203x +2y =52 15.(齐齐哈尔中考)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(B )A .1种B .2种C .3种D .4种16.(滨州模拟)若⎩⎪⎨⎪⎧x =a ,y =b 是方程2x +y =0的解,则6a +3b +2=2.17.已知两个二元一次方程:①3x -y =0,②7x -2y =2.(1)对于给出x 的值,在下表中分别写出对应的y 的值; x -2 -1 0 1 2 3 4 y ① -6 -3 0 3 6 9 12 y ②-8-4.5-12.569.513(2)请你写出方程组⎩⎪⎨⎪⎧3x -y =0,7x -2y =2的解.解:⎩⎪⎨⎪⎧x =2,y =6.18.已知甲种物品每个重4 kg ,乙种物品每个重7 kg ,现有甲种物品x 个,乙种物品y 个,共重76 kg .(1)列出关于x ,y 的二元一次方程; (2)若x =12,则y =4;(3)若乙种物品有8个,则甲种物品有5个; (4)写出满足条件的x ,y 的全部整数解. 解:(1)4x +7y =76.(4)由4x +7y =76,得x =76-7y4.又由题意得y 为正整数,当y =0时,x =19; 当y =1时,x =76-74=694,不合题意;当y =2时,x =76-2×74=312,不合题意;当y =3时,x =76-3×74=554,不合题意;当y =4时,x =76-4×74=12;当y =5时,x =76-5×74=414,不合题意;当y =6时,x =76-6×74=172,不合题意;当y =7时,x =76-7×74=274,不合题意;当y =8时,x =76-8×74=5;当y =9时,x =76-9×74=134,不合题意;当y =10时,x =76-10×74=32,不合题意;当y =11时,x =76-11×74<0,不合题意.∴满足x ,y 的全部整数解是⎩⎪⎨⎪⎧x =5,y =8,⎩⎪⎨⎪⎧x =12,y =4,⎩⎪⎨⎪⎧x =19,y =0.19.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?解:(1)设0.8元的邮票买了x 枚,2元的邮票买了y 枚,根据题意得⎩⎪⎨⎪⎧x +y =13,0.8x +2y =20.(2)设有x 只鸡,y 个笼,根据题意得⎩⎪⎨⎪⎧4y +1=x ,5(y -1)=x.综合题20.甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2 016+(-110b)2 017.解:把⎩⎪⎨⎪⎧x =-3,y =-1代入方程②中,得4×(-3)-b ×(-1)=-2,解得b =10.把⎩⎪⎨⎪⎧x =5,y =4代入方程①中,得5a+5×4=15,解得a=-1.∴a2 016+(-110b)2 017=(-1)2 016+(-110×10)2 017=1+(-1)=0. 不用注册,免费下载!【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
精品解析2021-2022学年人教版初中数学七年级下册第八章二元一次方程组专题攻克练习题(含详解)

初中数学七年级下册第八章二元一次方程组专题攻克(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、方程x+y=6的正整数解有()A.5个B.6个C.7个D.无数个2、方程组231498x yx y+=-⎧⎨-=⎩的解是()A.13xy=⎧⎪⎨=-⎪⎩B.2xy=⎧⎨=⎩C.1223xy⎧=⎪⎪⎨⎪=-⎪⎩D.1223xy⎧=-⎪⎪⎨⎪=-⎪⎩3、用代入消元法解二元一次方程组220x yx y=+⎧⎨-=⎩①②,将①代入②消去x,可得方程()A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=12x+2 D.x﹣2(x﹣2)=0 4、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是()A.1,0 B.0,﹣1 C.2,1 D.2,﹣35、下列方程是二元一次方程的是()A.x﹣xy=1 B.x2﹣y﹣2x=1 C.3x﹣y=1 D.1x﹣2y=16、下列是二元一次方程的是()A .3x ﹣6=xB .3x =2yC .x ﹣1y =0D .2x ﹣3y =xy7、初一课外活动中,某兴趣小组80名学生自由组合分成12组,各组人数分别有5人、7人和8人三种情况,那么8人组最多可能有几组( )A .5组B .6组C .7组D .8组8、用加减法解方程组336x y x y +=-⎧⎨+=⎩①②由②-①消去未知数y ,所得到的一元一次方程是( ) A .29x = B .23x = C .49=x D .43x =9、已知代数式2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当x =2时,其值为25;则当3x =时,其值为( ).A .4B .8C .62D .5210、若关于x 的方程240x a +-=的解是2x =-,则a 的值等于( ).A .8- B .0C .2D .8二、填空题(5小题,每小题4分,共计20分)1、在第四个“中国农民丰收节”来临之际,中国邮政推出了“城市邮票”盲盒,盲盒内含不同丰收场景的邮票,其中A ,B ,C 三种邮票最受消费者喜爱.故中国邮政准备加印这三种邮票单独售卖.A ,B ,C 三种邮票分别加印各自原有数量的2倍,3倍,2倍.加印后,这三种邮票原有总数量占加印邮票总数量的37,若印制A ,B ,C 三种邮票的单张费用之比为3:2:15,且加印B 邮票的总费用是加印三种邮票总费用的14,则A 邮票原有数量与三种邮票原有总数量之比为______________.2、幻方是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都相等的方法.三阶幻方是最简单的幻方,又叫九宫格.如图1是由 1,2,3,4,5,6,7,8,9 九个数字组成的一个基本幻方,其对角线、横行、竖列的和都为15.如图2也是一个三阶幻方,中心格是 673;其他八个格中分别是:a ,b ,知,识,就,是,力,量(这里的字母a ,b 代表已知数).则“就”代表的数是___(用含a ,b 的式子表示).3、《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金 ____两.4、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有2千克A粗粮,3千克B粗粮,3千克C粗粮;乙种粗粮每袋装有4千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A、B、C三种粗粮的成本价之和.已知每袋甲种粗粮的成本比每袋乙种粗粮的成本高10%,每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;当电商销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的数量之比是______.5、将一张面值50元的人民币,兑换成5元或10元的零钱,两种人民币都要有,那么共有_____种兑换方案.三、解答题(5小题,每小题10分,共计50分)1、下面4组数值中,哪一组是二元一次方程组73228x yx y-=⎧⎨+=⎩的解?(1)13xy=-⎧⎨=-⎩(2)24xy=⎧⎨=⎩(3)42xy=⎧⎨=⎩(4)16xy=⎧⎨=⎩2、判断下列各组数是否是二元一次方程组4221x yx y+=⎧⎨+=-⎩①②的解.(1)35xy=⎧⎨=-⎩(2)21xy=-⎧⎨=⎩3、已知关于x、y的二元一次方程组4273ax yx by+=⎧⎨-=-⎩的解是12xy=⎧⎨=⎩.求a-b的值.4、(1)找到几组适合方程0x y +=的x ,y 值;(2)找到几组适合方程2x y -=的x ,y 值;(3)找出一组x ,y 值,使它们同时适合方程0x y +=和2x y -=;(4)根据上面的结论,你能直接写出二元一次方程组02x y x y +=⎧⎨-=⎩的解吗? 5、定义.对于一个四位自然数n ,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n 为“加油数”,并将该“加油数”的各个数位数字之和记为()F n .例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且314,145+=+=,所以543是“加油数”,则()5413541313F =+++=;9734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而437+=,但37109+=≠,所以9734不是“加油数”.(1)判断8624和3752是不是“加油数”并说明理由:(2)若x ,y 均为“加油数”,其中x 的个位数字为1,y 的十位数字为2,且()()30F x F y +=,求所有满足条件的“加油数”x .---------参考答案-----------一、单选题1、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令1,2,3,4,5x =进而求得对应y 的值即可【详解】解:方程的正整数解有15x y =⎧⎨=⎩,24x y =⎧⎨=⎩,33x y =⎧⎨=⎩,42x y =⎧⎨=⎩,51x y =⎧⎨=⎩共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.2、C【解析】【分析】先用加减消元法解二元一次方程组,再确定选项即可.【详解】解:方程组23-1, 498, x yx y+=⎧⎨-=⎩①②由①×3+②得10x=5,解得12x=,把12x=代入①中得23y=-,所以原方程组的解是1223xy⎧=⎪⎪⎨⎪=-⎪⎩.故选择C.【点睛】本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.3、B【解析】【分析】把x﹣2y=0中的x换成(y+2)即可.【详解】解:用代入消元法解二元一次方程组220x yx y=+⎧⎨-=⎩①②,将①代入②消去x,可得方程(y+2)﹣2y=0,故选:B.【点睛】此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.4、C【解析】【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.【详解】解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,∴121a ba b-=⎧⎨+-=⎩,解得:21ab=⎧⎨=⎩.故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.5、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、1x﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴1x﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.6、B【解析】【分析】根据二元一次方程的定义逐项判断即可得.【详解】A、362x x-=是一元一次方程,此项不符合题意;B 、32x y =是二元一次方程,此项符合题意;C 、10x y-=是分式方程,此项不符合题意; D 、23x y xy -=是二元二次方程,此项不符合题意;故选:B .【点睛】本题考查了二元一次方程的定义:含有2个未知数,未知数的项的次数是1的整式方程是二元一次方程.注意分母中有字母的情况是不符合二元一次方程定义的.7、B【解析】【分析】设8人组有x 组,7人组由y 组,则5人组有(12﹣x ﹣y )组,根据题意得方程8x +7y +(12﹣x ﹣y )×5=80,于是得到结论.【详解】解:设8人组有x 组,7人组由y 组,则5人组有(12﹣x ﹣y )组,由题意得,8x +7y +(12﹣x ﹣y )×5=80,∴3x +2y =20,当x =1时,y =172, 当x =2时,y =7,当x =4时,y =4,当x =6时,y =1,∴8人组最多可能有6组,故选B .【点睛】本题考查了二元一次方程的应用,正确的理解题意是解题的关键.8、A【解析】【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程.【详解】解:解方程组336x yx y+=-⎧⎨+=⎩①②,由②-①消去未知数y,所得到的一元一次方程是2x=9,故选:A.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.9、D【解析】【分析】将已知的三组x和代数式的值代入代数式中,通过联立三元一次方程组484225a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,求出a、b、c的值,然后将3x=代入代数式即可得出答案.【详解】由条件知:484225a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,解得:521a b c =⎧⎪=⎨⎪=⎩. 当3x =时,2252152ax bx c x x ++=++=.故选:D .【点睛】本题考查三元一次方程组的解法,解题关键是掌握三元一次方程组的解法.10、D【解析】【分析】将2x =-代入方程得到关于a 的一元一次方程,解方程即可得到a 的值.【详解】将2x =-代入原方程得:2(2)40a ⨯-+-=,解得:8a =故选:D .【点睛】本题考查了一元一次方程的解及解一元一次方程.方程的解即为能使方程左右两边相等的未知数的值.二、填空题1、712:12 【分析】设A ,B ,C 三种邮票的原有数量分别为a ,b ,c ,则A ,B ,C 三种邮票的现有数量分别为2a ,3b ,2c ,依题意列出方程组,求解即可.【详解】解:设A ,B ,C 三种邮票的原有数量分别为a ,b ,c ,则A ,B ,C 三种邮票的现有数量分别为2a ,3b ,2c , 由题意得:3232732123322154a b c a b c b a b c ++⎧=⎪⎪++⎨⨯⎪=⎪⨯+⨯+⨯⎩①②, 由②得:154b a b c =++,即()153b ac =+③; 把③代入①得:()15332527a a c c a a c c +++=+++, 整理得:7a c =,即7a c =, 把7a c =代入③得:145377a ab a ⎛⎫=+⨯= ⎪⎝⎭, ∵A 邮票原有数量与三种邮票原有总数量之比为a abc ++, ∴777474121277a a a a a a abc a a a a a ====++++++,∴A 邮票原有数量与三种邮票原有总数量之比为712, 故答案为:712. 【点睛】本题主要考查了列三元一次方程组的应用,列代数式,求代数式的值,关键是正确设元,并列出方程组.2、2a +b -1346【分析】由幻方的含义可得:第二个幻方的横行,竖行,对角线的三数之和为2019,从而可得:量=1346-a ,知=2019-a-b;再利用知+就+量=2019,代入计算即可得到答案.【详解】解:依题意,可得:量+a=2×673;∴量=1346-aa+b+知=3×673;∴知=2019-a-b;而知+就+量=3×673∴(2019-a-b)+就+(1346-a)=2019;∴就=2a+b-1346故答案为:2a+b-1346【点睛】本题考查的是列代数式,三元一次方程组的解法,正确理解题意列出相应的方程再解方程是解题的关键.3、187##【分析】根据“5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到两个等量关系,即可列出方程组.【详解】解:设1头牛值金x两,1只羊值金y两,由题意可得,5210 258x yx y+=⎧⎨+=⎩,上述两式相加可得,x+y=187.故答案为:187.【点睛】此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.4、10:9109【分析】设A的单价为x元,B的单价为y元,C的单价为z元,可得甲的成本,乙的成本;再求出甲、乙的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.【详解】解:设A的单价为x元,B的单价为y元,C的单价为z元,甲种粗粮的售价为m元,乙种粗粮的售价为n元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得甲一袋的成本是2x+3y+3z,乙一袋的成本是4x+2y+2z,2x+3y+3z=(4x+2y+2z) ×(1+10%),化简得,3x=y+z,甲一袋的成本是11x,乙一袋的成本是10x,∵每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.∴m-11x=(n-10x)(1+50%),当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;∴2(n-10x)(1+50%)+n-10x=(2×11x+10x)×25%,解得,n=12x,∴m=14x,甲一袋的售价为14x,乙一袋的售价为12x,根据甲乙的利润,得(14x﹣11x)a+(12x -10x)b=(11x a+10xb)×24%化简,得3a+2b=2.64a+2.4b0.36a=0.4ba:b=10:9,故答案为:10:9.【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.5、4【分析】设兑换成面值5元的人民币x张,面值10元的人民币y张,根据兑换成零钱的总价值为50元,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有4种兑换方案.【详解】设兑换成面值5元的人民币x张,面值10元的人民币y张,依题意得:5x+10y=50,∴x=10﹣2y.又∵x,y均为正整数,∴81xy=⎧⎨=⎩或62xy=⎧⎨=⎩或43xy=⎧⎨=⎩或24xy=⎧⎨=⎩,∴共有4种兑换方案.故答案为:4.【点睛】本题考查了列二元一次方程组,利用二元一次方程组的解进行方案设计的方法,优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果.三、解答题1、(2)【分析】根据二元一次方程组解定义:使二元一次方程组的两个二元一次方程左右两边都相等的一对未知数的解,把四组解分别代入到方程组中看使得方程组中的两个二元一次方程左右两边是否相等即可.【详解】解:732 28x yx y-=⎧⎨+=⎩①②把13xy=-⎧⎨=-⎩代入①中,得到()()7133792⨯--⨯-=-+=,方程左右两边相等,把13xy=-⎧⎨=-⎩代入②中,方程左边()()2132358⨯-+-=--=-≠,方程左右两边不相等,故13xy=-⎧⎨=-⎩不是原方程的解,故(1)不符合题意;把24xy=⎧⎨=⎩代入①中,得到723414122⨯-⨯=-=,方程左右两边相等,把24xy=⎧⎨=⎩代入②中,方程左边224448⨯+=+=,方程左右两边相等,故24xy=⎧⎨=⎩是原方程的解,故(2)不符合题意;把42xy=⎧⎨=⎩代入①中,得到7432286222⨯-⨯=-=≠,方程左右两边不相等,把42xy=⎧⎨=⎩代入②中,方程左边242108⨯+=≠,方程左右两边不相等,故42xy=⎧⎨=⎩不是原方程的解,故(3)不符合题意;把16xy=⎧⎨=⎩代入①中,得到7136718112⨯-⨯=-=-≠,方程左右两边不相等,把16xy=⎧⎨=⎩代入②中,方程左边2168⨯+=,方程左右两边相等,故16xy=⎧⎨=⎩不是原方程的解,故(4)不符合题意;∴第(2)组是原方程组的解.【点睛】本题主要考查了二元一次方程组的解,解题的关键在于能够熟知二元一次方程组的解得定义.2、(1)35xy=⎧⎨=-⎩不是方程组的解;(2)21xy=-⎧⎨=⎩不是方程组的解【分析】根据二元一次方程的解,将二元一次方程的解代入方程计算即可.【详解】解:(1)把35xy=⎧⎨=-⎩代入方程①中,左边=2,右边=2,所以35xy=⎧⎨=-⎩是方程①的解.把x =3,y =-5代入方程②中,左边=3(5)2+-=-,右边=1-,左边≠右边,所以35x y =⎧⎨=-⎩不是方程②的解.所以35x y =⎧⎨=-⎩不是方程组的解. (2)把21x y =-⎧⎨=⎩代入方程①中,左边=-6,右边=2,所以左边≠右边,所以21x y =-⎧⎨=⎩不是方程①的解, 再把21x y =-⎧⎨=⎩代入方程②中,左边=x +y =-1,右边=-1,左边=右边,所以21x y =-⎧⎨=⎩是方程②的解,但由于它不是方程①的解,所以它也不是方程组的解.【点睛】本题考查了二元一次方程组的解,检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.3、11-【分析】把=1=2x y ⎧⎨⎩代入方程组+4=273ax y x by ⎧⎨-=-⎩求得a 、b 的值,即可求得-a b 的值. 【详解】把=1=2x y ⎧⎨⎩代入二元一次方程组+4=273ax y x by ⎧⎨-=-⎩得:14227123a b ⨯+⨯=⎧⎨⨯-⨯=-⎩, 解得:65a b =-⎧⎨=⎩∴6511a b -=--=-.【点睛】本题考查了二元一次方程组的解:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.4、(1)11x y =⎧⎨=-⎩;22x y =⎧⎨=-⎩答案不唯一;(2)42x y =⎧⎨=⎩;11x y =⎧⎨=-⎩答案不唯一;(3)11x y =⎧⎨=-⎩;(4)11x y =⎧⎨=-⎩. 【分析】(1)根据二元一次方程解的含义求解即可;(2)根据二元一次方程解的含义求解即可;(3)根据二元一次方程组解的含义求解即可;(4)根据前面得到的结论求解即可.【详解】解:(1)令x =1 ,则y =-1 ;令x =2,则y =-2.答案不唯一;(2)令x =1,则y =1-2=-1 ;令x =4,则y =4-2=2.答案不唯一 ;(3)当x =1 ,y =﹣1时同时满足方程:0x y +=和2x y -=;(4)方程组02x y x y +=⎧⎨-=⎩的解是11x y =⎧⎨=-⎩. 【点睛】此题考查了二元一次方程组解的含义,解题的关键是熟练掌握二元一次方程组解的含义.5、(1)8624是“加油数”;3752不是“加油数”;(2)3211或9541.【分析】(1)根据“加油数”的定义分别计算判断即可;(2)设x 的十位数为a ,y 的个位数为b ,根据“加油数”的定义分别表示出x ,y 其他位上的数,然后根据()()30F x F y +=列出方程求解即可.【详解】解:(1)∵8624的个位数字是4,十位数字是2,百位数字是6,千位数字是8,∵246,268+=+=,∴8624是“加油数”;∵3752的个位数字是2,十位数字是5,百位数字是7,千位数字是3,∵257+=,但573+≠,∴3752不是“加油数”;(2)设x 的十位数为a ,y 的个位数为b ,∴x 的百位数为a +1,千位数为2a +1,y 的百位数为b +2,千位数为4+b ,∴()211143F x a a a a =+++++=+,()42238F y b b b b =+++++=+,∵()()30F x F y +=,∴433830a b +++= ,∴4319a b +=,09,09a b ≤≤≤≤,且a 和b 为整数,∴1,5a b ==或4,1a b ==,∴满足条件的“加油数”x 为3211或9541.【点睛】本题以新定义考查了列代数式,二元一次方程的正整数解,解题的关键是根据新定义列出代数式,建立方程.。
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析

初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共35小题,共105.0分)1.若关于x,y的二元一次方程组无解,则a的值为A. B. 1 C. D. 3【答案】A【解析】解:由②得:x=3+3y,③把③代入①得:a(3+3y)-y=4,整理得:(3a-1)y=4-3a,∵方程组无解,∴3a-1=0,且4-3a≠0,∴a=.故选:A.把第二个方程整理得到x=3+3y,然后利用代入消元法消掉未知数x得到关于y的一元一次方程,再根据方程组无解,未知数的系数等于0列式计算即可得解.本题考查了二元一次方程组的解,消元得到关于y的方程是解题的关键,难点在于明确方程组无解,未知数的系数等于0.2.由方程组,可得x与y的关系是()A. 2x+y=-4B. 2x-y=-4C. 2x+y=4D. 2x-y=4【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,方程组消元m即可得到x与y的关系式.【解答】解:,把②代入①得:2x+y-3=1,整理得:2x+y=4,故选C.3.若方程组中x与y互为相反数,则m的值是A. 1B. D. 36【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【解答】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故C正确.故选C.4.把方程2x-y=3改写成用含x的式子表示y的形式正确的是()A. 2x=y+3B. x=C. y=2x-3D. y=3-2x【答案】C【解析】解:由2x-y=3知2x-3=y,即y=2x-3,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.用代入法解方程组时,用①代入②得()A. 2-x(x-7)=1B. 2x-1-7=1C. 2x-3(x-7)=1D. 2x-3x-7=1【答案】C【解析】【分析】本题考查了解二元一次方程组,主要考查了代入法的思想,比较简单.根据代入法的思想,把②中的y换为(x-7)即可.【解答】解:①代入②既是把②中的y替换成(x-7),得:2x-3(x-7)=1.故选C.6.用“代入消元法”解方程组时,把①代入②正确的是()A. 3x﹣2x+4=7B. 3x﹣2x﹣4=7C. 3x﹣2x+2=7D. 3x﹣2x﹣2=7【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组,可知①式可直接代入②式中,再去括号,即可得到结果.【解答】解:用“代入消元法”解方程组时,把①代入②得,去括号得:故选:A.7.解方程组时,把①代入②,得()A. B.C. D.【答案】D【解析】【分析】本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.【解答】解:解方程组时,把①代入②,得2y-5(3y-2)=10.故选D.8.解方程组①,②,比较简便的方法是A. 都用代入法B. 都用加减法C. ①用代入法,②用加减法D. ①用加减法,②用代入法【答案】C【解析】略.9.在等式y=kx+b中,当x=1时,y=5,当x=-2时,y=11,则k、b的值为()A. B. C. D.【答案】D【解析】解:由题意得,解得.故选D.根据已知条件可以列出关于k、b的二元一次方程组,通过解该方程组得到.本题考查二元一次方程组,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.已知,,用只含的代数式表示正确的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查了解二元一次方程组,消去t表示出y是解本题的关键.由x=2-t移项可得t=2-x,将此代入计算即可求解.【解答】解:由x=2-t得t=2-x,∴y=3+2(2-x)=3+4-2x=-2x+7.故选A.11.由方程组,可得出x与y的关系式是()A. B. C. D.【答案】A【解析】【分析】本题考查了代入消元法解方程组,是一个基础题.【解答】解:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.∴6-x=y-3∴x+y=9.故选A.12.如果2m9-x n y和-3m2y n3x+1是同类项,则2m9-x n y+(-3m2y n3x+1)=()A. -m8n4B. mn4C. -m9nD. 5m3n2【答案】A【解析】解:由题意,得9-x=2y且y=3x+1,解得x=1,y=4,当x=1,y=4时,2m9-x n y+(-3m2y n3x+1)=2m8n4+(-3m8n4)=-m8n4,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用同类项得出9-x=2y且y=3x+1是解题关键,又考查了二元一次方程组.13.在关于x、y的二元一次方程组的下列说法中,正确的是①当a=3时,方程的两根互为相反数;②当且仅当a=-4时,解得x与y相等;③x,y满足关系式;④若,则a=10.A. ①③B. ①②C. ①②③D. ①②③④【答案】D【解析】【分析】本题考查三元一次方程组的解法,方程组的解.把a=3 代入原方程,求解即可判定①;把a=-4代入原方程求解,即可判定②;把原方程中第一个方程乘以2,两式相减即可得x+5y的值,即可判定③;由9x×27y=81,得32x+3y=34,所以2x+3y=4,将原方程中第二方程-第一方程,即可得2x+3y=a-6,所以有a-6=4,即可求出a值,从而可判定④.继而得出答案.【解答】解:∵,把a=3代入方程组得解得:,∴x、y互为相反数,故①正确;把a=-4代入方程组得,解得:,∴x=y,故②正确;②-①×2得x+5y=-12,故③正确;②-①得2x+3y=a-6,又∵9x×27y=81,∴32x+3y=34,∴2x+3y=4,∴a-6=4,解得:a=10,故④正确∴正确的有①②③④.故选D.14.方程组消去y后所得的方程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8【答案】A【解析】【分析】本题主要考查代入消元法解方程组.把方程中的未知数换为另一个未知数的代数式即可,比较简单.根据代入消元法,把①代入②,把②中的y换成2x-5即可.【解答】解:,把①代入②,得3x-2(2x-5)=8,即3x-4x+10=8.故选A.15.用代入法解方程组时,代入正确的是( )A. x-2-x=4B. x-2-2x=4C. x-2+2x=4D. x-2+x=4【答案】C【解析】【分析】本题考查了用代入法解二元一次方程组,是基础知识要熟练掌握.将①代入②整理即可得出答案.【解答】解:,把①代入②得,x-2(1-x)=4,去括号得,x-2+2x=4.故选C.16.解二元一次方程组时,用代入消元法整体消去4,得到的方程是()A. 2=﹣2B. 2=﹣36C. 12=﹣36D. 12=﹣2【答案】B【解析】解:由①得:4x=17-5y③,把③代入②得:17-5y+7y=-19,2y=-36,故选:B.由①得出4x=17-5y③,把③代入②即可.本题考查了解二元一次方程组,能够正确代入是解此题的关键.17.若方程组的解满足x+y=3,则a的值是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题主要考查加减消元法解二元一次方程组和一元一次方程组的解法,先运用加减消元法求出,再将转化为,解出a的值即可.【解答】解:得,,∵,∴解得.故选C.18.如果方程组的解与方程组的解相同,则a+b的值为()A. -1B. 2C. 1D. 0【答案】C【解析】略19.二元一次方程2x+y=5的正整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2个.故选:B.方程变形后表示出y,确定出正整数解的个数即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.20.如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A. 10,4B. 4,10C. 3,10D. 10,3【答案】A【解析】【分析】本题考查的是二元一次方程组的解有关知识,把方程组的解代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■,解得:■=4再把代入x+y=★得★=6+4=10故选A.21.若二元一次方程组的解中x,y互为相反数,则m的值为()A. 10B. -7C. -10D. -12【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 由x与y互为相反数,得到x+y=0,即x=-y,代入方程组求出m的值即可.【解答】解:由x与y互为相反数,得到x+y=0,即x=-y,代入方程组得:,消去x得:3m+9=2m-1,解得:m=-10.故选C.22.如果方程组的解与方程组的解相同,则a,b的值是( )A. B. C. D.【答案】A【解析】【分析】本题考查了同解方程组的知识,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【解答】解:由题意得:是的解,故可得:,解得:.故选A.23.方程组的解也是方程3x+ky=10的解,则k的值是()A. 4B. 10C. 9D.【答案】A【解析】【分析】此题考查二元一次方程解的定义和解法,解二元一次方程组首先要消元,然后再求解,同时也考查的方程的同解,比较简单.解方程组求出x、y的值,再代入方程得出关于k 的方程,解之可得.【解答】解:解方程组,①×2-②,得:3x=6,解得:x=2,将x=2代入①得:3×2+y=7,解得:y=1,∴方程组的解为,代入方程3x+ky=10得6+k=10,解得k=4,故选A.24.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是( )A. 8B. 4C. -6D. -8【答案】D【解析】【分析】本题考查用待定系数法求一次函数解析式,要注意利用一次函数的特点,列出方程组,求出未知数,写出解析式,是解题的关键,已知点A(-4,0)、B(0,5)在同一条直线上,用待定系数法可求出函数关系式.再把C(m,-5)代入求出m的值.【解答】解:设直线y=kx+b,已知A(-4,0)、B(0,5)的坐标,可列出方程组,解得,写出解析式y=x+5,因为点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则得到-5=m+5,解得:m=-8.故选D.25.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】此题主要考查二元一次方程组的解法.用代入消元法解二元一次方程组即可.【解答】解:,把②代入①,得x+2×2x=10,解得x=2,把x=2代入②中,得y=4,所以方程组的解为,故选C.26.已知是关于x,y的二元一次方程组的解,则a+b的值是( )A. 1B. 3C. 6D. 8【答案】D【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握解方程组的方法是解题的关键,所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可得到答案.【解答】解:把代入方程组得,,即,则a+b==8,故选D.27.已知-3a x+y b2与-a3b x是同类项,则x、y的值分别为( )A. 3、3B. -1、1C. 2、3D. 2、1【答案】D【解析】【分析】本题考查了同类项的定义,属于基础题.根据同类项的定义可得,解出x,y即可.【解答】解:因为-3a x+y b2与-a3b x是同类项,所以,解得.故选D.28.已知方程组的解是,则2m+n的值为( )A. 1B. 2C. 3D. 0【答案】C【解析】【分析】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.【解答】解:根据定义把代入方程组,得,解得.∴2m+n=2×2-1=3.故选C.29.已知关于a,b的方程组的解是,则直线y=mx+n不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查的知识点是二元一次方程的解,解二元一次方程组,一次函数的性质,首先由方程组的解是求出m,n的值,代入得到一次函数解析式,再根据一次函数的性质,即可得到答案.【解答】解:∵关于a,b的方程组的解是,∴,∴,∴直线y=mx+n的解析式为,∵k=-2,b=-3,∴过第二、三、四象限,故选A.30.已知和都是方程mx+ny=8的解,则m、n的值分别为()A. 1,﹣4B. ﹣1,4C. ﹣1,﹣4D. 1,4【答案】D把x与y的值代入方程计算即可求出m与n的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【解答】解:把和代入方程得:,解得:,故选:D.31.方程组的解是()A. B. C. D.【答案】B【解析】解:,把②代入①得:7x+5(x+3)=9,解得:x=-,把x=-代入②得:y=.所以原方程组的解是.故选:B.方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.32.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中的值为,则被墨水所覆盖的图形为( )A. B. C. D.【答案】C此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组,设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选C.33.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】本题考查的二元一次方程组的解法有关知识,首先把y=2x代入x+2y=10中,解出x,然后把x代入y=2x中即可解答.【解答】解:把②代入①可得:x+4x=10,解得:x=2,把x=5代入②可得:y=4.原方程组的解为.故选C.34.若方程,则A,B的值分别为A. 2,1B. 1,2C. 1,1D. ,【答案】C【解析】【分析】本题考查了分式的加减,利用相等项的系数相等得出关于A、B的方程组是解题关键.根据通分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得:,化简:由相等项的系数相等,得:解得:故选:C.35.若﹣2a m b4与5a n+2b2m+n和为单项式,则m n的值是()A. 2B. 0C. ﹣1D. 1【答案】D【解析】【分析】本题考查了合并同类项以及二元一次方程组的解法,根据同类项是字母相同且相同字母的指数也相同,可得关于m、n的二元一次方程组,解出m、n的值,再根据有理数的乘方运算,可求得答案.【解答】解:由可以合并一项,得:,解得,∴故选D.二、填空题(本大题共20小题,共60.0分)36.二元一次方程7x+y=15的正整数解为______.【答案】或【解析】解:方程7x+y=15,解得:y=-7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或把x看做已知数表示出y,即可求出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.37.已知方程5x+2y=10,如果用含x的代数式表示y,则y=______.【答案】【解析】解:方程5x+2y=10,解得:y=,故答案为:把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.38.若a+2b=8,3a+4b=18,则a+b的值为______.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.39.若-2x+y=5,则y=______(用含x的式子表示).【答案】2x+5【解析】解:方程-2x+y=5,解得:y=2x+5.故答案为:2x+5.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.40.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是______.【答案】x+y=1【解析】【分析】本题主要考查二元一次方程组,解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核,由方程组消去k,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由x+k=y+2得k=-x+y+2,代入到x+3y=k可得:x+3y=-x+y+2,整理可得2x+2y=2,即x+y=1,故答案为:x+y=1.41.如果单项式与是同类项,则这两个单项式的积为_______________【答案】【解析】【分析】本题考查了同类项、二元一次方程组的解法、单项式乘单项式的知识点,根据同类项的定义列出方程组是解题的关键.根据同类项的定义列出关于a、b的二元一次方程组,求解得到a、b的值,再根据单项式的乘法进行计算即可得解.【解答】解:根据题意得,,由①得,a=-2b③,③代入②得,5×(-2b)+8b=2,解得b=-1,把b=-1代入③得,a=-2×(-1)=2,∴两单项式分别为-3x5y2、x5y2,它们的积为-3x5y2•x5y2=-x10y4.故答案为.42.已知x.y,t满足方程组,则x和y之间应满足的关系式是________.【答案】x=15y-6【解析】【分析】本题主要考查了代入法解二元一次方程组,掌握代入法解二元一次方程组的步骤是解题的关键.由第一个方程可得,把t代入第二个方程即可求得答案.【解答】解:由第一个方程,得,把代入3y-2t=x,得,整理得:x=15y-6,即x和y之间的关系式为x=15y-6.43.甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A、B两端同时出发,匀速相向而行.相遇时,甲将出发时在A地抽取的任务单递给乙后继续向B地前行,乙原地执行任务,用时14分钟,再继续向A地前行,此时甲尚未到达B地.当甲和乙分别到达B地和A地后立即以原路原速返回并交换角色,即由乙在A地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y(米)与运动时间x(分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第______分钟时开始执行任务.【答案】44【解析】【分析】本题考查了一次函数的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.函数图象可看作是线段CD、DE、EF、FH、HI构成:CD对应两人从出发到第一次相遇,其中5分钟时,两人相距980米;DE对应乙在原地执行任务,甲继续前进;EF对应甲继续向B地走,乙继续向A地走;FH对应甲到达B地返回走,乙继续向A地走,其中x=31时,两人相距1180米;HI对应两人都返回走到第二次相遇.设乙的速度为v 米/分,AB两地距离为s米,根据两个确定的x和y值找等量关系列方程.【解答】解:甲的速度为60米/分,设乙的速度为v米/分,AB两地距离为s米,∵x=5时,y=980,此时两人相距980米,列方程得:5(60+v)+980=s①当x=31时,甲走的路程为:60×31=1860(米)图象中,x=31时,y=1180,即此时甲乙两人相距1180米,甲已经到达B地并返回,乙还在前往A地列方程得:1860-s+1180=(31-14)v②①②联立方程组解得:设甲出发t分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s,列方程得:60t+80(t-14)=3×1680解得:t=44故答案为:4444.二元一次方程组的解为_______.【答案】【解析】略45.已知,则=____.【答案】-3【解析】【分析】此题考查了加减消元法解二元一次方程组,代数式的值,①﹣②得:x+3y=0,即x=-3y,将x=-3y代入中计算,即可得到答案.【解答】解:,①﹣②得:x+3y=0,即x=-3y,∴=-3,故答案为-3.46.设是一个等腰三角形的两边长,且满足,则该三角形的周长是____【答案】22【解析】【分析】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.【解答】解:根据题意得,,解得a=4,b=9,当①a=4是腰长时,三角形的三边分别为4、4、9,但4、4、9不能组成三角形,②a=4是底长时,三角形的三边分别为4、9、9,4、9、9能组成三角形,∴三角形的周长为4+9+9=22.综上所述,三角形的周长为22.故答案为22.47.若是二元一次方程,则a =________ ,b = ___________【答案】1;0【解析】【分析】本题主要考查二元一次方程的定义,根据二元一次方程的定义可知3a-2b-2=1,a+b=1,据此可解出a,b,根据未知数的次数为1,可以列出方程组求解.【解答】解:依题意,得,解得,故答案为:1,0.48.(1)的算术平方根为________.的平方根是________.(2)若,则(a+2)2的平方根是________.(3)已知一个正数的平方根是3x-2和5x+6,则这个数是________.(4)已知,则x y=________.(5)若a是(-8)2的平方根,则等于________.【答案】(1)2;;(2);(3);(4)1;(5)8.【解析】(1)【分析】本题考查算术平方根,平方根和立方根的定义,根据算术平方根,平方根和立方根的定义即可解答,关键是注意.【解答】解:∵,∴的算术平方根为2.的平方根是.故答案为2;.(2)【分析】本题考查算术平方根和平方根定义,有理数的乘方,根据算术平方根和平方根定义即可解答,关键是由得a+2=16.【解答】解:∵,∴a+2=16,∴(a+2)2=162=256,∴(a+2)2的平方根是.故答案为.(3)【分析】本题考查平方根定义,一元一次方程的解法,根据平方根的定义可知:一个正数的平方根有两个,它们互为相反数得方程3x-2+5x+6=0,解方程求出x,再求出5x+6或3x-2的值即可解答.【解答】解:∵一个正数的两个平方根分别是3x−2 和5x+6 ,∴3x−2+5x+6=0 ,解得:x =,∴5x+6=,∴这个数是.故答案为.(4)【分析】本题考查算术平方根和偶次方的非负性,求代数式的值,关键是先根据算术平方根和偶次方的非负性得方程组,解方程组求得x,y的值,再代入计算即可.【解答】解:由题意得,解得,∴故答案为1.(5)【分析】本题考查算术平方根,平方根的定义,有理数的乘方,关键是先由a是(-8)2的平方根求得a的值,再代入计算即可解答.【解答】解:∵(-8)2=64,a是(-8)2的平方根,∴a=,∴.故答案为8.综上所述答案为:(1)2;;(2);(3);(4)1;(5)8.49.当多项式取得最小值时,_______________。
人教版数学七年级下册辅导资料6

用代入消元法解二元一次方程组【典例分析】【例1】【例2】【例3】解方程组4132x yx y x+=⎧⎪+⎨-=⎪⎩【例4】()()⎪⎩⎪⎨⎧=--+=-++2823623yxyxyxyx【基础能力训练】1.用代入法解方程组⎩⎨⎧=--=-⑵yx⑴yx107332,较简便的解法步骤是:先把方程变成,再代入方程,求得的值。
然后再求的值;2.已知方程2x+3y=2,当x与y互为相反数时,x=______,y=_______.3.若方程组431(1)3x ykx k y+=⎧⎨+-=⎩的解x和y的值相等,则k=________.4.已知x=-1,y=2是方程组的1311ax bybx ay+=⎧⎨+=-⎩解,则ab=________.5.如果12xy=⎧⎨=⎩是方程2mx-7y=10的解,则m=_______.6.若x-3y=2x+y-15=1,则x=______,y=_______.7.用代入法解方程⎩⎨⎧=-=+⑵yx⑴yx52243,使用代入法化简,比较容易的变形是()A、由⑴得342yx-= B、由⑴得432xy-=C、由⑵得25yx+= D、由⑵得52-=xy8.把方程7x-2y=15写成用含x的代数式表示y的形式,得()A.x=215152715157...7722x x y x xB xC yD y----===9.将31--=xy代入12=-yx,可得()A、()1312=--xx B、1312=-⨯-xxC、1322=++xx D、1322=-+xx10.把下列方程写成用含x的代数式表示y的形式:①3x+5y=21 ③4x+3y=x-y+1 ④2(x+y)=3(x-y)-1y=x+6 2x+3y=8 2x+3y=-19 x+5y=111.用代入法解下列方程组:(1)23328y x x y =-⎧⎨-=⎩3(2)3814x y x y -=⎧⎨-=⎩23(3)253s t t s =⎧⎪+⎨=⎪⎩(4)⎩⎨⎧-=+-=+32312y x x y(5)⎪⎩⎪⎨⎧=+=-123222n m n m (6)⎩⎨⎧=+=+17431232y x y x(7)11233210x y x y +⎧-=⎪⎨⎪+=⎩(8) 357,23423 2.35x y x y ++⎧+=⎪⎪⎨--⎪+=⎪⎩12.方程组⎩⎨⎧-=-+=-32342x y m y x 的解x 、y 互为相反数,求m 的值。
七年级下册数学同步练习题库:消元——解二元一次方程组(填空题:较易)

消元——解二元一次方程组(填空题:较易)1、二元一次方程组的解是.2、是方程2x-ay=5的一个解,则a=____.3、已知x与y互为相反数,且3x-y=4,则x=______,y=______.4、已知方程组那么b-a的值为____5、已知,则=____.6、已知是实数,且,则的值是____________.7、已知a,b满足方程组,则3a+b的值为__________.8、已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解_____.9、方程组的解是_____.10、由方程组,可得到x与y的关系式是_____.11、已知方程用含的代数式表示为:________.12、已知x=3+t, y=3﹣t,用x的代数式表示y为___________13、方程3x+y=4,用含有y的式子x表示,则x= ________.14、已知方程组,当m__时,x+y>0..15、已知二元一次方程组,则x+y=_______.16、已知二元一次方程组,则____________17、方程组的解是________.18、已知关于、的二元一次方程组,则的值为_______.19、已知关于x、y的方程组的解满足x+y=2,k=________.20、由,可得到用x表示y的式子为y=______21、已知,则x+y=__.22、方程组的解满足方程x+y+a=0,那么 a的值是________.23、已知x,y满足方程组,则x﹣y的值是.24、已知:关于的方程组的解,满足则=_____.25、方程组的解是.26、已知,那么x+y的值为,x﹣y的值为.27、方程组的解是.28、已知方程组,则x+y= .29、单项式3x2m+3n y8与﹣2x2y3m+2n是同类项,则m+n= .30、方程组的解是.31、若,则 .32、已知二元一次方程组的解是,则的值是 .33、若|x-2y+1|+|x+y-5|=0,则2x+y=________.34、方程组的解是.35、孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是.36、已知方程2x﹣3y﹣1=0,用x表示y,则y=_____________.37、定义运算“”,规定x y=ax+by,其中a,b为常数,且12=5,21=6,则32=_______.38、(2015秋•薛城区校级月考)已知是方程3ax+4y=16的解,则a= .39、若4x2m y m+n与—3x6y2是同类项,则mn= .40、已知,则.41、若方程组的解是,那么|a﹣b|= .42、若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为 .43、(3分)已知方程组,不解方程组,则x+y= .44、已知方程组的解x、y之和为2,则k= .45、(4分)方程组的解为.46、对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.47、由方程组,可得到x与y的关系式是_____.48、已知是关于m,n的方程组的解,则a+b= .49、若方程组的解满足,则m的值为.50、如果实数x,y满足方程组,则x2﹣y2的值为.51、由方程组,可得到x与y的关系式是__________.52、如果实数x、y满足方程组,那么x2– y2= .53、方程组的解是___________.54、方程组的解是.55、若是关于字母,的二元一次方程,则= ,= 。
8.2 消元解二元一次方程组(第2课时 代入消元法简单应用)七年级数学下册同步备课系列(人教版)

把x=20000代入③得:y=50000
∴
x 20000
y
50000
答:这些消毒液应该分装20000大瓶和50000小瓶 .
3.设未知数 4.列方程组
5.解方程组
6.检验 7.作答
解:设这些消毒液应该分装x大瓶、y小瓶
3.设未知数
根据题意可列方程组:550x0x2y250 y 22500000
解:设这些消毒液应该分装x大瓶、y小瓶
根据题意可列方程组:550x0x2y250 y 22500000
① ②
由①得:y 5 x ③ 2
把③代入②得:500x 250 5 x 22500000 2
解得:x=20000
把x=20000代入③得:y=50000
∴
x 20000
y
50000
答:这些消毒液应该分装20000大瓶和50000小瓶 .
审题:等量关系: (1)大2×瓶小数瓶:小数瓶=5数×大=瓶2数:5 (2)大瓶所装消毒液总量 +小瓶所装消毒液总量 = 22.5吨
1.审题 2.找等量关系
解:设这些消毒液应该分装x大瓶、y小瓶
根据题意可列方程组:550x0x2y250 y 22500000
① ②
由①得:y 5 x ③ 2
把③代入②得:500x 250 5 x 22500000 2
x y 30 ① 2x 4 y 84 ②
解得
x 18
y
12
.
答:这个笼中的鸡有18只,兔有12只.
2. 小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝 码重量如图所示.问:这两个苹果的重量分别为多少克?
解:根据题意,得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代入消元法练习题
基础达标:
1 •在方程4x-2y=7中,如果用含有x 的式子表示y ,则y = _________ .
"x = 4
2•若方程mx_y=4的一个解是
-'则m 二 ______ . (7=3, x =5 3. 请写出一个以彳 _____________ '为解的二元一次方程组 •
4. 在二元一次方程 2(x + y)+1 =5x - y 中,当 y=3 时,x= __________ .
5 .学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求这两种 各有多少个?若设篮球有x 个,排球有y 个,则依题意得到的方程组是 ___________ . 能力提升:
(1)2x
y" #x+3y = 7; 2.已知等式y=kx ,b ,当
x=2时,y=1 ;当x = -1时,y=3 ;求k, b 的值. 拓展练习:
1 .小明在做家庭作业时发现练习册上一道解方程组的题目被墨水污染 3x -2y =□, □”表示被污染的内容,他着急,翻开书后面的答案,这道题的解 5x y 口 x = 2
是x 2'你能帮助他补上 □”的内容吗?说出你的方法.
ly = t 「丫-7
—I ? 4 3
2x - =14. 3 2
(2)。