连铸电磁搅拌
(完整版)连铸电磁搅拌研究

2. 该电流与磁场相互作用产生电磁力(F): F= I B 电磁力作用在金属熔体上,从而驱动金属熔体运动。
电磁搅拌的工作原理(旋转电磁搅拌)
iA(t)=Imsint iB(t)=Imsin(t -120o) iC(t)=Imsin (t + 120o)
两相区凝固模型固液界面前沿流动对晶体形态的影响
旋转钢液碰到结晶器壁或初始 凝固坯壳后,形成上下两股分 流,即二次流场;
搅拌作用越强,影响区域越大 。向上流场可到达弯月面,向 下流场可以直达结晶器出口;
影响区域大小取决于钢液的搅 拌速度。
电磁搅拌的工作原理
电磁搅拌扩大等轴晶区示意图
电磁搅拌可通过流动金属液 对树枝晶前端的动力折断及 熔蚀作用造成大量枝晶碎片 供作晶核;
电磁搅拌的工作原理(旋转电磁搅拌)
电磁搅拌器的结构
凸极式
圆环形轭铁上嵌有六个凸极 铜扁线绕制(外冷) 每个凸极上套一个O形绕组 冷却不均匀且有死角; 冷却水量大;冷却 效果差;制作较简单;体积较小;成本较 低;使用寿命较短
环形式
一圈环形轭铁;铜管绕制(内冷) 12个绕组全部套在轭铁上(克兰姆绕组) 冷却均匀无死角;冷却水量小;冷却效果 好;制作较复杂;体积稍大;成本较高; 寿命较长
器;奥地利进行了结晶器工频旋转电磁搅拌的工业试验。 1973年,法国SAFE厂,在方坯连铸机采用电磁搅拌技术。 1979年,法国采用新型搅拌辊,进行板坯连铸电磁搅拌。 1982年,英国人首次提出MHD在冶金中应用的明确概念。 1985年,ISIJ把MHD在冶金中的应用称为电磁冶金。 1989年,电磁冶金改称为材料电磁加工(EPM)。 1990‘s,电磁搅拌技术日趋成熟,在大、小方坯,圆坯和板坯
1连铸与电磁搅拌理论

1 连铸与电磁搅拌理论随着用户对钢材质量提出越来越高的要求,使得提高铸坯质量成为连铸生产中的首要问题。
铸坯内部质量在很大程度上取决于铸坯内部是否呈现均匀而致密的等轴晶凝固组织。
但是在连铸坯实际凝固过程中,由于钢水冷却速度很快,造成铸坯凝固时柱状晶的发展,往往产生“搭桥”现象,带来缩孔偏析、疏松、夹杂物聚集等缺陷。
由于电磁场的作用具有非接触的特点,特别适合于高温钢水这种特殊场合,连铸机的电磁搅拌(electromagnetic stirring:ems)技术随之应运而生,它可以显著改善铸坯质量,因此在国内外受到高度重视并得到快速发展与广泛应用。
目前,炼钢厂连铸机电磁搅拌装置已经成为冶炼高性能品种钢水必不可少的设备。
电磁搅拌的工作原理基于电磁感应定律,载流导体处于磁场中就要受到电磁力的作用而发生运动。
就此而言,电磁搅拌的工作原理和异步电机相同, 搅拌器相当于电机的定子,钢水相当于电机的转子。
由电磁搅拌器的线圈绕组产生旋转磁场,在导电的钢水中产生感应电流,感应电流与磁场作用产生电磁力,对钢水起到了搅拌作用。
连铸电磁搅拌的实质是借助在铸坯液相穴中感生的电磁力来强化钢水的运动。
带有电磁搅拌器的结晶器结构形式如图1所示。
2 电磁搅拌对电源的特殊要求电磁搅拌系统由两大部分组成:电磁搅拌器和变频电源。
钢水之所以能被搅拌,是由于搅拌器线圈激发的交变磁场穿透到铸坯的钢水内,在其中产生感应电流,感应电流与磁场相互作用产生电磁力,电磁力作用在钢水体积元上,从而推动钢水运动。
其中感生电磁力与电流强度的平方成正比。
电流越大,中心磁感应强度越高。
一般情况下,结晶区电磁搅拌器要求中心磁感应强度幅值>500gs;为保证达到磁感应强度要求,必须要有足够大的电流。
这就要求变频电源必须能够长时间提供大电流,通常要在达到400a以上。
电磁搅拌器作用在钢水中的电磁力和钢水搅拌的速度不仅与电流强度有关,而且受电源频率的影响很大。
频率的选择主要和结晶器铜管的导磁率、厚度、断面等因素密切相关,它们不仅影响最大电磁力的量值,选择不当还会弱化搅拌功率。
连铸电磁搅拌

连铸电磁搅拌1.引言连铸技术是金属冶炼和加工过程中的重要环节,其目的是将高温熔融的金属连续不断地浇注成所需形状的固体金属件。
在连铸过程中,为了提高铸坯的质量和产量,人们引入了多种冶金技术和工艺,其中连铸电磁搅拌是近年来发展起来的一项重要技术。
2.电磁搅拌技术原理电磁搅拌技术是一种利用磁场力对金属熔体进行非接触式、低能耗的强化搅拌技术。
在连铸过程中,通过在钢水注入结晶器的过程中施加一个适当的磁场,使钢水在磁场的作用下产生旋转或流动,从而实现钢水的均匀混合和传热。
这种技术的应用可以显著提高铸坯的内部质量和表面质量,减少铸坯的缺陷和裂纹,从而提高了产品的成品率和力学性能。
3.连铸电磁搅拌的应用连铸电磁搅拌技术在多种金属材料的连铸过程中得到了广泛应用,如钢铁、铜、铝等。
在钢铁行业,连铸电磁搅拌技术主要用于提高方坯、板坯和圆坯的质量和产量。
通过对方坯进行电磁搅拌,可以显著减少中心疏松和偏析,提高其力学性能;对板坯进行电磁搅拌,可以提高其表面质量和尺寸精度;对圆坯进行电磁搅拌,可以提高其内部质量和生产效率。
在铜、铝行业,连铸电磁搅拌技术也得到了广泛应用。
例如,对铜合金进行电磁搅拌可以显著提高其成分均匀性和力学性能;对铝合金进行电磁搅拌可以改善其组织结构和力学性能,从而提高其抗拉强度和延伸率。
4.经济效益与社会效益连铸电磁搅拌技术的应用可以带来显著的经济效益和社会效益。
首先,通过提高铸坯的质量和产量,可以减少产品的废品率和生产成本,提高企业的经济效益。
其次,连铸电磁搅拌技术的应用可以显著降低能耗和减少环境污染,从而提高了企业的环保水平和社会形象。
此外,连铸电磁搅拌技术的应用还可以提高生产效率和生产能力,从而为企业创造更多的商业机会和竞争优势。
5.结论连铸电磁搅拌技术是一种重要的冶金技术,其在提高铸坯质量和产量、降低能耗和环境污染等方面具有显著的优势。
随着技术的不断发展和完善,连铸电磁搅拌技术的应用范围和效果将不断扩大和提高。
电磁搅拌在小方坯连铸机上的应用

4.5电磁搅拌在小方坯连铸机上的应用
电磁搅拌的作用是促进连铸坯凝固组织的等轴晶化、细化晶粒,改善偏析、减少中心疏松。
提高产品质量及热加工性能。
结晶器的电磁搅拌还有利于夹杂物以及气体的上浮分离。
正确地选定搅拌位置,搅拌强度和搅拌方法是极为重要的。
为了扩大最佳控制区的范围,有效的改善组织,现在一些工厂不仅在一个部位搅拌,而且还在许多部位同时搅拌。
1)结晶器电磁搅拌
结晶器电磁搅拌的作用是通过对凝固前沿的冲刷作用,促进等轴晶的发展,去除夹杂物和气体,可使铸坯凝固时,角部和四周边的凝壳厚度均匀。
2)二冷区电磁搅拌
二冷区电磁搅的作用是通过对钢液的搅动,阻止铸坯树技晶生长,以改善内部组织,减少中心疏松及偏析。
3)凝固末期电磁搅拌的作用是通过对凝固末期钢液的搅动,控制浓化钢水向中的移动,减轻中心疏松。
以上三个部位电磁搅拌,可以单独使用也可配合使用。
采用电磁搅拌技术可以提高钢液的过热度,改善浇注操作。
中间罐的浇注温度可以提高10~15℃。
连铸电磁搅拌器原理

连铸电磁搅拌器原理连铸电磁搅拌器是一种应用于连铸过程中的设备,通过电磁力的作用实现对铸坯温度和组织的控制。
它的原理是利用电磁感应和电磁力的相互作用,通过在连铸坯内部产生交变磁场,从而搅拌坯内的金属液,使其温度和组织均匀。
连铸电磁搅拌器主要由电磁线圈、电源和控制系统组成。
电磁线圈是通过电流产生磁场的装置,通常由多层螺线管组成。
电源主要用于提供电流,控制系统则用于控制电磁搅拌器的工作状态。
在连铸过程中,电磁线圈通过电流产生的磁场作用于铸坯内的金属液,从而达到搅拌的效果。
具体来说,连铸电磁搅拌器的工作原理如下:1. 电磁感应:当电流通过电磁线圈时,会在铸坯内产生交变磁场。
根据法拉第电磁感应定律,交变磁场会在金属液中产生涡流。
2. 涡流作用:涡流会在金属液中形成环流,这种环流会导致金属液受到电磁力的作用。
涡流的强度和方向与金属液的电导率、磁场强度和频率等因素有关。
3. 电磁力作用:涡流受到电磁力的作用,使金属液发生搅拌。
电磁力的大小和方向由涡流和磁场的相互作用决定。
通过调节电流和频率等参数,可以控制电磁力的大小和方向,从而实现对金属液的搅拌。
连铸电磁搅拌器的原理基于电磁感应和电磁力的相互作用,可以实现对连铸坯的温度和组织的控制。
通过搅拌坯内的金属液,连铸电磁搅拌器可以使铸坯的温度和组织更加均匀,提高产品的质量和性能。
此外,连铸电磁搅拌器还可以减少铸坯内部的气孔和夹杂物,提高产品的表面质量。
连铸电磁搅拌器是一种通过电磁力实现对连铸坯温度和组织控制的设备。
它的工作原理是利用电磁感应和电磁力的相互作用,通过在连铸坯内部产生交变磁场,对金属液进行搅拌。
连铸电磁搅拌器可以提高产品的质量和性能,使铸坯的温度和组织更加均匀。
它在连铸过程中具有重要的应用价值。
电磁搅拌技术在连铸中的应用

电磁搅拌技术在连铸中的应用近年来,连铸坯的质量越来越受到重视,因而围绕提高连铸坯质量的研究工作也取得了很大的进展。
电磁搅拌技术是电磁流体力学在钢铁工业中最成功的应用之一。
通过定量认识电磁场在多层介质中的传递,控制连铸过程中钢水的流动、传热和凝固,进而降低钢水的过热度、去除夹杂从而扩大等轴晶区,减少成分偏析,减轻中心疏松和中心缩孔。
几十年来,国内外学者对电磁搅拌技术进行了大量的理论及实验研究,并应用于工业生产。
电磁搅拌技术已经成为连铸过程中改善铸坯质量的最重要和最有效的手段之一。
1国内外电磁搅拌技术的发展概况磁流体力学是电磁学,流体力学以及热力学相互交叉的学科,简称MHD(magnetohydrodynamics),主要研究电磁场作用下,导电金属流体的运动规律。
在磁场里,导体的运动产生电动势,从而产生感应电流,导体本身也产生磁场。
液态金属作为载流导体,在外加磁场的作用下产生了电磁力,这种电磁力的作用促使载流液体流动,同时伴随着三种基本的物理现象——电磁热,电磁搅拌,电磁压力。
这三种现象在材料的冶炼、成形、凝固等工艺中已广泛应用。
连铸钢液电磁搅拌技术已经历几十年的试验研究和发展的过程。
早在上世纪50年代,就由在德国Schorndorf和Huckingen半工业连铸机上。
进行了首例连续铸钢电磁搅拌的试验。
60年代,在奥地利Kapfenberg厂的Boehler连铸机上用于浇铸合金钢。
60年代末一些工作者还进行了结晶器电磁搅拌和二冷区电磁搅拌的实验。
1973年法国的一家工厂率先在其连铸机上安装了电磁搅拌器并投入工业应用,从而奠定了连铸电磁搅拌技术工业应用的基础。
1977年,法国的Rotelec公司开发了小方坯和大方坯结晶器电磁搅拌器并以Magnetogyr-Process 注册商标,将其商品化。
1979年,法国钢研院又在德国Dunkirk厂板坯连铸机上采用了线性搅拌技术,取得良好效果。
进入80年代后,电磁搅拌技术发展更快,特别是日本,发展更为迅速。
电磁搅拌技术在连铸机上的应用及其对铸坯质量的影响

电磁搅拌技术在连铸机上的应用及其对铸坯质量的影响摘要:连铸电磁搅拌装置能有效地改善铸坯的内部组织结构,提升表面的质量,减少中心偏析和中心疏松,基本消除中心缩孔和裂纹,大大增加等轴晶率,是生产高碳钢的必要设备,因而广泛应用于各种方坯连铸机上。
电磁搅拌能够实现无接触能量的转换,即不予钢水接触就可以将电磁能转换为钢水的动能和部门热能,并且可人为调节电磁流的方向及钢水搅拌方向,从而生产出符合不同钢种需求的板坯,对改善板坯质量有重要的作用。
鉴于此,本文对电磁搅拌技术在连铸机上的应用及其对铸坯质量的影响进行分析与探讨。
关键词:电磁搅拌技术;连铸机;二冷配水;铸坯质量1.电磁搅拌技术原理和分类电磁搅拌器相较于三相异步电动机工作原理相同,三相电源提供电力支持,在磁极中形成旋转磁场。
通过搅拌装置的钢液,磁场会产生电磁力矩作用在钢液上,围绕着注流断面轴心旋转运动。
电磁力方向是由磁场磁极变化方向所决定,任意两相电源界限交换,即可改变电磁力方向,结合搅拌工艺要求,灵活调整电磁搅拌方向。
通过控制钢液对流、传热和传质过程,促使钢液过热度均匀,打破树枝晶,促进钢液中的气泡和杂质上浮,加剧等轴晶形成。
通过此种方式,可以改善中心疏松、缩孔和中心偏析问题,切实提升铸坯内在质量和表面质量。
就电磁搅拌器类型来看,依据不同安装位置划分为三种:①二冷区电磁搅拌器,在连铸机的二冷段位置安装,有足辊下搅拌器。
②结晶器电磁搅拌器,在连铸机结晶器的位置上安装,跨于足辊和结晶器的搅拌器也属于此类范畴。
③凝固末端电磁搅拌器,在接近连铸机凝固末端区域安装。
④中间包加热用电磁搅拌器,此类电磁搅拌器在连铸机中应用,促使钢液温度始终保持在中间包液相温度的10~25℃范围内,在应用范围较广,无论是投资还是成本都远远小于等离子加热方式,二次冶金效果较为可观。
1.电磁搅拌工艺对于连铸工艺的影响电磁搅拌装置的应用,铸坯可以获得中心较宽的等轴晶带,对于改善中心偏析和中心疏松等问题效果显著。
金属冶炼中的电磁搅拌技术及其应用

VS
研究方向包括研究不同技术之间的相 互作用机制、优化工艺参数、提高金 属回收率等。通过这些方面的研究, 可以进一步拓展电磁搅拌技术的应用 范围,推动金属冶炼技术的进步。
环保与节能减排的研究方向
随着环保意识的不断提高,金属冶炼过程中的环保与节能减排问题越来越受到关 注。未来需要加强这方面的研究,以实现金属冶炼的可持续发展。
。
降低能耗
由于熔炼时间的缩短和 效率的提高,电磁搅拌 技术可以有效降低熔炼
过程的能耗。
在连铸过程中的应用
铸坯质量提升
通过在连铸过程中使用电磁搅拌,可 以改善铸坯的结构,提高其质量。
减少裂纹和缺陷
电磁搅拌有助于消除连铸过程中的应 力集中,减少铸坯裂纹和内部缺陷。
提高铸坯的冷却速度
通过增强金属液的流动,电磁搅拌可 以加快铸坯的冷却速度,缩短生产周 期。
污染。
03
金属冶炼中电磁搅拌技术 的应用
在熔炼过程中的应用
熔炼速度提升
通过电磁搅拌,可以加 速金属的熔化过程,缩 短熔炼时间,提高生产
效率。
成分均匀性增强
在熔炼过程中,电磁搅 拌有助于使金属成分更 加均匀,提高产品质量
。
减少杂质与气体
通过搅拌作用,有助于 去除金属中的气体和杂 质,减少孔洞和夹杂物
对金属性能的影响
提高力学性能
细化晶粒和改善组织均匀性可以提高金属的力学性能 ,如强度、韧性等。
改善耐腐蚀性能
通过减少偏析和改善组织均匀性,可以提高金属的耐 腐蚀性能。
提高加工性能
改善金属组织的均匀性和细化晶粒可以提高金属的加 工性能,如切削加工性能。
对金属冶炼效率的影响
01
02
03
提高熔炼速度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.什么叫电磁搅拌(简称EMS)?
大家知道,一个载流的导体处于磁场中,就受到电磁力的作用而发生运动。
同样。
载流钢水处于磁场中就会产生一个电磁力推动钢水运动,这就是电磁搅拌的原理。
电磁搅拌是改善金属凝固组织,提高产品质量的有效手段。
应用于连续铸钢,已显示改善铸坯质量的良好效果。
早在1922年就提出了电磁搅拌的专利。
论述了流动对金属结构、致密性、偏析和夹杂物等方面的影响。
1952年开始在钢厂连铸机二次冷却区装置电磁搅拌的试验。
随着连铸技术的发展,为改善连铸坯质量,人们对电磁搅拌结构、类型、搅拌方式和冶金效果进行广泛深入研究,使电磁搅拌技术日益成熟,得到了广泛的应用。
2.电磁搅拌器有哪几种类型?
电磁搅拌器型式和结构是多种多样的。
根据铸机类型、铸坯断面和搅拌器安装位置的不同,目前处于实用阶段的有以下几种类型。
(1)按使用电源来分,有直流传导式和交流感应式。
(2)按激发的磁场形态来分,有:恒定磁场型,即磁场在空间恒定,不随时间变化;旋转磁场型,即磁场在空间绕轴以一定速度作旋转运动;行波磁场型,即磁场在空间以一定速度向一个方向作直线运动;螺旋磁场型,即磁场在空间以一定速度绕轴作螺旋运动。
目前,正在开发多功能组合式电磁搅拌器.即一台搅拌器具有旋转、行波或螺旋磁场等多种功能。
(3)按使用电源相数来分,有两相电磁搅拌器,三相电磁搅拌器。
(4)按搅拌器在连铸机安装位置来分,有结晶器电磁搅拌器、二次冷却区电磁搅拌器、凝固末端电磁搅拌器。
3.电磁搅拌技术有何特点?
与其他搅拌钢水方法(如振动、吹气)相比,电磁搅拌技术有以下特点:
(1)通过电磁感应实现能量无接触转换,不和钢水接触就可将电磁能转换成钢水的动能。
也有部分转变为热能。
(2)电磁搅拌器的磁场可以人为控制,因而电磁力也可人为控制,也就是钢水流动方向和形态也可以控制。
钢水可以是旋转运动、直线运动或螺旋运动。
可根据连铸钢钢种质量的要求,调节参数获得不同的搅拌效果。
(3)电磁搅拌是改善连铸坯质量、扩大连铸品种的一种有效手段。
4.什么叫结晶器电磁搅拌(简称M--EMS),有何作用?
结晶器电磁搅拌器特点:钢水在结晶器内,搅拌器置于结晶器外围。
搅拌器内的铁芯所激发的磁场通过结晶器的钢质水套和铜板渗入钢水中,借助电磁感应产生的电磁力,促使钢水产生旋转运动或上下垂直运动。
结晶器铜板的高导电性,使用工频(50Hz)电源,由于集肤效应,磁场在铜层厚度由外向里穿透能力只有几毫米,小于铜壁的厚度,也就是磁场被结晶器铜壁屏蔽不能渗入钢水内,无法搅拌钢水。
为此采用低电源频率(2~10Hz),使磁场穿过铜壁搅拌钢水。
结晶器电磁搅拌作用:1)钢水运动可清洗凝固壳表层区的气泡和夹杂物,改善了铸坯表面质量。
2)钢水运动有利于过热度的降低,这样可适当提高钢水过热度,有利于去除夹杂物,提高铸坯清洁度。
3)钢水运动可把树枝晶打碎,增加等轴晶核心,改善铸坯内部结构。
4)结晶器钢-渣界面经常更新,有利于保护渣吸收上浮的夹杂物。
某厂板坯连铸机结晶器采用线性电磁搅拌器,电流为400A,电源频率为1~5Hz,使用后,板坯皮下(约1/8铸坯厚度范围内)夹杂物、气孔的数量大大减少。
大方坯连铸机结晶器采用电磁搅拌后,对改善铸坯表面质量效果显著。
5.什么叫二次冷却区电磁搅拌(简称S-EMS),有何作用?
在板坯连铸二次冷却区,由于沿扇形段有支承辊的排列,给安装搅拌器带来一定困难。
经过十几年的发展,目前生产上应用的主要有两种型式:
(1)平面搅拌器。
在内外弧各装一台与支承辊平行的搅拌器,或在内弧侧支承辊后面安装搅拌器,或者把感应器的铁芯插入到内弧两辊之间的搅拌器。
(2)辊式搅拌器。
外形与支承辊类似,辊子里面装有感应器,既支承铸坯又起搅拌器作用。
搅拌器安装在二次冷却区的位置大约是相当于凝固壳厚度为铸坯厚度1/4~1/3液芯长度区域。
二次冷却区搅拌作用:打碎液芯穴内树枝晶搭桥,消除铸坯中心疏松和缩孔;碎枝晶片作为等轴晶核心,扩大铸坯中心等轴晶区,消除了中心偏析;可以促使铸坯液相穴内夹杂物上浮,减轻内弧夹杂物集聚。
某厂板坯连铸机,在二次冷却区支承辊内安装了电磁搅拌器。
在每流上设置3对6根电磁搅拌辊,它们距结晶器钢水面距离分别为11.78m、13.56m、15.35m。
搅拌辊电流为400A,电源频率为2~10Hz。
使用电磁搅拌后,板坯凝固组织等轴晶为15~30%,中心偏析、内部裂纹和夹杂物分布都得到明显改善。
6.什么叫凝固末端电磁搅拌(简称F—EMS),有何作用?
铸坯液相穴末端部区域已是凝固末期;钢水过热度消失,已处于糊状区;由于偏析作用,糊状区液体富集溶质浓度较高,易形成较严重的中心偏析。
为此,在液相穴长度的3/4处安装搅拌器,叫F—EMS。
一般采用频率为2~l0Hz的低频电源。
搅拌器作用:通过搅拌作用,使液相穴末端区域的富集溶质的液体分散在周围区域,降低铸坯中心偏析,减少中心疏松和缩孔。
7.什么叫结晶器电磁制动(EMB),有何作用?
从浸入式水口侧孔流出来钢流,其速度较大,流到结晶器窄面,与窄面凝固壳相碰后分成两股流动,一股向结晶器表面流动,一股沿凝固壳前沿向下流动,把夹杂物带入液相穴深部而上浮困难;流股冲刷凝固壳增加了角裂和漏钢的危险性;宽面中部弯月面钢水不活跃易于冻结。
为了解决这些问题,开发了结晶器电磁制动技术(也叫EMB)。
在板坯结晶器两个宽面处外加两个恒定磁场,从水口侧孔吐出的注流,以相当大的速度垂直切割磁场,从而在钢水中产生了一个电磁力,其方向与注流方向相反,使注流减弱产生了制动效应。
在电磁制动作用区,注流被分裂成小的流股被分散开,在结晶器引起了搅拌运动,活跃了结晶器钢-渣界面。
电磁制动的效果:减少内部和表面夹杂物,提高了铸坯清洁度;减少了铸坯皮下气孔;减轻了流股对凝固壳冲刷,减少了角裂和漏钢几率;可适当提高拉速。
8.什么叫“白亮带”,如何消除?
经过电磁搅拌的方坯,取一块横断面试样,做低倍检查,可在硫印图上的铸坯外表面与铸坯中心之间的某一位置观察到呈白亮色的方圈,其宽度为2~10mm,习称白亮带。
白亮带中C、S、P元素含量比周围金属中的要少,故又叫负偏析白亮带。
白亮带形成原因是电磁搅拌产生的流股沿凝固前沿流动,把两相区树枝晶间富集溶质的母液冲刷出去而造成的。
采用正反向交替运行,或各相电流采用不同频率运行方式的电磁搅拌器,使
磁场按设定的时间,周期交替变换运动方向,钢水也周期地改变流动方向.这样可减轻或消除白亮带。
这种负偏析的白亮带是否会给钢材性能带来危害,目前还无一致看法。
但负偏析严重时,会对钢的淬透性、表面硬度、机械性能等带来一定影响。
选择电磁搅拌方式时应该引起注意。
9.选择电磁搅拌应考虑哪些因素?
目前,连铸生产上使用电磁搅拌技术来改善铸坯质量,这一点已为人们所接受。
但哪一些钢种用、怎么用还有赖于正确选择电磁搅拌器。
一般来说,在连铸机不同的位置采用不同类型的搅拌器,对改善铸坯质量都会有<。