安徽省芜湖市2019-2020学年七年级下期末数学试卷(有答案)
2020年安徽省芜湖市初一下期末综合测试数学试题含解析

2020年安徽省芜湖市初一下期末综合测试数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题只有一个答案正确)1.若关于x 的不等式组03115x a x ->⎧⎪-⎨<⎪⎩无解,则a 的取值范围是( ) A .a >2B .a≥2C .1<a≤2D .1≤a<2【答案】B【解析】分析:先分别解两个不等式求出它们的解集,再根据不等式组无解得到关于a 的不等式求解即可. 详解:03115x a x ->⎧⎪⎨-<⎪⎩①②, 解①得,x>a ,解②得,x<2,∵不等式组无解,∴a≥2.故选B.点睛:本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 2.小亮解方程组2317x y x y +=⎧⎨-=⎩●的解为5*x y =⎧⎨=⎩,则于不小心滴上两滴墨水,刚好遮住了两个数●和*,则这两个数分别为( )A .4和6-B .6和4C .2-和8D .8和2-【答案】D【解析】【分析】将5x =代入方程组第二个方程求出y 的值,即可确定出●和*表示的数.【详解】将5x =代入317x y -=中得:2y =-,将5x =,2y =-入得:21028x y +=-=,则●和*分别为8和2-.故选:D .【点睛】此题考查了二元一次方程组的解,解题关键在于方程组的解即为能使方程组中两方程成立的未知数的值. 3.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( )A .12154503x y x y +=⎧⎨-=⎩B .12154503x y y x +=⎧⎨-=⎩C .12154503x y y x +=⎧⎨=-⎩D .12154503x y x y +=⎧⎨=-⎩【答案】B【解析】【分析】根据“购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y =450;由“甲种树苗比乙种树苗每棵便宜3元”可列方程y ﹣x =3,据此可得.【详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组12154503x y y x +=⎧⎨-=⎩ , 故选:B .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.4.如图,已知ABC ∆和CDE ∆都是等边三角形,点B 、C 、D 在同一条直线上,BE 交AC 于点M ,AD 交CE 于点N ,AD 、BE 交于点O .则下列结论:①AD BE =;②DE ME =;③MNC ∆为等边三角形;④120BOD ∠=︒.其中正确的是( )A .①②③B .①②④C .②③④D .①③④【答案】D【解析】【分析】(1)根据等边三角形的性质得CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°,则∠ACE =60°,利用“SAS ”可判断△ACD ≌△BCE ,则AD =BE ;(2)由△ACD ≌△BCE 得到∠CAD =∠CBE ,然后根据“ASA ”判断△ACN ≌△BCM ,所以AN =BM ; (3)由△ACN ≌△BCM 得到CN =BM ,加上∠MCN =60°,则根据等边三角形的判定即可得到△MNC 为等边三角形;(4)根据三角形内角和定理可得∠CAD +∠CDA =60°,而∠CAD =∠CBE ,则∠CBE +∠CDA =60°,然后再利用三角形内角和定理即可得到∠BOD =120°.【详解】(1)∵△ABC 和△CDE 都是等边三角形,∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60°,∴∠ACE =60°,∴∠ACD =∠BCE =120°,在△ACD 和△BCE 中,CA CB ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD =BE ;故①正确;(2)无法证明DE ME =,故②错误;(3))∵△ACD≌△BCE,∴∠CAD=∠CBE,在△ACN 和△BCM 中,ACN BCM CA CBCAN CBM ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△ACN≌△BCM(ASA ),∴CN=BM ,而∠MCN=60°,∴△CMN 为等边三角形;故③正确;(4)∵∠CAD+∠CDA=60°,而∠CAD=∠CB E ,∴∠CBE+∠CDA=60°,∴∠BOD=120°;故④正确;故选:D【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.5.将50个数据分成五组,编成组号为①~⑤的五个组,频数分布如下表:则第3组的频数是()组号①②③④⑤频数1241610A.8B.0.8C.16D.0.16【答案】A【解析】【分析】根据频数的性质:一组数据中,各组的频数和等于总数,可以求出第③组的频数.根据频率、频数的关系:频率=频数÷数据总和,可以求出第③组的频率.【详解】根据统计表可知:第③组的频数是:50-12-4-16-10=8,故选A.【点睛】本题考查了频数的计算方法.用到的知识点:各组的频数之和等于数据总数6.将一块直角三角板的直角顶点放在长方形直尺的一边上,如∠1=43°,那么∠2的度数为()A.43°B.57°C.47°D.53°【答案】C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】解:如图,,∵∠1=43°,∴∠3=∠1=47°,∴∠2=90°-43°=47°.故选:C.【点睛】此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.7.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有()A.金额B.数量C.单价D.金额和数量【答案】D【解析】【分析】根据常量与变量的定义即可判断.【详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【点睛】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.8.如果a>b,那么下列结论一定正确的是( )A.a―3<b—3 B.3―a<3—b C.ac2>bc2D.a2>b2【答案】B【解析】【分析】利用不等式的基本性质判断即可.【详解】如果a>b,那么a-3>b-3,选项A不正确;如果a>b,那么3-a<3-b,选项B正确;如果a>b,c>0,那么ac>bc,选项C错误;如果a>b>0,那么a2>b2,选项D错误,故选B.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.9.下列调查中,适合于全面调查方式的是()A.调查春节联欢晚会的收视率B.调查某班学生的身高情况C.调查一批节能灯的使用寿命D.调查某批次汽车的抗撞能力【答案】B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查春节联欢晚会的收视率,适合抽样调查,不合题意;B、调查某班学生的身高情况,适合全面调查,符合题意;C、调查一批节能灯的使用寿命,适合抽样调查,不合题意;D、调查某批次汽车的抗撞能力,适合抽样调查,不合题意;故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是()A.15B.25C.35D.45【答案】B【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵根据轴对称图形与中心对称图形的概念,5张卡片中既是轴对称图形,又是中心对称图形的有线段、圆,共2张,∴所求概率为:25.故选B . 考点:轴对称图形,中心对称图形,概率.二、填空题11.一年之中地球与太阳之间的距离随时间的变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿千米.数据1.4960亿用科学记数法表示为是_______________________.【答案】1.4960×108【解析】【分析】科学计数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,据此进一步求解即可.【详解】由题意得:1.4960亿=1.4960×108,故答案为:1.4960×108.【点睛】本题主要考查了科学计数法,熟练掌握相关概念是解题关键.12.我市某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图,已知从左到右5个小长方形的高的比为1:3:7:6:3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有______________篇.【答案】1【解析】【分析】根据题意和频数分布直方图中的数据可以求得在这次评比中共征集到的小作文的篇数.【详解】由题意可得,这次评比中共征集到的小作文有:72÷920=1(篇) 故答案为:1.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.13.若关于x ,y 的方程组225x y a x y a +=⎧⎨+=⎩的解满足x ﹣y >10,则a 的取值范围是____. 【答案】52a <-【解析】【分析】利用加减消元法,解方程组,求出x 和y 的值,代入x ﹣y >10,得到关于a 的一元一次不等式,解之即可.【详解】 225x y a x y a+=⎧⎨+=⎩, 解得:3x a y a =-⎧⎨=⎩, 把x=﹣a ,y=3a 代入不等式x ﹣y >10得:﹣a ﹣3a >10,解得:a 52-<. 故答案为:a 52-<. 【点睛】本题考查了解一元一次不等式和解二元一次方程组,正确掌握解一元一次不等式和解二元一次方程组的方法是解答本题的关键.14.如图,在宽为10m ,长为30m 的矩形地块上修建两条同样宽为1m 的道路,余下部分作为耕地.根据图中数据计算,耕地的面积为 m 1.【答案】2.【解析】试题分析:由图可得出两条路的宽度为:1m ,长度分别为:10m ,30m ,这样可以求出小路的总面积,又知矩形的面积,耕地的面积=矩形的面积-小路的面积,由此计算耕地的面积.由图可以看出两条路的宽度为:1m ,长度分别为:10m ,30m ,所以,可以得出路的总面积为:10×1+30×1-1×1=49m 1,又知该矩形的面积为:10×30=600m 1,所以,耕地的面积为:600-49=2m 1.故答案为2.考点:矩形的性质.15.如图,已知△ABC 中,AB =5 cm ,BC =12 cm ,AC =13 cm ,那么AC 边上的中线BD 的长为____________cm.【答案】132【解析】【分析】先根据勾股定理的逆定理判断形状,即可得到结果.【详解】52+122=132∴△ABC 是直角三角形,∴AC 边上的中线BD 的长为132cm. 【点睛】解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.同时熟记直角三角形斜边的中线等于斜边的一半.16.如果a 是最大的负整数,b 是绝对值最小的数,c 是相反数等于本身的数,那么()a b c = ______.【答案】1【解析】【分析】先根据题意确定a 、b 、c 的值,再把它们的值代入代数式求值即可.【详解】解:∵a 是最大的负整数,b 是绝对值最小的数,c 是相反数等于本身的数,∴a=-1,b=1,c=1,∴(a+b )×c=1,故答案为1.【点睛】本题主要考查的是有理数的相关知识. 最大的负整数是−1,绝对值最小的有理数是1,相反数等于它本身的数是1.17.已知AD 是△ABC 的中线,若△ABD 与△ACD 的周长分别是14和1.△ABC 的周长是20,则AD 的长为.【答案】2【解析】【分析】根据三角形的周长公式列式计算即可得解.【详解】解:∵△ABD与△ACD的周长分别是14和1,∴AB+BC+AC+2AD=14+1=26,∵△ABC的周长是20,∴AB+BC+AC=20,∴2AD=26−20=6,∴AD=2.故答案为2.【点睛】本题考查了三角形的中线,熟记三角形的周长公式是解题的关键.三、解答题18.解下列方程组:(1)y xy4x15=⎧+=⎨⎩;(2)5x2y12x3y4-=⎧-=-⎨⎩.【答案】(1){x3y3==;(2){x1y2==.【解析】【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)y xy4x15=⎧+=⎨⎩①②,将①代入②得x+4x=15,解得:x=3,由①知y=3,则方程组的解为{x 3y 3==;(2)5x 2y 12x 3y 4-=⎧-=-⎨⎩①②, ①×3得,15x-6y=3③,②×2得,4x-6y=-8④,由③-④得11x=11,解得:x=1,把x=1代入①得y=2,则方程组的解是{x 1y 2==.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 19.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图),然后将剩余部分拼成一个长方形(如图).(1)上述操作能验证的等式是 ;(请选择正确的一个)A .a 2-2ab +b 2=(a -b )2B .a 2-b 2=(a +b )(a -b )C .a 2+ab =a (a +b )(2)应用你从(1)选出的等式,完成下列各题:①已知x 2-4y 2=12,x +2y =4,求x -2y 的值.②计算:(1-212)(1-213)(1-214)…(1-212018)(1-212019). 【答案】 (1) B ;(2)① 3; ②10102019. 【解析】【分析】(1)观察图1与图2,根据两图形阴影部分面积相等,验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)根据图形得:a 2-b 2=(a+b )(a-b ),上述操作能验证的等式是B ,故答案为:B ;(2)①∵x 2-4y 2=(x+2y )(x-2y )=12,x+2y=4,∴x-2y=12÷4=3;②(1-212)(1-213)(1-214)…(1-212018)(1-212019) =(1-12)(1+12)(1-13)(1+13)…(1-12018)(1+12018)(1-12019)(1+12019) =12×32×23×43×34×54×…×20172018×20192018×20182019×20202019=12×20202019=10102019. 【点睛】本题考查平方差公式的几何背景以及因式分解法的运用,熟练掌握平方差公式的结构特征是解本题的关键.20.已知//AB CD ,点E F 、分别为两条平行线AB CD 、上的一点,GE GF ⊥于G .(1)如图1,直接写出AEG ∠和CFG ∠之间的数量关系;(2)如图2,连接GB ,过点G 分别作BGF ∠和BGE ∠的角平分线交AB 于点K H 、,GH AB ⊥. ①求HGK ∠的度数;②探究CFG ∠和BGF ∠的数量关系并加以证明.【答案】(1)090AEG CFG ∠+∠=,(2)①45°;②902BGF CFG ∠+︒=∠,证明见解析.【解析】【分析】(1)结论:∠ECD=90°+∠ABE .如图1中,过拐点作平行线,利用平行线性质即可得出结论; (2) ①由GK 和GH 为BGF ∠和BGE ∠的角平分线,可得11,22BGH BGE BGK KGL BGF ∠=∠∠=∠=∠,再由KGH BGH BGK ∠=∠-∠,通过角的运算即可得出结论.②由AB ∥CD 可得CFG ELG ∠=∠,再由045KGH HGL KGL ∠=∠+∠=,通过角的代换即可得出结论.【详解】解:(1)结论:090AEG CFG ∠+∠=,理由:如图1中,从过G 点作GH 平行CD ,∵AB ∥CD ,∴AB ∥CD ∥GH∴∠AEG=∠1,∠CFG=∠2,∵GE ⊥GF ,∴∠CEH=90°,∴∠ECD=∠H+∠CEH=90°+∠H ,∴∠ECD=90°+∠ABE .(2)①∵GE GF ⊥∴090EGF ∠=,∵GK 和GH 为BGF ∠和BGE ∠的角平分线, ∴11,22BGH BGE BGK KGL BGF ∠=∠∠=∠=∠, ∵KGH BGH BGK ∠=∠-∠, ∴()111222KGH BGE BGF BGE BGF ∠=∠-∠=∠-∠, ∴01452KGH EGF ∠=∠=; ②结论:0902BGF CFG ∠+=∠.∵GH AB ⊥,∴090GHB ∠=,∴090ELG HGL ∠+∠=,∵//AB CD ,∴CFG ELG ∠=∠,∴090HGL CFG ∠=-∠,∵045KGH HGL KGL ∠=∠+∠=, ∴00190452CFG BGF -∠+∠=, ∴0902BGF CFG ∠+=∠.【点睛】本题考查平行线的性质、垂线的性质、三角形的内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.21.如图,在平面直角坐标系中,半径为1的圆从原点出发沿x 轴正方向滚动一周,圆上一点由原点O 到达点O ′,圆心也从点A 到达点A ′.(1)点O ′的坐标为 ,点A ′的坐标为 ;(2)若点P 是圆在滚动过程中圆心经过的某一位置,求以点P ,点O ,点O ′为顶点的三角形的面积.【答案】(1)(2π,0)、(2π,1);(2)S △POO ′=π.【解析】【分析】(1)由半径为1的圆从原点出发沿x 轴正方向滚动一周, 得到OO′=AA′=2π,则可求出点O′和点A′;(2)由(1)可得O'O 的长度,且P 到O'O 的距离始终是1,根据三角形的面积公式即可得到答案.【详解】(1)∵半径为1的圆从原点出发沿x 轴正方向滚动一周,∴⊙O 滚动的距离OO′=AA′=2π,则点O′的坐标为(2π,0),点A′的坐标为(2π,1),故答案为(2π,0)、(2π,1);(2)S △POO′=12×2π×1=π. 【点睛】本题考查了规律型:点的坐标,圆的面积,得出该圆每向X 轴正方向滚动1圈后,圆心的横坐标向右平移1个圆的周长,纵坐标不变的规律是解题的关键.22.在共建美好家园活动中,校团委把一批树苗分给九年级(1)班同学去栽种,如果每人分2棵,还剩42棵,如果每人分3棵,那么最后一个人得到的树苗少于5棵,(但至少分的一棵),问九年级(1)班至少有多少学生?至多有多少学生?【答案】至少有41名学生,至多有44名学生【解析】【分析】根据题意设九年级有x 名学生,再根据题意列出不等式组求解即可.【详解】解:设九年级有x 名学生根据题意,得2423(1)52423(1)0x x x x +--<⎧⎨+-->⎩解得4045x <<答:九年级(1)班至少有41名学生,至多有44名学生【点睛】本题主要考查不等式组的应用问题,关键在于设元列不等式组.23.如图,已知∠BAD+∠ADC =180°,AE 平分∠BAD ,CD 与AE 相交于F ,DG 交BC 的,延长线于G ,∠CFE =∠AEB(1)若∠B =87°,求∠DCG 的度数;(2)AD 与BC 是什么位置关系?并说明理由;(3)若∠DAB =α,∠DGC =β,直接写出α、β满足什么数量关系时,AE ∥DG .【答案】(1)∠DCG =87°;(2)AD ∥BC ,理由见解析;(3)当α=2β时,AE ∥DG .理由见解析.【解析】【分析】(1)根据平行线的判定定理得到AB ∥CD ,由平行线的性质得到∠DCG=∠B=87°;(2)由平行线的性质得到∠BAF=∠CFE ,根据角平分线的定义得到∠BAF=∠FAD ,等量代换得到∠DAF=∠CFE ,∠DAF=∠AEB ,由平行线的判定即可得到结论;(3)根据平行线的判定定理得到∠DAF=∠AEB ,根据角平分线的定义得到∠DAB=2∠DAF=2∠AEB ,然后根据平行线的性质即可得到结论.【详解】(1)∵∠BAD+∠ADC =180°,∴AB ∥CD ,∴∠DCG =∠B =87°;(2)AD ∥BC ,理由如下:∵AB ∥CD ,∴∠BAF =∠CFE ,又∵AE 平分∠BAD ,∴∠BAF =∠FAD ,∴∠DAF =∠CFE ,而∠CFE =∠AEB ,∴∠DAF =∠AEB ,∴AD ∥BC ;(3)当α=2β时,AE ∥DG .理由:若AE ∥DG ,则∠G =∠AEB =∠DAE =∠BAD ,即当∠BAD =2∠G 时,AE ∥DG .【点睛】本题考查了平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键,属于中考常考题型.24. (1)计算:(-3a 3)2·2a 3-1a 12÷a 3;(2)先化简,再求值:(a +b)2-2a(a -b)+(a +2b)(a -2b),其中a =-1,b =1.【答案】(1)11a 9;(2)-61.【解析】【分析】(1)根据指数幂和同底数幂的乘除运算,即可得到答案;(2)根据完全平方公式和多项式乘以多项式的性质,进行计算即可得到答案.【详解】(1)根据指数幂和同底数幂的乘除运算,则原式=639924a a a •-=11a 9;(2)解:根据完全平方公式和多项式乘以多项式的性质,则原式=22222b ab34-+;2224a ab b a ab a b++-++-=2当a=-1,b=1时,-⨯-=-61.原式=31616【点睛】本题考查指数幂、同底数幂的乘除运算、完全平方公式和多项式乘以多项式的性质,解题的关键是熟练掌握指数幂、同底数幂的乘除运算、完全平方公式和多项式乘以多项式的性质.25.阅读下面的文字,解答问题.如图,在平面直角坐标系中,点D的坐标是(﹣3,1),点A的坐标是(4,3).(1)点B和点C的坐标分别是________、________.(2)将△ABC平移后使点C与点D重合,点A、B分别与点E、F重合,画出△DEF.并直接写出E点的坐标,F点的坐标.(3)若AB上的点M坐标为(x,y),则平移后的对应点M′的坐标为________.∆的面积.(4)求ABC【答案】(1)(3,1);(1,2);(2)图详见解析,点E坐标为(0,2),点F坐标为(﹣1,0);(3)(x﹣4,y﹣1);(4)2.5.【解析】【分析】(1)根据直角坐标系直接写出B,C的坐标;(2)根据△ABC平移后使点C与点D重合,得出平移的规律,再把A,B进行平移,再连接得到△DEF,即可写出E,F的坐标;(3)根据平移的规律即可写出;(4)根据割补法即可求出△ABC的面积.【详解】解:(1)(3,1);(1,2)(2)解:如图所示,△DEF即为所求.点E坐标为(0,2),点F坐标为(﹣1,0).(3)(x ﹣4,y ﹣1)(4)将ABC ∆补成长方形,减去3个直角三角形的面积得: 11123131212222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯ =6-1.5-1-1=2.5【点睛】此题主要考查直角坐标系的平移,解题的关键是熟知平移的特点.。
(3份试卷汇总)2019-2020学年安徽省芜湖市初一下学期期末数学考试试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+2.如图所示,从边长为a 的大正方形中挖去一个边长是b 的小正方形,小明将图a 中的阴影部分拼成了一个如图b 所示的矩形,这一过程可以验证( )A .222a b 2ab (a b)+-=-B .222a b 2ab (a b)++=+C .()()222a 3ab b 2a b a b -+=--D .()()22a b a b a b -=+- 3.下列说法正确的个数有( )(1)过一点,有且只有一条直线与已知直线平行;(2)一条直线有且只有一条垂线;(3)不相交的两条直线叫做平行线;(4)直线外一点到这条直线的垂线段叫做这点到这条直线的距离;(5)在同一平面内,垂直于同一条直线的两条直线互相平行;(6)两条直线被第三条直线所截,同位角相等.A .0个B .1个C .2个D .3个4.下列说法中,不正确的是( )A 162±B .8的立方根是2C .64的立方根是4±D 935.下列命题中,真命题是( )A .负数没有立方根B .过一点有且只有一条直线与已知直线平行C .带根号的数一定是无理数D .垂线段最短 6.4277÷的值是( )A .49B .14C .2D .1497.下列说法正确的是( )A .367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13)C.(14,14)D.(﹣14,﹣14)9.判断下列语句,不是命题的是()A.线段的中点到线段两端点的距离相等B.相等的两个角是同位角C.过已知直线外的任一点画已知直线的垂线D.与两平行线中的一条相交的直线,也必与另一条相交10.根据分式的基本性质,分式可变形为()A.B.C.D.二、填空题题11.在“Chinese dream”这个词组的所有字母中,出现字母“e”的频率是____________.12.(﹣23)2002×(1.5)2003=_____.13.如图,是一个测量工件内槽宽的工具,点既是的中点,也是的中点,若测得,则该内槽的宽为__________.14.若不等式组220x ab x->⎧⎨->⎩的解集为11x-<<,则2009()a b+=________.15.水分子的直径为4×10-10m ,125个水分子一个一个地排列起来的长度为_______________m . 16.若不等式组0,0x b x a -<⎧⎨+>⎩的解集为2<x <3,则关于x ,y 的方程组521ax y x by +=⎧⎨-=⎩的解为___________. 17.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=_____.三、解答题18.某城市出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米,每增加1千米,加收2元(不足1千米按1千米).某人乘这种出租车从甲地到乙地共付车费19元,那么他乘此出租车从甲地到乙地行驶的距离不超过多少千米?19.(6分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧.点C 是直线1l 上一点,在同一平面内,乐乐他们把一个等腰直角三角板ABC 任意放,其中直角顶点C 与点C 重合,过点A 作直线21l l ⊥,垂足为点M ,从过点B 作31l l ⊥,垂足为点N .(1)当直线2l ,3l 位于点C 的异侧时,如图1,线段BN ,AM ,MN 之间的数量关系___(不必说明理由);(2)当直线2l ,3l 位于点C 的右侧时,如图2,判断线段BN ,AM ,MN 之间的数量系,并说明理由; (3)当直线2l ,3l 位于点C 的左侧时,如图3,请你补全图形,并直接写出线段BN ,AM ,MN 之间的数量关系.20.(6分)(1)计算: ()2233(2)(4)mn m mn ⋅-÷-;(2)计算: 2(5)(23)(2)x x x -+--;21.(6分)如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连接BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.22.(8分)如图,AF 是△ABC 的高,AD 是△ABC 的角平分线,∠B =36°,∠C =76°,求∠DAF 的度数.23.(8分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向3的倍数的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23. 24.(10分)如图,在四边形ABCD 中,050B ∠=,0110C ∠=,090D ∠=,AE BC ⊥,AF 是BAD ∠的平分线,与边BC 交于点F ,求EAF ∠的度数.25.(10分)化简,再求值:()()()()221313151x x x x x --+-+-,其中1x =.参考答案一、选择题(每题只有一个答案正确)1.B【解析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+2.D【解析】【分析】利用正方形的面积公式可知阴影部分面积为a 2-b 2,根据矩形面积公式可知阴影部分面积为(a+b )(a-b ),二者相等,即可解答.【详解】由题可知a 2-b 2=(a+b )(a-b ).故选D .【点睛】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.3.B【解析】【分析】根据平行公理,垂线的性质,平行线的定义,点到直线的距离,平行线的判定与性质对各项进行一一判段.【详解】(1)过直线外一点,有且只有一条直线与已知直线平行,错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;(3)在同一平面内,不相交的两条直线叫做平行线,错误;(4)直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,错误;(5)在同一平面内,垂直于同一条直线的两条直线互相平行,正确;(6)两条直线被第三条直线所截,两直线平行,同位角相等,错误.共1个正确,【点睛】本题考查平行公理,垂线的性质,平行线的定义,点到直线的距离,平行线的判定与性质,熟练掌握其定义与性质是解题的关键.4.C【解析】【分析】根据平方根和立方根的定义进行计算,再逐一判断即可【详解】=的平方根是2±,原选项不合题意解:A. 4B. 8的立方根是2,原选项不合题意C. 64的立方根是4,原选项符合题意3=的平方根是故选:C【点睛】本题考查了平方根和立方根的概念,熟练掌握相关知识是解题的关键5.D【解析】【分析】根据立方根、平行公理、无理数的定义、垂线段最短等知识分别判断后即可确定正确的选项.【详解】A、负数有立方根,故错误,是假命题;B、过直线外一点有且只有一条直线与已知直线平行,故错误,是假命题;C、带根号的数不一定是无理数,故错误,是假命题;D、垂线段最短,正确,是真命题,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解立方根、平行公理、无理数的定义、垂线段最短等知识,难度不大.6.A【解析】【分析】根据同底数幂的除法法则计算即可.74÷72=74−2=72=1.故选:A.【点睛】本题考查同底数幂的除法法则,解题的关键是知道同底数幂相除,底数不变,指数相减.7.A【解析】分析:利用概率的意义和必然事件的概念的概念进行分析.详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是12,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.8.C【解析】【分析】观察图象可知每四个点一圈进行循环,每一圈第一个点在第三象限,再根据点的脚标与坐标找出规律解答即可.【详解】∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);…55=4×13+3,A55的坐标为(13+1,13+1),A55(14,14);故选C.【点睛】本题是图形规律探究题,解答本题是根据每四个点一圈进行循环先确定点所在的象限,然后根据点的脚标与坐标找出规律,再求点的坐标即可.9.C根据命题的定义是判断一件事情的语句,由题设和结论构成,对各个选项进行分析,从而得到答案.【详解】A. 线段的中点到线段两端点的距离相等;是命题,B. 相等的两个角是同位角;是命题,C. 过已知直线外的任一点画已知直线的垂线;不是命题,D. 与两平行线中的一条相交的直线,也必与另一条相交;是命题,故选:C【点睛】本题考查命题的概念以及能够从一些语句找出命题的能力.10.C【解析】【分析】根据分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变,可得答案.【详解】解:原式=,故选:C.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.二、填空题题11.0.25【解析】【分析】用“e”的个数除以字母总个数即可.【详解】3÷12=0.25.故答案为:0.25.【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12.1.5.先把(﹣23)2002×(1.5)2003改写成(﹣23)2002×(32)2002×32,然后逆用积的乘方法则计算即可.【详解】(﹣23)2002×(1.5)2003=(﹣23)2002×(32)2002×32=(﹣23×32)2002×32=32=1.5.故答案为:1.5.【点睛】本题考查了幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握该知识点的概念和运算法则.13.1【解析】【分析】利用“SAS”证明△OAB≌△OA′B′,从而得到A′B′=AB=1cm.【详解】解:如图,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),∴A′B′=AB=1(cm).故答案为:1.【点睛】本题考查了全等三角形的应用:一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,根据示意图,把已知条件转化为三角形中的边角关系是关键.14.-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<12b,∵-1<x <1,∴a+2=-1,12b=1 ∴a=-3,b=2,∴(a+b )2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.15.8510-⨯【解析】【分析】先求出125个水分子一个一个地排列起来的长度,再根据科学记数法表示即可.【详解】解:101041012550010--⨯⨯=⨯ 8510()m -=⨯.故答案为:8510-⨯.【点睛】本题考查了用科学记数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.16.43x y =-⎧⎨=-⎩【解析】分析:根据已知解集确定出a 与b 的值,代入方程组求出解即可.详解:根据题意得:a=-2,b=3,代入方程组得:25231x y x y -+⎧⎨-⎩=①=②, ①+②得:-2y=6,即y=-3,把y=-3代入①得:x=-4,则方程组的解为43x y -⎧⎨-⎩==, 故答案为:43x y -⎧⎨-⎩==点睛:此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.a+c【解析】【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答,具体: 求证△ABC≌△CDE,得DE=BC,△ABC中AB2+CE2=AC2,根据S3=AB2,S4=DE2可求得S3+S4=c,同理可得S1+S2=a,故S3+S4+S1+S2=a+c..【详解】解:∵∠ACB+∠DCE=90°,∠BAC+∠ACB=90°,∴∠DCE=∠BAC,∵AC=CE,∠ABC=∠CDE∴△ABC≌△CDE,∴BC=DE,在直角△ABC中,AB2+BC2=AC2,即,AB2+DE2=AC2,∵S3=AB2,S4=DE2∴S3+S4=c同理S1+S2=a故可得S1+S2+S3+S4=a+c,故答案是:a+c.【点睛】本题考查正方形面积的计算,正方形各边相等的性质,全等三角形的判定.解题关键是本题中根据△ABC≌△CDE证明S3+S4=c三、解答题18.不超过1千米.【解析】【分析】已知从甲地到乙地共需支付车费19元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,根据题意列出不等式,从而得出答案.【详解】设他乘此出租车从甲地到乙地行驶的路程是x 千米,依题意:7+2.4(x ﹣3)≤19,解得:x ≤1.答:他乘此出租车从甲地到乙地行驶路程不超过1千米.【点睛】本题考查的是一元一次不等式的应用,关键是根据:不足1千米按1千米计算,从而列出不等式7+2.4(x-3)≤19解题.19.(1)MN CM CN =+(2)MN BN AM =-;证明见详解(3)作图见详解;MN AM BN =-【解析】【分析】(1)根据等腰直角三角形的性质和已知条件可判定ACM CBN ≅,得到两三角形对应边的等量关系,代换可得MN BN AM =+;(2)同样根据等腰直角三角形的性质和已知条件可判定ACM CBN ≅,得到两三角形对应边的等量关系,代换可得MN BN AM =-;(3)同样根据等腰直角三角形的性质和已知条件可判定ACM CBN ≅,得到两三角形对应边的等量关系,代换可得MN AM BN =-.【详解】证明:(1)ABC 为等腰直角三角形,且21l l ⊥,31l l ⊥,∴90ACM CAM ∠+∠=︒,又18090ACM BCN ACB ∠+∠=︒-∠=︒,∴CAM BCN ∠=∠,∴90CAM BCN AMC BNC AC CB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ACM CBN AAS ≅∴AM CN =,CM BN =,∴MN CM CN BN AM =+=+.(2)ABC 为等腰直角三角形,且21l l ⊥,31l l ⊥,∴90ACM CAM ∠+∠=︒, 又90ACM BCN ACB ∠+∠=∠=︒,∴CAM BCN ∠=∠,∴90CAM BCN AMC BNC AC CB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ACM CBN AAS≅∴AM CN =,CM BN =,∴MN CM CN BN AM =-=-.(3)作图如下,ABC 为等腰直角三角形,且21l l ⊥,31l l ⊥,∴90ACM CAM ∠+∠=︒,又90ACM BCN ACB ∠+∠=∠=︒,∴CAM BCN ∠=∠,∴90CAM BCN AMC BNC AC CB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()ACM CBN AAS ≅∴AM CN =,CM BN =,∴MN CN CM AM BN =-=-.【点睛】本题主要考查了等腰三角形的性质,全等三角形的性质与判定定理等,熟练掌握和应用相关知识点是解答关键.20.(1)4318m n ;(2)2319x x --.【解析】【分析】(1)根据幂的乘方与同底数幂乘除法法则进行计算即可;(2)根据多项式乘多项式的运算法则与完全平方公式进行计算即可.【详解】解:(1)原式=()24398(4)m n mmn ⋅-÷- =()5472(4)m n mn -÷-4318m n =; (2)原式=()22271544x x x x ----+=2319x x --.【点睛】本题主要考查幂的混合运算,多项式的混合运算,解此题的关键在于熟练掌握知识点.21.数量关系为:BE=EC ,位置关系是:BE ⊥EC .证明:∵△AED 是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE ,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=90°+45°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC ,∵D 是AC 的中点,∴AD=12AB , ∵AC=2AB ,∴AB=DC ,∴△EAB ≌△EDC ,∴EB=EC ,且∠AEB=∠AED=90°,∴∠DEC+∠BED=∠AED=∠BED=90°,∴BE ⊥ED .【解析】由AC=2AB ,点D 是AC 的中点,得到AB=AD=CD ,由∠EAD=∠EDA=45°,得∠EAB=∠EDC=135°,再有EA=ED ,根据“SAS”证得△EAB ≌△EDC 即可得到结果.22.20°【解析】试题分析:根据∠B 和∠C 的度数得出∠BAC 的度数,根据角平分线的性质得出∠CAD 的度数,根据高线得出∠AFC=90°,然后得出∠CAF 的度数,最后根据∠DAF=∠CAD -∠CAF 得出答案.试题解析:∵∠B=36° ∠C=76° ∴∠BAC=180-∠B-∠C=68° 又∵AD 是△ABC 的角平分线∴∠CAD=0.5∠BAC=34° ∵AF 是△ABC 的高 ∴∠AFC=90°∴∠CAF=180-∠AFC-∠C=14° ∴∠DAF=∠CAD-∠CAF=20°考点:三角形的角度计算23.(1)13;(2)自由转动转盘,当它停止时,指针指向的数字不大于4时,指针指向的区域的概率是23,见解析【解析】【分析】(1)根据概率公式计算即可;(2)根据概率公式设计,如:自由转动转盘,当它停止时,指针指向的数字不大于4时.【详解】解:(1)总共有6种等可能结果,3的倍数有2种结果, 所以32163P ==(指针指向的倍数); (2)自由转动转盘,当它停止时,指针指向的数字不大于4时,指针指向的区域的概率是42=63. 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 24.015EAF ∠=【解析】【分析】先根据条件求出∠BAD ,再求出∠BAE ,进行角度转换即可解答.【详解】解:∵在四边形ABCD 中,0360BAD B C D ∠∠∠∠+++=∴00360110BAD B C D ∠∠∠∠=---=∵AF 是BAD ∠的平分线 ∴01552BAF BAD ∠∠== ∵AE BC ⊥∴090AEB ∠=∴090B BAE ∠∠+=∴009040BAE B ∠∠=-=∴015EAF BAF BAE ∠∠∠=-=【点睛】本题考查多边形内角和定理,熟练应用定理是解题关键.25.−9x+2,-7.【解析】【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 的值代入计算即可求出值.【详解】原式=4x 2−4x+1−9x 2+1+5x 2−5x=−9x+2,当x=1时,原式=−9+2=−7.【点睛】此题考查完全平方公式,平方差公式,单项式乘以多项式,解题关键在于掌握运算法则.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是()A.三角形可以分为等边三角形、直角三角形、钝角三角形B.如果一个三角形的一个外角大于与它相邻的内角,则这个三角形为锐角三角形C.各边都相等的多边形是正多边形D.五边形有五条对角线2.如图,CE平分∠ACB且CE⊥DB于E,∠DAB=∠DBA,又知AC=18,△CDB的周长为28,则DB的长为()A.7 B.8 C.9 D.103.某公司员工分别住在A、B、C三个住宅区,A区有60人,B区有30人,C区有20人,三个区在同一条直线上,如图.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间4.解方程组x2y-3{2y-3x9==①②时,把①代入②,得()A.2(2y﹣3)﹣3x=9 B.2y﹣3(2y+3)=9C.(3y﹣2)﹣3x=9 D.2y﹣3(2y﹣3)=95.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.6.将正整数按下表的规律排列:1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 27…平移表中涂色部分的方框,方框中的4个数的和可能是 A .2010 B .2014 C .2018 D .20227. “有两条边相等的三角形是等腰三角形”是( )A .基本事实B .定理C .定义D .条件8.下列命题:①三角形内角和为180°;②三角形的三条中线交于一点,且这点在三角形内部;③三角形的一个外角等于两个内角之和;④过一点,有且只有一条直线与已知直线平行;⑤对顶角相等.其中真命题的个数有( )A .1个B .2个C .3个D .4个9.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线l 的距离( )A .小于2cmB .等于2cmC .不大于2cmD .等于4cm10.如图,∠1的内错角是( )A .∠2B .∠3C .∠4D .∠5二、填空题题 11.若(x +3)(x +n) = x 2+4x +3,则n = _______.12.已知(x +1)(x -4)=x 2+mx +n ,则m +n =_____.13.将一个完全平方式展开后得到4x 2﹣mx+121,则m 的值为_____.14.已如等腰ABC ∆的两边长a ,b 满足420a b -+-=,则第三边长c 的值为____15.一个袋子里有6个黑球,x 个白球,它们除颜色外形状大小完全相同.随机从袋子中摸一个球是黑球的概率为13,则x =_____. 16.若分式方程23111k x x -=--有增根,则k =__________. 17.如图,以图中的A 、B 、C 、D 为端点的线段共有___条.三、解答题18.已知:如图,∠1=∠2,∠3=∠E ,试说明:∠A=∠EBC ,(请按图填空,并补理由,)证明:∵∠1=∠2(已知),∴______∥______,________∴∠E=∠______,________又∵∠E=∠3(已知),∴∠3=∠______(等量代换),∴______∥______(内错角相等,两直线平行),∴∠A=∠EBC,________19.(6分)解下列方程组或不等式组.(1)42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩(2)3(2)41213x xxx--≥-⎧⎪+⎨>-⎪⎩20.(6分)对男生进行引体向上的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,-5,0,-2,+4,-1,-1,+1.(1)这8名男生有百分之几达到标准?(2)这8名男生共做了多少个引体向上?21.(6分)如图,在边长为6cm的正方形ABCD中,动点P从点A出发,沿线段AB以每秒1cm的速度向点B运动;同时动点Q从点B出发,沿线段BC以每秒2cm的速度向点C运动.当点Q到达C点时,点P 同时停止,设运动时间为t秒.(注:正方形的四边长都相等,四个角都是直角)(1)CQ的长为______cm(用含t的代数式表示);(2)连接DQ并把DQ沿DC翻折,交BC延长线于点F,连接DP、DQ、PQ.①若ADP DFQS S∆∆=,求t的值.②当DP DF⊥时,求t的值,并判断PDQ∆与FDQ∆是否全等,请说明理由.22.(8分)指出下命题的题设和结论,并判断其真假,如果是假命题,举出一个反例.(1)邻补角是互补的角;(2)同位角相等.23.(8分)某车间瓶装罐头并装箱,封瓶和装箱生产线共26条,所有生产线保证匀速工作,罐头封瓶每小时650瓶,装箱每小时750箱,某天检测8:00-9:00生产线工作情况,发现有100瓶未装箱,问封瓶和装箱各有多少条生产线?24.(10分)已知:如图,AB平分∠CBD,∠DBC=60°,∠C=∠D.(1)若AC⊥BC,求∠BAE的度数;(2)请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图,过点D作DG∥BC交CE于点F,当∠EFG=2∠DAE时,求∠BAD的度数.25.(10分)如图,一个10×10网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上.(1)画出△ABC关于直线l的对称的△A1B1C1.(2)画出△ABC关于点P的中心对称图形△A2B2C2.(3)△A1B1C1与△A2B2C2组成的图形(是或否)轴对称图形,如果是轴对称图形,请画出对称轴.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据三角形的分类、三角形内外角的关系以及正多边形的定义即可作出判断.【详解】A 、三角形可以分为锐角三角形、直角三角形、钝角三角形,故选项错误;B 、任何一个三角形的一定至少有两个外角大于与它相邻的内角,故选项错误;C 、各边都相等、各角相等的多边形是正多边形,故选项错误;D 、五边形有五条对角线,正确.故选D .【点睛】本题考查了正多边形的定义,三角形的性质以及分类,理解三角形的内角和外角的关系是关键. 2.B【解析】【分析】由已知易得,CD BC AD BD ==,则18AC CD BD =+=,所以281810BC =-=,则10CD =,即可求得BD .【详解】∵CE 平分ACB ∠,且CE DB ⊥∴CD BC =∵DAB DBA ∠=∠∴AD BD =∵18AC CD AD =+=∴18AC CD BD =+=∴BC =BCD ∆的周长281810AC -=-=∴10CD =∴18108BD =-=故选:B .【点睛】本题主要考查了等腰三角形的判定和性质,注意认真观察图中各边之间的关系.3.A【解析】此题考查了比较线段的长短根据题意分别计算停靠点分别在各点是员工步行的路程和,选择最小的即可解.∵当停靠点在A 区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m ;当停靠点在B 区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m ;当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m.∴当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选A.4.D【解析】【分析】根据二元一次方程组解法中的代入消元法求解.【详解】把①代入②得:2y-3(2y-3)=9,故选D.【点睛】此题考查了解二元一次方程组,利用了消元的思想.5.B【解析】【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.A【解析】【分析】设涂色方框中第一个数为a,其余三个数分别为a+1,a+2,a+3,根据四个数之和为四个选项中的数,得出关于x的一元一次方程,解之得出a的值,结合a是正整数以及框出四个数的位置,即可得出结论.【详解】设涂色方框中第一个数为a,其余三个数分别为a+1,a+2,a+3,则方框中四个数之和为:4a+6,当4a+6=2010时,解得a=501,∴这四个数分别为:501,502,503,504,根据表格所给数据规律可得每一行最后一个数是9的倍数,504÷9=56,∴方框中的4个数的和可能是2010;当4a+6=2014时,解得a=502, ∴这四个数分别为:502,503,504,505,而9的倍数504在倒数第二个数的位置,故方框中的4个数的和不可能是2014;当4a+6=2018时,解得a=503,∴这四个数分别为:503,504,505,506,而9的倍数504在倒数第三个数的位置,故方框中的4个数的和不可能是2018;当4a+6=2022时,解得a=504,∴这四个数分别为:504,505,506,507,而9的倍数504在倒数第四个数的位置,,故方框中的4个数的和不可能是2022.故选A.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.7.C【解析】分析:根据“各选项中所涉及的几何概念的定义”进行分析判断即可.详解:“有两条边相等的三角形是等腰三角形”是“等腰三角形的定义”.故选C.点睛:熟悉“各选项中所涉及的几何概念和等腰三角形的定义:有两边相等的三角形叫等腰三角形”是解答本题的关键.8.C【解析】【分析】利用三角形的内角和,三角形中线的性质、外角的性质及对顶角的性质分别判断后即可确定正确的选项.【详解】解:①三角形内角和为180°,正确,是真命题;②三角形的三条中线交于一点,且这点在三角形内部,正确,是真命题;③三角形的一个外角等于不相邻的两个内角之和,故原命题错误,是假命题;④过直线外一点,有且只有一条直线与已知直线平行,故原命题错误,是假命题;⑤对顶角相等,正确,是真命题,真命题有3个,故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和,三角形的中线的性质、外角的性质及对顶角的性质,难度不大.9.C【解析】【分析】根据点到直线的距离是点到直线的垂线段的长度以及垂线段最短即可得答案.【详解】解:点P 为直线l 外一点,当P 点直线l 上的三点A 、B 、C 的距离分别为PA=4cm ,PB=5cm ,PC=2cm ,则点P 到直线l 的距离为不大于2cm ,故选:C .【点睛】本题考查了点到直线的距离,点到直线的距离是点到直线的垂线段的长度,利用垂线段最短是解题关键. 10.D【解析】试题分析:根据内错角位于截线异侧,位于两条被截线之间可知∠1的内错角是∠1.故选D .点睛:本题考查了内错角的辨识,熟记内错角的概念是解决此题的关键.二、填空题题11.1【解析】【分析】按照多项式的乘法法则进行计算,然后对应每一项的系数即可求出n 的值.【详解】∵2(3)()(3)3x x n x n x n ++=+++又∵(x +3)(x +n) = x 2+4x +3∴34,33n n +==∴1n =故答案为1【点睛】本题主要考查多项式乘法,掌握多项式乘法法则是解题的关键.12.﹣1【解析】【分析】。
2019年芜湖市初一数学下期末试题带答案

2019年芜湖市初一数学下期末试题带答案一、选择题1.不等式x+1≥2的解集在数轴上表示正确的是( ) A . B . C .D .2.在平面直角坐标中,点M(-2,3)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒4.黄金分割数51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间5.在实数0,-π,3,-4中,最小的数是( ) A .0B .-πC .3D .-46.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( )A .491b a -=B .321a b +=C .491b a -=-D .941a b += 7.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1B .2C .3D .48.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-3 9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-210.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°11.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角 B .至少有两个内角是直角 C .至多有一个内角是直角D .至多有两个内角是直角12.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______. 14.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________. 1564__________.16.3a ,小数部分是b 3a b -=______. 17.二项方程32540x +=在实数范围内的解是_______________18.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.参赛者答对题数答错题数得分A191112B182104C17396D10104019.用不等式表示x的4倍与2的和大于6,________;此不等式的解集为________.20.比较大小:23________13.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.(1)求y关于x的函数表达式.(2)若购进A种的数量不少于B种的数量.①求至少购进A种多少本?②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)23.解方程组()() 31210 21132x yxy⎧++-=⎪⎨+=-⎪⎩24.阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF()∴∠1=∠DGF(等量代换)∴∥()∴∠3+∠=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴∥()∴∠A=∠F()25.一个正数x的两个平方根是2a-3与5-a,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题解析:∵x+1≥2,∴x≥1.故选A.考点:解一元一次不等式;在数轴上表示不等式的解集.2.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限, 故选B.3.B解析:B 【解析】 【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案. 【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒ ∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补), ∴318018074106BAC ∠=︒-∠=︒-︒=︒, 故选B . 【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.4.B解析:B 【解析】 【分析】根据4.84<5<5.29,可得答案. 【详解】 ∵4.84<5<5.29,∴,∴, 故选B . 【点睛】是解题关键.5.D解析:D 【解析】 【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【详解】∵正数大于0和一切负数, ∴只需比较-π和-4的大小, ∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.6.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.7.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.8.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A9.A【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.10.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11.B解析:B 【解析】 【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案. 【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】+=-x x m332x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.15.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】,再计算8的立方根即可.【详解】,2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.16.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a ,小数部分为b ,∴a =1,b 1,-b 1)=1. 故答案为1.17.x=-3【解析】【分析】由2x3+54=0得x3=-27解出x 值即可【详解】由2x3+54=0得x3=-27∴x=-3故答案为:x=-3【点睛】本题考查了立方根正确理解立方根的意义是解题的关键解析:x=-3 【解析】 【分析】由2x 3+54=0,得x 3=-27,解出x 值即可. 【详解】由2x 3+54=0,得x 3=-27, ∴x=-3, 故答案为:x=-3. 【点睛】本题考查了立方根,正确理解立方根的意义是解题的关键.18.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6解析:【解析】 【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可. 【详解】解:设答对1道题得x 分,答错1道题得y 分, 根据题意得:19112182104x y x y +=⎧⎨+=⎩, 解得:62x y =⎧⎨=-⎩,答对13道题,打错7道题,得分为: 13×6+(﹣2)×7=78﹣14=64(分), 故答案为:64. 【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.19.4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式进而求解即可【详解】解:由题意得4x+2>6移项合并得:4x>4系数化为1得:x>1故答案为:4x+2>6x>1【点睛】本题主解析:4x+2>6x>1【解析】【分析】根据x的4倍与2的和大于6可列出不等式,进而求解即可.【详解】解:由题意得,4x+2>6,移项、合并得:4x>4,系数化为1得:x>1,故答案为:4x+2>6,x>1.【点睛】本题主要考查列一元一次不等式,解题的关键是抓住关键词语,弄清运算的先后顺序和不等关系,列出不等式.20.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴三、解答题21.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.(1)y =30035x -,(2)①至少购进A 种40本,②30. 【解析】【分析】(1)根据A 种的费用+B 种的费用=1200元,可求y 关于x 的函数表达式; (2)①根据购进A 种的数量不少于B 种的数量,列出不等式,可求解;②设B 种的数量m 本,C 种的数量n 本,根据题意找出m ,n 的关系式,再根据调换后C 种的数量多于B 种的数量,列出不等式,可求解.【详解】解:(1)∵12x +20y =1200,∴y =30035x -, (2)①∵购进A 种的数量不少于B 种的数量,∴x ≥y ,∴x ≥30035x -, ∴x ≥752, ∵x ,y 为正整数,∴至少购进A 种40本,②设A 种的数量为x 本,B 种的数量y 本,C 种的数量c 本,根据题意得:12x +20y +8c =1200∴y =300235c x -- ∵C 种的数量多于B 种的数量∴c >y∴c>300235c x--∴c>30037x-,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥300235c x--∴c≥150﹣4x∴c>30037x-,且x,y,c为正整数,∴C种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.23.12 xy=⎧⎨=-⎩.【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】方程组整理得:321 432x yx y+=-⎧⎨+=-⎩①②,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.【解析】【分析】先证明BD∥CE,得出同旁内角互补∠3+∠C=180°,再由已知得出∠4+∠C=180°,证出 AC∥DF,即可得出结论.【详解】∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE (同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点睛】本题考查了平行线的判定与性质、对顶角相等的性质;熟练掌握平行线的判定与性质是解决问题的关键,注意两者的区别.25.x=49【解析】-,试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a-3+5-a=0,可求出a=2即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x.-,所以试题解析:因为一个正数x的两个平方根是2a-3与5-a,所以2a-3+5-a=0,解得a=2 x=.2a-3=7-,所以49。
安徽省芜湖市七年级下册期末数学试卷(有答案)

安徽省芜湖市七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.4的算术平方根是()A. −4B. 4C. −2D. 22.二元一次方程x+y=5有()个解.A. 1B. 2C. 3D. 无数3.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘4.下列各点中,在第二象限的点是()A. (−3,2)B. (−3,−2)C. (3,2)D. (3,−2)5.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A. 43%B. 50%C. 57%D. 73%6.如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段()的长.A. POB. ROC. OQD. PQ7.若m=√40−4,则估计m的值所在的范围是()A. 1<m<2B. 2<m<3C. 3<m<4D. 4<m<58.在下列四项调查中,方式正确的是()A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式9. 如图a//b ,M 、N 分别在a 、b 上,P 为两平行线间一点,那么∠1+∠2+∠3=()A. 180∘B. 270∘C. 360∘D. 540∘10. 如图,周董从A 处出发沿北偏东60∘方向行走至B 处,又沿北偏西20∘方向行走至C 处,则∠ABC 的度数是( )A. 80∘B. 90∘C. 100∘D. 95∘11. “鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是( )A. {x +2y =100x+y=36B. {4x +2y =100x+y=36C. {2x +4y =100x+y=36D. {2x +2y =100x+y=3612. 若满足方程组{2x −y =2m −13x+y=m+3的x 与y 互为相反数,则m 的值为( )A. 1B. −1C. 11D. −11二、填空题(本大题共6小题,共18.0分)13. 如图,当剪子口∠AOB 增大15∘时,∠COD 增大______度.14. 将方程3y −x =2变形成用含y 的代数式表示x ,则x =______. 15. 点P(m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为______. 16. 如图,两直线a ,b 被第三条直线c 所截,若∠1=50∘,∠2=130∘,则直线a ,b 的位置关系是______.17. 若不等式3x −m ≤0的正整数解是1,2,3,则m 的取值范围是______.18.从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75∘.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22∘.则∠AOD的度数是______.三、计算题(本大题共1小题,共6.0分)19.某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.(2)图①中,a等于多少?D等级所占的圆心角为多少度?四、解答题(本大题共4小题,共32.0分)x+3≥2x−120.解不等式组{3x−5≥121.如图,EF//AD,∠1=∠2,∠BAC=80∘.求∠AGD的度数.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED//FB.23.实验学校共有教师办公室22间,大的教师办公室每间可以安排10名教师在里面办公,小的教师办公室每间可以安排4名教师在里面办公.而实验学校一共有178名教师,这22间恰好能把实验学校的178名教师安排下,请你帮忙算一算,实验学校各有大小教师办公室多少间?答案和解析【答案】1. D2. D3. C4. A5. C6. C7. B8. D9. C10. C11. C12. C13. 1514. 3y−215. (2,0)16. 平行17. 9≤m<1218. 53∘或97∘19. 解:(1)根据题意得:46÷23%=200(人),A等级的人数为200−(46+70+64)=20(人),补全条形统计图,如图所示:(2)由题意得:a%=20,即a=10;D等级占的圆心角度数为32%×360∘=115.2∘.20020. 解:解不等式x+3≥2x−1,可得:x≤4;解不等式3x−5≥1,可得:x≥2;∴不等式组的解集是2≤x≤4.21. 解:∵EF//AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG//AB,∴∠AGD=180∘−∠BAC=180∘−80∘=100∘.22. 证明:∵∠3=∠4,∴CF//BD,∴∠5=∠FAB.∵∠5=∠6,∴∠6=∠FAB,∴AB//CD,∴∠2=∠EGA . ∵∠1=∠2, ∴∠1=∠EGA , ∴ED//FB .23. 解:设实验学校有大教师办公室x 间,小教师办公室y 间,由题意得,{10x +4y =178x+y=22, 解得:{y =7x=15.答:实验学校有大教师办公室15间,小教师办公室7间. 【解析】1. 解:∵22=4,∴4的算术平方根是2, 即√4=2. 故选:D .根据算术平方根的定义解答即可.本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2. 解:方程x +y =5有无数个解.故选:D .根据二元一次方程有无数个解即可得到结果.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .3. 解:∵∠1+∠5=180∘,∠3+∠1=180∘,∴∠3=∠5, ∴AB//CD , 故选:C .根据邻补角互补和条件∠3+∠1=180∘,可得∠3=∠5,再根据同位角相等,两直线平行可得结论.此题主要考查了平行线的判定,关键是掌握:同位角相等,两直线平行.4. 解:A 、(−3,2)在第二象限,故本选项正确;B 、(−3,−2)在第三象限,故本选项错误;C 、(3,2)在第一象限,故本选项错误;D 、(3,−2)在第四象限,故本选项错误. 故选:A .根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5. 解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,=57%.在120≤x<200范围内人数占抽查学生总人数的百分比为57100故选:C.用120≤x<200范围内人数除以总人数即可.本题考查了频数分布直方图,把图分析透彻是解题的关键.6. 解:∵OQ⊥PR,∴点O到PR所在直线的距离是线段OQ的长.故选:C.根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.本题考查了点到直线的距离,熟记概念并准确识图是解题的关键.7. 解:∵36<40<49,∴6<√40<7,∴2<√40−4<3.故选:B.应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9. 解:过点P作PA//a,则a//b//PA,∴∠1+∠MPA=180∘,∠3+∠NPA=180∘,∴∠1+∠2+∠3=360∘.故选:C.首先过点P作PA//a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.10. 解:∵向北方向线是平行的,∴∠A +∠ABF =180∘, ∴∠ABF =180∘−60∘=120∘,∴∠ABC =∠ABF −∠CBF =120∘−20∘=100∘, 故选:C .根据平行线性质求出∠ABF ,和∠CBF 相减即可得出答案.本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补.11. 解:如果设鸡为x 只,兔为y 只.根据“三十六头笼中露”,得方程x +y =36;根据“看来脚有100只”,得方程2x +4y =100.即可列出方程组{2x +4y =100x+y=36. 故选:C .首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要用常识判断出隐藏的条件.12. 解:由题意得:y =−x ,代入方程组得:{2x +x =2m −1 ②3x−x=m+3 ①,消去x 得:m+32=2m−13,即3m +9=4m −2,解得:m =11, 故选:C .由x 与y 互为相反数,得到y =−x ,代入方程组计算即可求出m 的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:因为∠AOB 与∠COD 是对顶角,∠AOB 与∠COD 始终相等,所以随∠AOB 变化,∠COD 也发生同样变化. 故当剪子口∠AOB 增大15∘时,∠COD 也增大15∘. 根据对顶角的定义和性质求解.互为对顶角的两个角相等,如果一个角发生变化,则另一个角也做相同的变化.14. 解:3y −x =2,解得:x =3y −2. 故答案为:3y −2将y 看做已知数求出x 即可.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .15. 解:∵点P(m +3,m +1)在直角坐标系的x 轴上,∴这点的纵坐标是0,∴m +1=0,解得,m =−1,∴横坐标m +3=2,则点P 的坐标是(2,0).根据x轴上点的坐标特点解答即可.本题主要考查了坐标轴上点的坐标的特点:x轴上点的纵坐标为0.16. 解:∵∠2+∠3=180∘,∠2=130∘,∴∠3=50∘,∵∠1=50∘,∴∠1=∠3,∴a//b(同位角相等,两直线平行).因为∠2与∠3是邻补角,由已知便可求出∠3=∠1,利用同位角相等,两直线平行即可得出a,b的位置关系.本题考查了邻补角的性质以及判定两直线平行的条件.17. 解:不等式3x−m≤0的解集是x≤m,3∵正整数解是1,2,3,<4即9≤m<12.∴m的取值范围是3≤m3先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18. 解:∵AB//CF,∴∠COA=∠OAB.(两直线平行,内错角相等)∵∠OAB=75∘,∴∠COA=75∘.∵DE//CF,∴∠COD=∠ODE.(两直线平行,内错角相等)∵∠ODE=22∘,∴∠COD=22∘.在图1的情况下,∠AOD=∠COA−∠COD=75∘−22∘=53∘.在图2的情况下,∠AOD=∠COA+∠COD=75∘+22∘=97∘.∴∠AOD的度数为53∘或97∘.故答案为:53∘或97∘.分两种情况:如果∠AOD是锐角,∠AOD=∠COA−∠COD;如果∠AOD是钝角,∠AOD=∠COA+∠COD,由平行线的性质求出∠COA,∠COD,从而求出∠AOD的度数.本题主要考查了平行线的性质,分析入射光线OD的不同位置是做本题的关键.19. (1)由B等级的人数除以占的百分比得出调查总人数,进而求出A等级人数,补全条形统计图即可;(2)求出A等级占的百分比确定出a,由D的百分比乘以360即可得到D等级占的圆心角度数.此题考查了条形统计图,以及扇形统计图,弄清题中的数据是解本题的关键.20. 首先求出每个不等式的解集,再求出这些解集的公共部分即可.此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21. 根据两直线平行,同位角相等可得∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行判断出DG//AB,然后根据两直线平行,同旁内角互补解答.本题考查了平行线的判定与性质,熟记性质与判定方法并判断出DG//AB是解题的关键.22. 因为∠3=∠4,所以CF//BD,由平行的性质证明∠6=∠FAB,则有AB//CD,再利用平行的性质证明∠1=∠EGA,从而得出ED//FB.本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养学生“执果索因”的思维方式与能力.23. 设实验学校有大教师办公室x间,小教师办公室y间,根据22间办公室共有178名教师,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。
2019-2020学年安徽省芜湖市无为市七年级下学期期末数学试卷 (解析版)

2019-2020学年安徽省芜湖市无为市七年级第二学期期末数学试卷一、选择题(共10小题).1.(4分)16的平方根是()A.4 B.±4 C.﹣4 D.±82.(4分)在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式3.(4分)若m=﹣4,则估计m的值所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5 4.(4分)为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%5.(4分)如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3 6.(4分)不等式组:的解集在数轴上表示正确的是()A.B.C.D.7.(4分)小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°8.(4分)已知x=2,y=0与x=﹣3,y=5都是方程y=kx+b的解,则k与b的值分别为()A.k=﹣1,b=2 B.k=5,b=﹣10 C.k=1,b=﹣2 D.k=﹣5,b=10 9.(4分)小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1 B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100D.210x+90(18﹣x)≥2.110.(4分)如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()A.(10,﹣5)B.(10,﹣1)C.(10,0)D.(10,1)二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)命题“同旁内角互补”是一个命题(填“真”或“假”)12.(5分)若|x﹣2y+1|+|x+y﹣5|=0,则x=,y=.13.(5分)已知关于x的不等式组的整数解共有5个,则a的取值范围是.14.(5分)已知点M坐标为(2﹣a,3a+6),且M点到两坐标轴的距离相等,则点的M 坐标是.三、(本大题共2个小题,每小题8分,满分16分)15.(8分)解方程组:.16.(8分)解不等式组,并将解集在数轴上表示出来.四、(本大题共2个小题,每小题8分,满分16分)17.(8分)某商场进行商品促销活动,打折前购买A商品40件与购买B商品30件所花的钱一样多,打折促销活动中,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,求打折前A商品和B商品每件的价格分别为多少?18.(8分)如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C (1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.20.(10分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?六、(本题满分12分)21.(12分)我市为响应国家“低碳环保,绿色出行”的号召,投放“共享单车”供市民出行时租用,七年级数学兴趣小组对4月份某站点一个星期的“共享单车”租车情况进行了调查,并把收集的数据绘制成下面的频数分布直方图和扇形统计图:(1)根据统计图提供的信息,可得这个站点一周的租车总次数是次;(2)补全频数分布直方图;(3)周六租车次数所在扇形的圆心角度数为;(4)经测算,该站点每次租车平均骑行3公里,已知普通小汽车每行驶一百公里排放二氧化碳约为21千克,如果4月份(30天)该站点骑自行车的全部改开普通小汽车,估计4月份二氧化碳排量因此增加了千克.七、(本题满分12分)22.(12分)如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF =∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由.(2)求∠DBE的度数.八、(本大题题满分14分)23.(14分)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.参考答案一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D 的四个选项,其中只有一个是正确的.1.(4分)16的平方根是()A.4 B.±4 C.﹣4 D.±8解:∵(±4)2=16,∴16的平方根是±4.故选:B.2.(4分)在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.3.(4分)若m=﹣4,则估计m的值所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5解:∵36<40<49,∴6<<7,∴2<﹣4<3.故选:B.4.(4分)为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为=57%.故选:C.5.(4分)如果x>y,则下列变形中正确的是()A.﹣x y B.y C.3x>5y D.x﹣3>y﹣3 解:A、两边都乘以﹣,故A错误;B、两边都乘以,故B错误;C、左边乘3,右边乘5,故C错误;D、两边都减3,故D正确;故选:D.6.(4分)不等式组:的解集在数轴上表示正确的是()A.B.C.D.解:,解不等式①x<2,解不等式②得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.7.(4分)小明将含30°的三角板和一把直尺如图放置,测得∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.40°解:如图:∵∠1=25°,∠3=∠1+30°,∴∠3=55°,∵直尺的对边平行,∴∠4=∠3=55°,∴∠2=180°﹣90°﹣∠4=180°﹣90°﹣55°=35°,故选:C.8.(4分)已知x=2,y=0与x=﹣3,y=5都是方程y=kx+b的解,则k与b的值分别为()A.k=﹣1,b=2 B.k=5,b=﹣10 C.k=1,b=﹣2 D.k=﹣5,b=10 解:∵x=2,y=0与x=﹣3,y=5都是方程y=kx+b的解,∴代入得:,解得:k=﹣1,b=2,故选:A.9.(4分)小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为()A.210x+90(18﹣x)<2.1 B.210x+90(18﹣x)≥2100C.210x+90(18﹣x)≤2100 D.210x+90(18﹣x)≥2.1【解答】解;设骑车x分钟,可得:210x+90(18﹣x)≥2100,故选:B.10.(4分)如图,在平面直角坐标系中,有若干个整数点(横、纵坐标均为整数),其顺序按图中方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0)……根据这个规律探索可得,第50个点的坐标为()A.(10,﹣5)B.(10,﹣1)C.(10,0)D.(10,1)解:在横坐标上,第一列有一个点,第二列有2个点…第n个有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,所以奇数列的坐标为(n,)(n,﹣1)…(n,);偶数列的坐标为(n,)(n,﹣1)…(n,1﹣),由加法推算可得到第50个点位于第10行自下而上第五个数.代入上式得(10,0),故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)命题“同旁内角互补”是一个假命题(填“真”或“假”)解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.12.(5分)若|x﹣2y+1|+|x+y﹣5|=0,则x=3,y=2.解:∵|x﹣2y+1|+|x+y﹣5|=0,∴,①﹣②得,﹣3y+6=0,解得:y=2,把y=2代入①解得:x=3,∴方程组的解为:,故答案为:3,2.13.(5分)已知关于x的不等式组的整数解共有5个,则a的取值范围是﹣3<a≤﹣2.解:由不等式组得:a≤x≤2,∵不等式组的整数解有5个,∴﹣3<a≤﹣2.故答案为:﹣3<a≤﹣2.14.(5分)已知点M坐标为(2﹣a,3a+6),且M点到两坐标轴的距离相等,则点的M 坐标是(3,3)或(6,﹣6).解:∵点M的坐标为(2﹣a,3a+6),且点M到两坐标轴的距离相等,∴2﹣a=3a+6,或(2﹣a)+(3a+6)=0,解得,a=﹣1或a=﹣4,∴M点坐标为(3,3)或(6,﹣6).故答案为:(3,3)或(6,﹣6).三、(本大题共2个小题,每小题8分,满分16分)15.(8分)解方程组:.解:②×3﹣①,得11y=22,解得y=2,将y=2代入①,得3x=3,解得x=1,原方程组的解为.16.(8分)解不等式组,并将解集在数轴上表示出来.解:解不等式①,可得x<3,解不等式②,可得x≥﹣1,∴不等式组的解集为﹣1≤x<3,在数轴上表示为:四、(本大题共2个小题,每小题8分,满分16分)17.(8分)某商场进行商品促销活动,打折前购买A商品40件与购买B商品30件所花的钱一样多,打折促销活动中,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,求打折前A商品和B商品每件的价格分别为多少?解:设打折前A商品价格为x元,B商品为y元,根据题意得:,解得:,答:打折前A商品价格是150元,B商品是200元.18.(8分)如图,直线a∥b,射线DF与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,求∠2的度数.解:过点D作DG∥b,∵a∥b,且DE⊥b,∴DG∥a,∴∠1=∠CDG=25°,∠GDE=∠3=90°∴∠2=∠CDG+∠GDE=25°+90°=115°.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C (1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为(0,4)、(﹣1,1)、(3,1);(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.解:(1)如图所示:(2)由图可得:A1(0,4)、B1(﹣1,1);C1(3,1),故答案为:(0,4)、(﹣1,1)、(3,1);(3)设P(0,y),再根据三角形的面积公式得:S△PBC=×4×|h|=6,解得|h|=3,求出y的值为(0,1)或(0,﹣5).20.(10分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?解:设该单位有x人外出旅游,则选择甲旅行社的总费用为0.75×200x=150x(元),选择乙旅行社的总费用为0.8×200(x﹣1)=(160x﹣160)(元).①当150x<160x﹣160时,解得x>16,即当人数在17~25人时,选择甲旅行社总费用较少;②当150x=160x﹣160时,解得x=16,即当人数为16人时,选择甲、乙旅行社总费用相同;③当150x>160x﹣160时,解得x<16,即当人数为10~15人时,选择乙旅行社总费用较少.六、(本题满分12分)21.(12分)我市为响应国家“低碳环保,绿色出行”的号召,投放“共享单车”供市民出行时租用,七年级数学兴趣小组对4月份某站点一个星期的“共享单车”租车情况进行了调查,并把收集的数据绘制成下面的频数分布直方图和扇形统计图:(1)根据统计图提供的信息,可得这个站点一周的租车总次数是600次;(2)补全频数分布直方图;(3)周六租车次数所在扇形的圆心角度数为72°;(4)经测算,该站点每次租车平均骑行3公里,已知普通小汽车每行驶一百公里排放二氧化碳约为21千克,如果4月份(30天)该站点骑自行车的全部改开普通小汽车,估计4月份二氧化碳排量因此增加了1620千克.解:(1)这个站点一周的租车总次数是:72÷12%=600,故答案为:600;(2)周日租车次数为:600﹣(48+72+108+90+72+120)=90,补全的频数分布直方图如右图所示;(3)周六租车次数所在扇形的圆心角度数为:360°×=72°,故答案为:72°;(4)×3×30÷100×21=1620(千克),故答案为:1620.七、(本题满分12分)22.(12分)如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF =∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由.(2)求∠DBE的度数.解:(1)直线AD∥BC,理由如下:∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°.八、(本大题题满分14分)23.(14分)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y <﹣1.(3)已知x,y满足方程组,求x,y的取值范围.解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.故答案为:﹣5,4;2≤x<3,﹣2≤y<﹣1.。
安徽省芜湖市七年级下册期末数学试卷(有答案)

安徽省芜湖市七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.4的算术平方根是()A. −4B. 4C. −2D. 22.二元一次方程x+y=5有()个解.A. 1B. 2C. 3D. 无数3.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘4.下列各点中,在第二象限的点是()A. (−3,2)B. (−3,−2)C. (3,2)D. (3,−2)5.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A. 43%B. 50%C. 57%D. 73%6.如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段()的长.A. POB. ROC. OQD. PQ7.若m=√40−4,则估计m的值所在的范围是()A. 1<m<2B. 2<m<3C. 3<m<4D. 4<m<58.在下列四项调查中,方式正确的是()A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式9. 如图a//b ,M 、N 分别在a 、b 上,P 为两平行线间一点,那么∠1+∠2+∠3=()A. 180∘B. 270∘C. 360∘D. 540∘10. 如图,周董从A 处出发沿北偏东60∘方向行走至B 处,又沿北偏西20∘方向行走至C 处,则∠ABC 的度数是( )A. 80∘B. 90∘C. 100∘D. 95∘11. “鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是( )A. {x +2y =100x+y=36B. {4x +2y =100x+y=36C. {2x +4y =100x+y=36D. {2x +2y =100x+y=3612. 若满足方程组{2x −y =2m −13x+y=m+3的x 与y 互为相反数,则m 的值为( )A. 1B. −1C. 11D. −11二、填空题(本大题共6小题,共18.0分)13. 如图,当剪子口∠AOB 增大15∘时,∠COD 增大______度.14. 将方程3y −x =2变形成用含y 的代数式表示x ,则x =______. 15. 点P(m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为______. 16. 如图,两直线a ,b 被第三条直线c 所截,若∠1=50∘,∠2=130∘,则直线a ,b 的位置关系是______.17. 若不等式3x −m ≤0的正整数解是1,2,3,则m 的取值范围是______.18.从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75∘.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22∘.则∠AOD的度数是______.三、计算题(本大题共1小题,共6.0分)19.某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.(2)图①中,a等于多少?D等级所占的圆心角为多少度?四、解答题(本大题共4小题,共32.0分)x+3≥2x−120.解不等式组{3x−5≥121.如图,EF//AD,∠1=∠2,∠BAC=80∘.求∠AGD的度数.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED//FB.23.实验学校共有教师办公室22间,大的教师办公室每间可以安排10名教师在里面办公,小的教师办公室每间可以安排4名教师在里面办公.而实验学校一共有178名教师,这22间恰好能把实验学校的178名教师安排下,请你帮忙算一算,实验学校各有大小教师办公室多少间?答案和解析【答案】1. D2. D3. C4. A5. C6. C7. B8. D9. C10. C11. C12. C13. 1514. 3y−215. (2,0)16. 平行17. 9≤m<1218. 53∘或97∘19. 解:(1)根据题意得:46÷23%=200(人),A等级的人数为200−(46+70+64)=20(人),补全条形统计图,如图所示:(2)由题意得:a%=20,即a=10;D等级占的圆心角度数为32%×360∘=115.2∘.20020. 解:解不等式x+3≥2x−1,可得:x≤4;解不等式3x−5≥1,可得:x≥2;∴不等式组的解集是2≤x≤4.21. 解:∵EF//AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG//AB,∴∠AGD=180∘−∠BAC=180∘−80∘=100∘.22. 证明:∵∠3=∠4,∴CF//BD,∴∠5=∠FAB.∵∠5=∠6,∴∠6=∠FAB,∴AB//CD,∴∠2=∠EGA . ∵∠1=∠2, ∴∠1=∠EGA , ∴ED//FB .23. 解:设实验学校有大教师办公室x 间,小教师办公室y 间,由题意得,{10x +4y =178x+y=22, 解得:{y =7x=15.答:实验学校有大教师办公室15间,小教师办公室7间. 【解析】1. 解:∵22=4,∴4的算术平方根是2, 即√4=2. 故选:D .根据算术平方根的定义解答即可.本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2. 解:方程x +y =5有无数个解.故选:D .根据二元一次方程有无数个解即可得到结果.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .3. 解:∵∠1+∠5=180∘,∠3+∠1=180∘,∴∠3=∠5, ∴AB//CD , 故选:C .根据邻补角互补和条件∠3+∠1=180∘,可得∠3=∠5,再根据同位角相等,两直线平行可得结论.此题主要考查了平行线的判定,关键是掌握:同位角相等,两直线平行.4. 解:A 、(−3,2)在第二象限,故本选项正确;B 、(−3,−2)在第三象限,故本选项错误;C 、(3,2)在第一象限,故本选项错误;D 、(3,−2)在第四象限,故本选项错误. 故选:A .根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5. 解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,=57%.在120≤x<200范围内人数占抽查学生总人数的百分比为57100故选:C.用120≤x<200范围内人数除以总人数即可.本题考查了频数分布直方图,把图分析透彻是解题的关键.6. 解:∵OQ⊥PR,∴点O到PR所在直线的距离是线段OQ的长.故选:C.根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.本题考查了点到直线的距离,熟记概念并准确识图是解题的关键.7. 解:∵36<40<49,∴6<√40<7,∴2<√40−4<3.故选:B.应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9. 解:过点P作PA//a,则a//b//PA,∴∠1+∠MPA=180∘,∠3+∠NPA=180∘,∴∠1+∠2+∠3=360∘.故选:C.首先过点P作PA//a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.10. 解:∵向北方向线是平行的,∴∠A +∠ABF =180∘, ∴∠ABF =180∘−60∘=120∘,∴∠ABC =∠ABF −∠CBF =120∘−20∘=100∘, 故选:C .根据平行线性质求出∠ABF ,和∠CBF 相减即可得出答案.本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补.11. 解:如果设鸡为x 只,兔为y 只.根据“三十六头笼中露”,得方程x +y =36;根据“看来脚有100只”,得方程2x +4y =100.即可列出方程组{2x +4y =100x+y=36. 故选:C .首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要用常识判断出隐藏的条件.12. 解:由题意得:y =−x ,代入方程组得:{2x +x =2m −1 ②3x−x=m+3 ①,消去x 得:m+32=2m−13,即3m +9=4m −2,解得:m =11, 故选:C .由x 与y 互为相反数,得到y =−x ,代入方程组计算即可求出m 的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:因为∠AOB 与∠COD 是对顶角,∠AOB 与∠COD 始终相等,所以随∠AOB 变化,∠COD 也发生同样变化. 故当剪子口∠AOB 增大15∘时,∠COD 也增大15∘. 根据对顶角的定义和性质求解.互为对顶角的两个角相等,如果一个角发生变化,则另一个角也做相同的变化.14. 解:3y −x =2,解得:x =3y −2. 故答案为:3y −2将y 看做已知数求出x 即可.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .15. 解:∵点P(m +3,m +1)在直角坐标系的x 轴上,∴这点的纵坐标是0,∴m +1=0,解得,m =−1,∴横坐标m +3=2,则点P 的坐标是(2,0).根据x轴上点的坐标特点解答即可.本题主要考查了坐标轴上点的坐标的特点:x轴上点的纵坐标为0.16. 解:∵∠2+∠3=180∘,∠2=130∘,∴∠3=50∘,∵∠1=50∘,∴∠1=∠3,∴a//b(同位角相等,两直线平行).因为∠2与∠3是邻补角,由已知便可求出∠3=∠1,利用同位角相等,两直线平行即可得出a,b的位置关系.本题考查了邻补角的性质以及判定两直线平行的条件.17. 解:不等式3x−m≤0的解集是x≤m,3∵正整数解是1,2,3,<4即9≤m<12.∴m的取值范围是3≤m3先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18. 解:∵AB//CF,∴∠COA=∠OAB.(两直线平行,内错角相等)∵∠OAB=75∘,∴∠COA=75∘.∵DE//CF,∴∠COD=∠ODE.(两直线平行,内错角相等)∵∠ODE=22∘,∴∠COD=22∘.在图1的情况下,∠AOD=∠COA−∠COD=75∘−22∘=53∘.在图2的情况下,∠AOD=∠COA+∠COD=75∘+22∘=97∘.∴∠AOD的度数为53∘或97∘.故答案为:53∘或97∘.分两种情况:如果∠AOD是锐角,∠AOD=∠COA−∠COD;如果∠AOD是钝角,∠AOD=∠COA+∠COD,由平行线的性质求出∠COA,∠COD,从而求出∠AOD的度数.本题主要考查了平行线的性质,分析入射光线OD的不同位置是做本题的关键.19. (1)由B等级的人数除以占的百分比得出调查总人数,进而求出A等级人数,补全条形统计图即可;(2)求出A等级占的百分比确定出a,由D的百分比乘以360即可得到D等级占的圆心角度数.此题考查了条形统计图,以及扇形统计图,弄清题中的数据是解本题的关键.20. 首先求出每个不等式的解集,再求出这些解集的公共部分即可.此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21. 根据两直线平行,同位角相等可得∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行判断出DG//AB,然后根据两直线平行,同旁内角互补解答.本题考查了平行线的判定与性质,熟记性质与判定方法并判断出DG//AB是解题的关键.22. 因为∠3=∠4,所以CF//BD,由平行的性质证明∠6=∠FAB,则有AB//CD,再利用平行的性质证明∠1=∠EGA,从而得出ED//FB.本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养学生“执果索因”的思维方式与能力.23. 设实验学校有大教师办公室x间,小教师办公室y间,根据22间办公室共有178名教师,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。
【解析版】2019-2020年芜湖市繁昌县七年级下期末数学试卷.doc
【解析版】 2019-2020 年芜湖市繁昌县七年级下期末数学试卷一、(共 10 ,每 3 分,共 30 分)1. 9 的平方根()A .9 B.±9 C. 3 D .±3 考点:平方根.分析:根据平方根的定直接求解即可.解答:解:∵(±3)2=9,∴9 的平方根是±3.故 D .点:本考了平方根的定,注意一个正数有两个平方根,它互相反数;0 的平方根是 0;数没有平方根.2.( ?一模)下列形可以由一个形平移得到的是()A .B .C.D.考点:利用平移案.分析:根据平移的性,合形行一一分析,出正确答案.解答:解: A 、形的方向生化,不符合平移的性,不属于平移得到,故此;B、形的大小没有生化,符合平移的性,属于平移得到,故此正确;C、形的方向生化,不符合平移的性,不属于平移得到,故此;D、形的大小生化,不属于平移得到,故此.故: B.点:本考平移的基本性,平移不改形的形状、大小和方向.注意合形解的思想.3.(春 ?期末)在 3.5,,0,,,,0.161161116⋯中,无理数有()个.A . 1 B. 2 C. 3 D . 4考点:无理数.分析:有理数能写成有限小数和无限循小数,而无理数只能写成无限不循小数,据此判断出无理数有哪些即可.解答:解:∵ 3.5 是有限小数,= 0.1,∴ 3.5、是有理数;∵是循小数,∴是有理数;∵0是整数,∴0 是有理数;∵,,0.161161116⋯都是无限不循小数,∴,,0.161161116⋯都是无理数,∴无理数有 3 个:,,0.161161116⋯.故: C.点:此主要考了无理数和有理数的特征和区,要熟掌握,解答此的关是要明确:有理数能写成有限小数和无限循小数,而无理数只能写成无限不循小数.4.(春 ?期末)有如下命:①数没有立方根;② 同位角相等;③ 角相等;④如果一个数的立方根是个数本身,那么个数是 1 或 0,其中,是假命的有()A .①②③B .① ②④C.② ④D.① ④考点:命与定理.分析:根据立方根的定①④行判断;根据平行的性② 行判断;根据角的定③行判断.解答:解:数有立方根,所以① 假命;两直平行,同位角相等,所以② 假命;角相等,所以③ 真命;如果一个数的立方根是个数本身,那么个数是 1 或或 1,所以④假命.故 B .点:本考了命与定理:判断一件事情的句,叫做命.多命都是由和两部分成,是已知事,是由已知事推出的事,一个命可以写成“如果⋯那么⋯”形式.有些命的正确性是用推理的,的真命叫做定理.2)5.(春 ?期末)已知 |3a 2b 12|+( a+2b+4) =0.(A .B .C.D .考点:解二元一次方程;非数的性:;非数的性:偶次方.:算.分析:利用非数的性列出方程,求出方程的解即可得到 a 与 b 的.解答:解:∵ |3a2b 12|+( a+2b+4)2=0,∴,解得:.故选: B.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.(春 ?期末)如图,宽为50cm 的长方形图案由10 个全等的小长方形拼成,其中一个小长方形的面积为()A .400cm 2B . 500cm 2C. 600cm 2 D.2300cm考点:二元一次方程组的应用.专题:几何图形问题.分析:由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽 =50cm ,小长方形的长 +小长方形宽的 4 倍 =小长方形长的 2 倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积.解答:解:设一个小长方形的长为xcm,宽为 ycm,则可列方程组,解得,2则一个小长方形的面积=40cm ×10cm=400cm .点评:此题考查二元一次方程组的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小长方形的长与宽的关系.7.( ?深圳)已知点P( a+1,2a﹣ 3)关于 x 轴的对称点在第一象限,则 a 的取值范围是()A .a<﹣ 1B .﹣ 1<a<C.﹣<a<1 D.a>考点:关于 x 轴、 y 轴对称的点的坐标;一元一次不等式组的应用.专题:计算题.分析:根据“关于 x 轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可.解答:解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点 P 在第四象限,∴,解不等式①得, a>﹣ 1,解不等式②得, a<,所以,不等式组的解集是﹣1< a<.故选: B.点评:本题考查了关于 x 轴、 y 轴对称点的坐标,以及各象限内点的坐标的特点,判断出点 P 在第四象限是解题的关键.8.( ?江苏二模)下列调查方式中,合适的是()A .为了解灯泡的寿命,采用普查的方式B .为了解我国中学生的睡眠状况,采用普查的方式C.为了解人们保护水资源的意识,采用抽样调查的方式D .对“神舟七号”零部件的检查,采用抽样调查的方式考点:全面调查与抽样调查.分析:调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.根据抽样调查和全面调查的特点即可作出判断.解答:解: A 、要了解灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验,故错误;B、为了解我国中学生的睡眠状况,采用普查的方式,普查的意义或价值不大,应选择抽样调查,故错误;C、要了解人们对环境的保护意识,范围广,宜采用抽查方式,故正确;D、对“神舟七号”零部件的检查,是精确度要求高、事关重大的调查,必须选用全面调查,故错误;故选 C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.( ?)如图所示,已知AB ∥CD , EF 平分∠ CEG,∠ 1=80°,则∠ 2 的度数为()A .20°B .40°C .50°D .60°考点:平行线的性质;角平分线的定义;对顶角、邻补角.专题:计算题.分析:由角平分线的定义,结合平行线的性质,易求∠ 2 的度数.解答:解:∵ EF平分∠ CEG,∴∠ CEG=2∠ CEF又∵ AB ∥ CD ,∴∠ 2=∠ CEF=( 180°﹣∠ 1)÷2=50°,故选 C.点评:首先利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系转化求解.10.(春 ?期末)如图, AB ∥ CD ,OE 平分∠ BOC , OF⊥ OE,OP⊥CD,∠ ABO=a °,则下列结论:① ∠BOE=(180﹣a)°;②OF平分∠ BOD;③ ∠POE=∠BOF;④ ∠POB=2∠DOF.其中正确的个数有多少个?()A . 1 B. 2 C. 3 D . 4考点:平行线的性质.分析:由于 AB ∥ CD ,则∠ ABO= ∠BOD=40 °,利用平角等于得到∠BOC= ( 180﹣a)°,再根据角平分线定义得到∠BOE=(180﹣a)°;利用OF⊥OE,可计算出∠ BOF=a°,则∠B OF= ∠ BOD ,即 OF 平分∠ BOD ;利用 OP⊥ CD,可计算出∠ POE= a°,则∠POE= ∠ BOF ;根据∠ POB=90 °﹣ a°,∠ DOF=a°,可知④不正确.解答:解:① ∵AB∥CD,∴∠ BOD= ∠ ABO=a °,∴∠ COB=180 °﹣ a°=( 180﹣a)°,又∵ OE 平分∠ BOC ,∴∠ BOE=∠ COB=(180﹣a)°.故①正确;② ∵OF⊥ OE,∴∠ EOF=90 °,∴∠ BOF=90 °﹣(180﹣a)°= a°,∴∠ BOF=∠ BOD,∴OF 平分∠ BOD 所以②正确;③ ∵OP⊥ CD,∴∠ COP=90°,∴∠ POE=90 °﹣∠ EOC=a°,∴∠ POE=∠ BOF;所以③正确;∴∠ POB=90 °﹣ a°,而∠ DOF=a°,所以④错误.故选: C.点评:本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.二、填空题(共 5 小题,每题 3 分,共 15 分)11.(春 ?期末)一个样本有100 个数据,最大的是351,最小的是75,组距为25,可分为12组.考点:频数(率)分布表.分析:根据组数 =(最大值﹣最小值)÷组距计算,注意小数部分要进位.解答:解:在样本数据中最大值为 351,最小值为 75,它们的差是 351﹣ 75=276 ,已知组距为25,那么由于 276÷25=11.04 ,故可以分成 12 组.故答案为: 12.点评:本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.12.(春 ?期末)如图:AD ∥BC ,∠ DAC=60 °,∠ ACF=25 °,∠ EFC=145°,∠ B=54 °,则∠B EF= 126 °.考点:平行线的性质.分析:由平行可得到∠ DAC= ∠ACB ,结合条件可求得∠FCB=35 °,可得∠E FC+ ∠ FCB=180 °,可判定 EF∥ BC,进而可得出结论.解答:解:∵ AD ∥BC ,∴∠ ACB= ∠ DAC=60 °,∵∠ ACF=25 °,∴∠ FCB=35 °,∴∠ EFC+∠ FCB=145 °+35 °=180°,∴E F ∥BC.∵∠ B=54 °,∴∠ BEF=180 °﹣ 54°=126°.故答案为: 126.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.13.(春 ?期末)不等式2﹣m<(x﹣m)的解集为x> 2,则 m 的值为2.考点:不等式的解集.分析:先用 m 表示出不等式的解集,再根据不等式的解集是x> 2 求出 m 的值即可解答:解:不等式的两边同时乘以 3 得, 6﹣ 3m< x﹣ m,移项,合并同类项得, x > 6﹣2m , ∵不等式的解集是 x > 2,∴6﹣ 2m=2 ,解得 m=2. 故答案为: 2点评: 本题考查的是解一元一次不等式,先把 m 当作已知条件表示出 x 的取值范围是解答此题的关键14. ( ?校级模拟)如果单项式﹣ 2x ﹣3y﹣2与是同类项,那么 3x+4y 的值为ab﹣4 .考点 :同类项;解二元一次方程组.分析: 根据同类项是字母相同且相同字母的指数也相,可得二元一次方程组,根据解二元一次方程组,可得 x 、 y 的值,根据求代数式的值,可得答案.解答: 解:单项式﹣ a 2x ﹣ 3y b ﹣2与是同类项,解得3x+4y= ﹣ 4, 故答案为:﹣ 4.点评: 本题考查了同类项,先求出二元一次方程组的解,再求出代数式的值.15. (春 ?期末)对于两个不相等的实数a 、b ,定义一种新的运算如下:,如: 3*2== ,那么 7* ( 6*3 )= .考点 :算术平方根. 专题 :新定义.分析: 求出 6*3=1 ,再求出 7*1 即可.解答: 解:∵ 6*3==1,∴7*1== ,即 7* ( 6*3 ) =,故答案为:.点评: 本题考查了对算术平方根的应用,主要考查学生的计算能力和理解能力.三、解答题(共 8 题,共 55 分)16.( 6 分)(春 ?期末)计算(﹣ 3) 3 × +×|﹣ |+( π﹣ 3)0. 考点 :实数的运算;零指数幂.专题 :计算题.分析:原式第一项利用乘方的意义及二次根式性质化简,第二项利用立方根定义及绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式 =﹣ 27×4﹣ 2× +1=﹣ 108﹣ 1+1= ﹣ 108.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.( 6 分)(春 ?期末)解方程组:.考点:解三元一次方程组.分析:① +②消去 z 得到一个方程,记作④ ,②×2+③ 消去z得到另一个方程,记作⑤,两方程联立消去y 求出 x 的值,将x 的值代入④求出 y 的值,将 x、 y 的值代入③求出z 的值,即可得到原方程组的解.解答:解:① +②得: 4x+y=16 ④,②×2+③得: 3x+5y=29 ⑤,④⑤组成方程组解得将x=3 , y=4 代入③得: z=5,则方程组的解为.点评:此题考查了三元一次方程组的解法,利用了消元的思想,消元的方法有两种:加减消元法;代入消元法,熟练掌握两种方法是解本题的关键.18.( 6 分)(春 ?期末)解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵由①得:x≤1,由② 得: x>﹣ 2,∴不等式组的解集为:﹣2<x≤1,在数轴上正确的表示出这个解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.19.( 6 分)(春 ?期末)△ ABC 与△ A ′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标: A ′(﹣ 3, 1);B′(﹣2,﹣2);C′(﹣1,﹣1);(2)说明△ A ′B′C′由△ABC 经过怎样的平移得到?先向左平移 4 个单位,再向下平移 2个单位.(3)若点 P( a, b)是△ ABC 内部一点,则平移后△ A′B′C′内的对应点P′的坐标为(a﹣4, b﹣ 2);(4)求△ABC 的面积.考点:作图 -平移变换.专题:作图题.分析:(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点 A 、 A ′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ ABC 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答:解:( 1)A ′(﹣ 3, 1); B′(﹣ 2,﹣ 2); C′(﹣ 1,﹣ 1);(2)先向左平移 4 个单位,再向下平移 2 个单位;或:先向下平移 2 个单位,再向左平移 4 个单位;(3) P′( a﹣ 4, b﹣ 2);(4)△ ABC 的面积 =2×3﹣×1×3﹣×1×1﹣×2×2=6﹣ 1.5﹣ 0.5﹣ 2=2.故答案为:( 1)(﹣ 3, 1),(﹣ 2,﹣ 2),(﹣ 1,﹣ 1);( 2)先向左平移 4 个单位,再向下平移 2 个单位;( 3)( a﹣ 4,b﹣ 2).点评:本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.20.( 8 分)(春 ?期末)繁昌四中为了了解学生对三种国庆活动方案的意见,对全体学生进行了一次抽样调查(被调查学生至多赞成其中的一种方案),现将调查结果绘制成如图两幅不完整的统计图,请根据图中提供的信息解答下列问题(1)这次共调查了多少名学生?扇形统计图中方案1 所对应的圆心角的度数为多少度?(2)请把条形统计图补充完整;(3)已知繁昌四中约有1500 名学生,试估计该校赞成方案 1 的学生约有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据赞成方案 3 的人数是15,所占的百分比是25%,据此即可求得调查的总人数;(2)利用调查的总人数减去其它项的人数即可求得赞成方案 2 的人数,补全直方图;(3)利用总人数乘以对应的百分比即可求解.解答:解:(1)调查的总人数是:15÷25%=60 (人),扇形统计图中方案 1 所对应的圆心角的度数是:360°×=144°;(2)赞成方案 2 的人数是: 60﹣24﹣ 15﹣9=12 (人),;(3)该校赞成方案 1 的学生约有:1500×=600(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.( 8 分)(春 ?期末)巍山镇中为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买 3 个足球和 2 个篮球共需 310 元,购买 2 个足球和 5 个篮球共需 500 元.(1)购买一个足球、一个篮球各需多少元?(2)根据巍山镇中的实际情况,需从体育用品商店一次性购买足球和篮球共96 个,要求购买足球和篮球的总费用不低于5600 但不超过5720 元,可以有哪几种购买方案?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)先设购买一个足球需要x 元,购买一个篮球需要y 元,根据购买 3 个足球和 2 个篮球共需 310 元,购买 2 个足球和 5 个篮球共需 500 元,列出方程组,求出 x, y 的值即可.(2)设购买 a 个篮球,则购买( 96﹣ a)个足球,根据总费用不低于 5600 但不超过 5720 元,列出不等式组,再根据不等式组的解集即可得出购买方案.解答:解:(1)设购买一个足球需要x 元,购买一个篮球需要y 元,根据题意得:,解得,则购买一个足球需要50 元,购买一个篮球需要80 元;(2)设购买 a 个篮球,则购买( 96﹣ a)个足球,根据题意得:,解得:≤a≤;∵a 是整数,∴a可以取 27, 28, 29, 30,∴共有四种方案:方案 1:购买: 27 个篮球, 69 个足球,方案 2:购买: 28 个篮球, 68 个足球,方案 3:购买: 29 个篮球, 67 个足球,方案 4:购买: 30 个篮球, 66 个足球.点评:此题考查了列二元一次方程组和不等式组的应用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键,注意 a 取整数.22.( 9 分)(春 ?期末)如图 1, CE 平分∠ ACD , AE 平分∠ BAC ,∠ EAC+ ∠ ACE=90 °(1)请判断 AB 与 CD 的位置关系并说明理由;(2)如图 2,当∠ E=90 °且 AB 与 CD 的位置关系保持不变,移动直角顶点E,使∠MCE= ∠ ECD ,当直角顶点 E 点移动时,问∠BAE 与∠ MCD 否存在确定的数量关系?并说明理由;(3)如图 3, P 为线段 AC 上一定点,点Q 为直线 CD 上一动点且AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(点 C 除外)∠ CPQ+ ∠CQP 与∠ BAC 有何数量关系?猜想结论并说明理由.考点:平行线的性质.分析:(1)先根据CE 平分∠ ACD , AE 平分∠ BAC 得出∠ BAC=2 ∠ EAC ,∠A CD=2 ∠ ACE ,再由∠ EAC+ ∠ ACE=90 °可知∠ BAC+ ∠ ACD=180 ,故可得出结论;(2)过 E 作 EF∥ AB ,根据平行线的性质可知EF∥ AB ∥ CD ,∠ BAE= ∠ AEF ,∠F EC= ∠ DCE ,故∠ BAE+ ∠ ECD=90 °,再由∠ MCE= ∠ ECD 即可得出结论;(3)根据 AB ∥ CD 可知∠ BAC+ ∠ACD=180 °,∠ QPC+ ∠PQC+ ∠PCQ=180 °,故∠BAC= ∠ PQC+∠ QPC.解答:解:( 1)∵ CE 平分∠ ACD , AE 平分∠ BAC ,∴∠ BAC=2 ∠ EAC ,∠ ACD=2 ∠ ACE ,∵∠ EAC+ ∠ACE=90 °,∴∠ BAC+ ∠ ACD=180 °,∴AB ∥ CD ;(2)∠ BAE+ ∠ MCD=90 °;过E 作 EF∥ AB ,∵AB ∥ CD ,∴E F ∥AB ∥ CD,∴∠ BAE= ∠AEF ,∠ FEC=∠ DCE ,∵∠ E=90°,∴∠ BAE+ ∠ECD=90 °,∵∠ MCE= ∠ ECD,∴∠ BAE+∠ MCD=90°;(3)∵ AB ∥CD ,∴∠ BAC+ ∠ ACD=180 °,∵∠ QPC+∠ PQC+ ∠ PCQ=180°,∴∠ BAC= ∠ PQC+ ∠QPC.点评:本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.23.( 6 分)(春 ?期末)如图,是一个运算流程.(1)分别计算:当x=150 时,输出值为449 ,当 x=27 时,输出值为716 ;(2)若需要经过两次运算,才能运算出y,求 x 的取值范围;(3)请给出一个x 的值,使之无论运算多少次都不能输出,并请说明理由.考点:解一元一次不等式组;有理数的混合运算.专题:图表型.分析:(1)分别把x=150 与 x=27 代入进行计算即可;(2)根据题意得出关于 x 的不等式组,求出 x 的取值范围即可;(3)根据题意列举出 x 的值即可.解答:解:(1)∵当x=150时,3×150﹣1=449>365,∴输出值为449;∵当 x=27 时, 3×27﹣ 1=80< 365,∴80×3﹣ 1=239< 365,239×3﹣ 1=716> 365,∴输出值为716.故答案为: 449, 716;(2)∵需要经过两次运算,才能运算出y,∴,解得 41≤x< 122.(3)取 x≤的任意值,理由:∵当x≤时, 3x﹣ 1≤,∴无论运算多少次都不能输出.点评:本题考查的是解一元一次不等式组,根据题意得出关于 x 的不等式是解答此题的关键.。
新编安徽省芜湖市七年级下册期末数学试卷(有答案)
安徽省芜湖市七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.4的算术平方根是()A. −4B. 4C. −2D. 22.二元一次方程x+y=5有()个解.A. 1B. 2C. 3D. 无数3.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘4.下列各点中,在第二象限的点是()A. (−3,2)B. (−3,−2)C. (3,2)D. (3,−2)5.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A. 43%B. 50%C. 57%D. 73%6.如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段()的长.A. POB. ROC. OQD. PQ7.若m=√40−4,则估计m的值所在的范围是()A. 1<m<2B. 2<m<3C. 3<m<4D. 4<m<58.在下列四项调查中,方式正确的是()A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式9. 如图a//b ,M 、N 分别在a 、b 上,P 为两平行线间一点,那么∠1+∠2+∠3=()A. 180∘B. 270∘C. 360∘D. 540∘10. 如图,周董从A 处出发沿北偏东60∘方向行走至B 处,又沿北偏西20∘方向行走至C 处,则∠ABC 的度数是( )A. 80∘B. 90∘C. 100∘D. 95∘11. “鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是( )A. {x +2y =100x+y=36B. {4x +2y =100x+y=36C. {2x +4y =100x+y=36D. {2x +2y =100x+y=3612. 若满足方程组{2x −y =2m −13x+y=m+3的x 与y 互为相反数,则m 的值为( )A. 1B. −1C. 11D. −11二、填空题(本大题共6小题,共18.0分)13. 如图,当剪子口∠AOB 增大15∘时,∠COD 增大______度.14. 将方程3y −x =2变形成用含y 的代数式表示x ,则x =______. 15. 点P(m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为______. 16. 如图,两直线a ,b 被第三条直线c 所截,若∠1=50∘,∠2=130∘,则直线a ,b 的位置关系是______.17. 若不等式3x −m ≤0的正整数解是1,2,3,则m 的取值范围是______.18.从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,如入射光线OA的反射光线为AB,∠OAB=75∘.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=22∘.则∠AOD的度数是______.三、计算题(本大题共1小题,共6.0分)19.某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.(2)图①中,a等于多少?D等级所占的圆心角为多少度?四、解答题(本大题共4小题,共32.0分)x+3≥2x−120.解不等式组{3x−5≥121.如图,EF//AD,∠1=∠2,∠BAC=80∘.求∠AGD的度数.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED//FB.23.实验学校共有教师办公室22间,大的教师办公室每间可以安排10名教师在里面办公,小的教师办公室每间可以安排4名教师在里面办公.而实验学校一共有178名教师,这22间恰好能把实验学校的178名教师安排下,请你帮忙算一算,实验学校各有大小教师办公室多少间?答案和解析【答案】1. D2. D3. C4. A5. C6. C7. B8. D9. C10. C11. C12. C13. 1514. 3y−215. (2,0)16. 平行17. 9≤m<1218. 53∘或97∘19. 解:(1)根据题意得:46÷23%=200(人),A等级的人数为200−(46+70+64)=20(人),补全条形统计图,如图所示:(2)由题意得:a%=20,即a=10;D等级占的圆心角度数为32%×360∘=115.2∘.20020. 解:解不等式x+3≥2x−1,可得:x≤4;解不等式3x−5≥1,可得:x≥2;∴不等式组的解集是2≤x≤4.21. 解:∵EF//AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG//AB,∴∠AGD=180∘−∠BAC=180∘−80∘=100∘.22. 证明:∵∠3=∠4,∴CF//BD,∴∠5=∠FAB.∵∠5=∠6,∴∠6=∠FAB,∴AB//CD,∴∠2=∠EGA . ∵∠1=∠2, ∴∠1=∠EGA , ∴ED//FB .23. 解:设实验学校有大教师办公室x 间,小教师办公室y 间,由题意得,{10x +4y =178x+y=22, 解得:{y =7x=15.答:实验学校有大教师办公室15间,小教师办公室7间. 【解析】1. 解:∵22=4,∴4的算术平方根是2, 即√4=2. 故选:D .根据算术平方根的定义解答即可.本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2. 解:方程x +y =5有无数个解.故选:D .根据二元一次方程有无数个解即可得到结果.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .3. 解:∵∠1+∠5=180∘,∠3+∠1=180∘,∴∠3=∠5, ∴AB//CD , 故选:C .根据邻补角互补和条件∠3+∠1=180∘,可得∠3=∠5,再根据同位角相等,两直线平行可得结论.此题主要考查了平行线的判定,关键是掌握:同位角相等,两直线平行.4. 解:A 、(−3,2)在第二象限,故本选项正确;B 、(−3,−2)在第三象限,故本选项错误;C 、(3,2)在第一象限,故本选项错误;D 、(3,−2)在第四象限,故本选项错误. 故选:A .根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5. 解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,=57%.在120≤x<200范围内人数占抽查学生总人数的百分比为57100故选:C.用120≤x<200范围内人数除以总人数即可.本题考查了频数分布直方图,把图分析透彻是解题的关键.6. 解:∵OQ⊥PR,∴点O到PR所在直线的距离是线段OQ的长.故选:C.根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.本题考查了点到直线的距离,熟记概念并准确识图是解题的关键.7. 解:∵36<40<49,∴6<√40<7,∴2<√40−4<3.故选:B.应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9. 解:过点P作PA//a,则a//b//PA,∴∠1+∠MPA=180∘,∠3+∠NPA=180∘,∴∠1+∠2+∠3=360∘.故选:C.首先过点P作PA//a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.10. 解:∵向北方向线是平行的,∴∠A +∠ABF =180∘, ∴∠ABF =180∘−60∘=120∘,∴∠ABC =∠ABF −∠CBF =120∘−20∘=100∘, 故选:C .根据平行线性质求出∠ABF ,和∠CBF 相减即可得出答案.本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补.11. 解:如果设鸡为x 只,兔为y 只.根据“三十六头笼中露”,得方程x +y =36;根据“看来脚有100只”,得方程2x +4y =100.即可列出方程组{2x +4y =100x+y=36. 故选:C .首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要用常识判断出隐藏的条件.12. 解:由题意得:y =−x ,代入方程组得:{2x +x =2m −1 ②3x−x=m+3 ①,消去x 得:m+32=2m−13,即3m +9=4m −2,解得:m =11, 故选:C .由x 与y 互为相反数,得到y =−x ,代入方程组计算即可求出m 的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:因为∠AOB 与∠COD 是对顶角,∠AOB 与∠COD 始终相等,所以随∠AOB 变化,∠COD 也发生同样变化. 故当剪子口∠AOB 增大15∘时,∠COD 也增大15∘. 根据对顶角的定义和性质求解.互为对顶角的两个角相等,如果一个角发生变化,则另一个角也做相同的变化.14. 解:3y −x =2,解得:x =3y −2. 故答案为:3y −2将y 看做已知数求出x 即可.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .15. 解:∵点P(m +3,m +1)在直角坐标系的x 轴上,∴这点的纵坐标是0,∴m +1=0,解得,m =−1,∴横坐标m +3=2,则点P 的坐标是(2,0).根据x轴上点的坐标特点解答即可.本题主要考查了坐标轴上点的坐标的特点:x轴上点的纵坐标为0.16. 解:∵∠2+∠3=180∘,∠2=130∘,∴∠3=50∘,∵∠1=50∘,∴∠1=∠3,∴a//b(同位角相等,两直线平行).因为∠2与∠3是邻补角,由已知便可求出∠3=∠1,利用同位角相等,两直线平行即可得出a,b的位置关系.本题考查了邻补角的性质以及判定两直线平行的条件.17. 解:不等式3x−m≤0的解集是x≤m,3∵正整数解是1,2,3,<4即9≤m<12.∴m的取值范围是3≤m3先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18. 解:∵AB//CF,∴∠COA=∠OAB.(两直线平行,内错角相等)∵∠OAB=75∘,∴∠COA=75∘.∵DE//CF,∴∠COD=∠ODE.(两直线平行,内错角相等)∵∠ODE=22∘,∴∠COD=22∘.在图1的情况下,∠AOD=∠COA−∠COD=75∘−22∘=53∘.在图2的情况下,∠AOD=∠COA+∠COD=75∘+22∘=97∘.∴∠AOD的度数为53∘或97∘.故答案为:53∘或97∘.分两种情况:如果∠AOD是锐角,∠AOD=∠COA−∠COD;如果∠AOD是钝角,∠AOD=∠COA+∠COD,由平行线的性质求出∠COA,∠COD,从而求出∠AOD的度数.本题主要考查了平行线的性质,分析入射光线OD的不同位置是做本题的关键.19. (1)由B等级的人数除以占的百分比得出调查总人数,进而求出A等级人数,补全条形统计图即可;(2)求出A等级占的百分比确定出a,由D的百分比乘以360即可得到D等级占的圆心角度数.此题考查了条形统计图,以及扇形统计图,弄清题中的数据是解本题的关键.20. 首先求出每个不等式的解集,再求出这些解集的公共部分即可.此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21. 根据两直线平行,同位角相等可得∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行判断出DG//AB,然后根据两直线平行,同旁内角互补解答.本题考查了平行线的判定与性质,熟记性质与判定方法并判断出DG//AB是解题的关键.22. 因为∠3=∠4,所以CF//BD,由平行的性质证明∠6=∠FAB,则有AB//CD,再利用平行的性质证明∠1=∠EGA,从而得出ED//FB.本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养学生“执果索因”的思维方式与能力.23. 设实验学校有大教师办公室x间,小教师办公室y间,根据22间办公室共有178名教师,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。
芜湖市初一下学期数学期末试卷带答案
芜湖市初一下学期数学期末试卷带答案一、选择题1.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠1=∠22.如图1的8张长为a,宽为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.b=5a B.b=4a C.b=3a D.b=a3.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.4.下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)5.如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC 中AC边上的高是()A.CF B.BE C.AD D.CD6.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )A .13B .9C .9-D .13-7.若关于x 的不等式组2034x x a x -<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .68.计算a 10÷a 2(a≠0)的结果是( )A .5aB .5a -C .8aD .8a -9.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .10.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4 B .5 C .6 D .8二、填空题11.一个五边形所有内角都相等,它的每一个内角等于_______.12.积的乘方公式为:(ab )m = .(m 是正整数).请写出这一公式的推理过程.13.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.14.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________.15.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 16.计算:5-2=(____________)17.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为_____.18.若方程4x﹣1=3x+1和2m+x=1的解相同,则m的值为_____.19.如果a2﹣b2=﹣1,a+b=12,则a﹣b=_______.20.若长方形的长为a+3b,宽为a+b,则这个长方形的面积为_____.三、解答题21.已知:如图,//AB DC,AC和BD相交于点O,E是CD上一点,F是OD上一点,且∠1=∠A.(1)求证://FE OC;(2)若∠BFE=110°,∠A=60°,求∠B的度数.22.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).(结论应用)(2)如图2,已知△CDE的面积为1,14CDAC=,13CECB=,求△ABC的面积.(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点(13AM AB=),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.23.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.24.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量25.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y=5,∴y=﹣1①得x=4,所以,方程组的解为41 xy=⎧⎨=-⎩.请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组325 9419 x yx y-=⎧⎨-=⎩.(2)已知x,y满足方程组22223212472836x xy yx xy y⎧-+=⎨++=⎩,求x2+4y2﹣xy的值.26.解下列二元一次方程组:(1)70231x yx y+=⎧⎨-=-⎩①②;(2)239 345x yx y-=⎧⎨+=⎩①②.27.解方程组(1)21325x yx y+=⎧⎨-=⎩(2)111231233x yx y⎧-=⎪⎪⎨⎪--=⎪⎩28.已知,关于x、y二元一次方程组237921x y ax y-=-⎧⎨+=-⎩的解满足方程2x-y=13,求a的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB∥DC(内错角相等,两直线平行).故选A.【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.2.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b225315()BC AB a BC a AB a BC AB b BC AB b22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变, 50a b, 5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.3.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A 、不能用平移变换来分析其形成过程,故此选项错误;B 、不能用平移变换来分析其形成过程,故此选项错误;C 、不能用平移变换来分析其形成过程,故此选项正确;D 、能用平移变换来分析其形成过程,故此选项错误;故选:D .【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.4.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解5.B解析:B【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B .考点:三角形的角平分线、中线和高.6.A解析:A【分析】先解方程组425x y x y +=⎧⎨-=⎩求出该方程组的解,然后把这个解分别代入7ax y +=与32x by +=-即可求出a 、b 的值,进一步即可求出答案.【详解】解:解方程组425x y x y +=⎧⎨-=⎩,得31x y =⎧⎨=⎩, 把31x y =⎧⎨=⎩代入7ax y +=,得317a +=,解得:a =2, 把31x y =⎧⎨=⎩代入32x by +=-,得92b +=-,解得:b =﹣11, ∴a -b =2-(﹣11)=13.故选:A .【点睛】本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.7.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0,∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4, ∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.8.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.9.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.10.C解析:C【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【详解】解:设外角为x ,则相邻的内角为2x ,由题意得,2180x x +=︒,解得,60x =︒,多边形的边数为:360606÷︒=,故选:C .【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.二、填空题11.【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°解析:108︒【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°=108°.故答案为:108°.【点睛】本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.12.:ambm ,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=ambm,理由:(ab)m=ab×ab×ab×ab×…×ab解析::a m b m,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=a m b m,理由:(ab)m=ab×ab×ab×ab×…×ab=aa…abb…b=a m b m故答案为a m b m.【点睛】本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.13.;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100 ;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF=∠EFG=50°,∠1=∠GED.∵长方形纸片沿EF折叠后,点D、C 分别落在点D′、C′的位置,∴∠DEF=∠GEF=50°,即∠GED=100°,∴∠1=∠GED=100°.故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.14.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A 的个位数字是1, 故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.15.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键.16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】 本题考查了负整数指数幂的运算法则,比较简单.17.【分析】把m 看做已知数表示出x 与y ,代入x+y =0计算即可求出m 的值.【详解】解:,①+②得:5x =3m+2,解得:x =,把x =代入①得:y =,由x 与y 互为相反数,得到=0,去分母解析:【分析】把m 看做已知数表示出x 与y ,代入x +y =0计算即可求出m 的值.【详解】解:33221x y m x y m +=+⎧⎨-=-⎩①②, ①+②得:5x =3m +2,解得:x =325m +,把x=325m+代入①得:y=945m-,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.18.﹣【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣.解析:﹣1 2【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣12.故答案为:﹣12.【点睛】此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.19.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】,∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=12∴a-b=-1÷1=-2,2故答案为-2.20.a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为解析:a2+4ab+3b2【分析】根据长方形面积公式可得长方形的面积为(a+3b)(a+b),计算即可.【详解】解:由题意得,长方形的面积:(a+3b)(a+b)=a2+4ab+3b2.故答案为:a2+4ab+3b2.【点睛】本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键.三、解答题21.(1)见详解;(2)50°.【分析】AB DC,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平(1)由//行即可得证;(2)由EF与OC平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B的度数.【详解】(1)证明:∵AB∥CD,∴∠A=∠C ,又∵∠1=∠A,∴∠C=∠1,∴FE∥OC;(2)解:∵FE∥OC,∴∠BFE+∠DOC=180°,又∵∠BFE=110°,∴∠DOC=180°-110°=70°,∴∠AOB=∠DOC=70°,∵∠A=60°,∴∠B=180°-60°-70°=50°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=1 3 S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13AM AB=∴BM=2AM,BM=23AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴122223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=512故答案为512.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.24.(1)证明过程见解析;(2)12N AEM NFD∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°.【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到1 2N AEM NFD ∠=∠-∠;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.【详解】(1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.25.(1)32xy=⎧⎨=⎩;(2)15【分析】(1)把9x﹣4y=19变形为3x+2(3x﹣2y)=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.26.(1)43xy=⎧⎨=⎩;(2)31xy=⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x=7﹣y③,把③代入②得:2(7﹣y)﹣3y=﹣1,解得:y=3,把y =3代入③得:x =4,所以这个二元一次方程组的解为:43x y =⎧⎨=⎩; (2)①×4+②×3得:17x =51,解得:x =3,把x =3代入①得:y =﹣1,所以这个方程组的解为31x y =⎧⎨=-⎩. 【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键. 27.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②, 由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-, ∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =,把1411x=代入①,解得:1211y=-,∴方程组的解为:14111211xy⎧=⎪⎪⎨⎪=-⎪⎩;【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.28.a=4【分析】先联立x+2y=−1与2x−y=13解出x,y,再代入2x−3y=7a−9即可求出a值.【详解】依题意得21 213 x yx y+=-⎧⎨-=⎩解得53xy=⎧⎨=-⎩,代入2x−3y=7a−9,得:a=4,故a的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.。
2019-2020学年芜湖市七年级(下)期末数学试卷
2019-2020学年芜湖市七年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 在下列各数:3.1415926,√49100,0.2,1π,√7,13111中无理数的个数有( ) A. 2个B. 3个C. 4个D. 5个 2. 下列调查中,适合采用全面调查(普查)方式的是( )A. 对长江某段水域的水污染情况的调查B. 对正在播出的某电视节目收视率的调查C. 对各厂家生产的电池使用寿命的调查D. 对一架“歼20”战机各零部件的质量情况的调查3. 在平面直角坐标系中,点P(3,−4)在第( )象限.A. 一B. 二C. 三D. 四 4. 如图,AB//CD ,点E 是直线AB 上的点,过点E 的直线l 交直线CD 于点F ,EG 平分∠BEF 交CD 于点G.在直线l 绕点E 旋转的过程中,图中∠1,∠2的度数可以分别是( )A. 30°,110°B. 56°,70°C. 70°,40°D. 100°,40° 5. 在下列各数中,无理数是( )A. −π3B. 0.3030030003C. −227D. √−273 6. 如图,在5×5方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A. 先向下平移3格,再向右平移1格B. 先向下平移2格,再向右平移1格C. 先向下平移2格,再向右平移2格D. 先向下平移3格,再向右平移2格7.某校运动员进行分组训练,若每组5人,余2人,若每组6人,则缺3人,设运动员人数为x人,组数为y,则根据题意所列方程组为()A. {5y=x+26x+3=x B. {5y=x+26y−3=xC. {5y=x−26y=x+3D. {5y=x−26y=x−38.不等式x−3≥−1的解集是()A. x≤2B. x=−2C. x≥2D. x≥−29.在平面直角坐标系中,长方形ABCD的三个顶点A(3,2),B(−1,2),C(−1,−1),则第四个顶点D的坐标是()A. (2,−1)B. (3,−1)C. (−2,3)D. (−3,1)10.若∠A的两边与∠B的两边分别平行,且∠B=3∠A−60°,那么∠B的度数为()A. 30°B. 60°C. 60°或120°D. 30°或120°二、填空题(本大题共5小题,共20.0分)11.a、b、c、d都是正数,且a2=2,b3=3,c4=4,d5=5,则a、b、c、d中,最大的一个是______ .12.如图,若∠1=∠2,则______//______;根据______.13.若x+23x−5<0,化简√25−30x+9x2−√(x+2)2−3的结果为______ .14.初三所有班级中人数最少的有55人,最多的有63人,在最近一次体育测试中,某班男生的平均分比女生多了0.25分,小楠抱怨道:“我们女生就是15分的小倩拖了后腿,要是没有她,我们女生的平均分会比男生还多1分.”小西反驳说:“我们男生要是不算得了9分的小强,平均分也会再多1分.”班长小北听到他们的对话后说:“让我们一起帮助他们,如果小倩和小强的体育成绩都能提高到m分,那么男生和女生的平均分就一样了.”请问:整数m=______.15.如图,△ABC是直角三角形,∠BAC=90°,AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,则△AEC的面积为______.三、解答题(本大题共6小题,共48.0分)16. 已知关于x ,y 的方程组{x +y =4x −y =m的解满足x 与y 均为正整数,求m 的值17. 如图,在直角梯形OABC 中,OA//BC ,A 、B 两点的坐标分别为A(13,0),B(11,12),动点P ,Q 分别从O 、B 两点同时出发,点P 以每秒2个单位的速度沿OA 向终点A 运动,点Q 以每秒1个单位的速度沿BC 向C 运动,当点P 停止运动时,点Q 同时停止运动.线段OB 、PQ 相交于点D ,过点D 作DE//OA ,交AB 于点E ,设动点P 、Q 运动时间为t(单位:s)(1)当t 为何值时,四边形PABQ 是平行四边形,请写出推理过程;(2)通过推理论证:在P 、Q 的运动过程中,线段DE 的长度不变.18. 如图,在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)将△AOB 向左平移3个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(2)在(2)的条件下,点A 1的坐标为______.(3)若点P 在x 轴上,且△OPA 1的面积为2,请直接写出点P 的坐标.19.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.进球数(个876543)人数214782训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比为______ ,该班学生的总人数为______ ;(2)训练后篮球定时定点投篮人均进球数为______ ;(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?20. 某市为了鼓励居民节约用水,决定水费实行两级收费制度.若每月用水量不超过10吨(含10吨),则每吨按优惠价m元收费;若毎月用水量超过10吨,则超过部分毎吨按市场价n元收费,小明家3月份用水20吨,交水费50元;4月份用水18吨,交水费44元.(1)求每吨水的优惠价和市场价分別是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式.21. 如图,直线m//l,若∠1=140°,∠2=70°,求∠3的度数?【答案与解析】1.答案:A解析:解:3.1415926,0.2是有限小数,属于有理数;√49 100=710,13111是分数,属于有理数;无理数有:1π,√7共2个.故选:A.根据无理数是无限不循环小数,可得答案.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.2.答案:D解析:解:A、对长江某段水域的水污染情况的调查,适合抽样调查,故此选项错误;B、对正在播出的某电视节目收视率的调查,适合抽样调查,故此选项错误;C、对各厂家生产的电池使用寿命的调查,适于抽样调查,故此选项正确;D、对一架“歼20”战机各零部件的质量情况的调查,适合全面调查,故此选项正确.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.答案:D解析:解:在平面直角坐标系中,点P(3,−4)在第四象限.故选:D.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.答案:C解析:解:A、∵AB//CD,∴∠BEG=∠1=30°,∵EG平分∠BEF,∴∠BEF=2∠BEG=60°.∴∠2=180°−∠BEF=120°,不符合题意;B、∵AB//CD,∴∠BEG=∠1=56°,∵EG平分∠BEF,∴∠BEF=2∠BEG=112°.∴∠2=180°−∠BEF=68°,不符合题意;C、∵AB//CD,∴∠BEG=∠1=70°,∵EG平分∠BEF,∴∠BEF=2∠BEG=140°.∴∠2=180°−∠BEF=40°,符合题意;D、∵AB//CD,∴∠BEG=∠1=100°,∵EG平分∠BEF,∴∠BEF=2∠BEG=200°.∴∠2=360°−∠BEF=160°,不符合题意.故选:C.根据两直线平行,内错角相等可得∠BEG,根据角平分线的定义得到∠BEF,根据邻补角互补求出∠2即可求解.本题主要考查了平行线的性质,角平分线的定义,以及邻补角的性质,熟练掌握性质并准确识图是解题的关键.5.答案:A是无理数;解析:解:−π30.3030030003是有限小数,是有理数;−22是分数,是有理数;73=−3,是有理数.√−27故选:A.无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.本题主要考查的是无理数的概念,熟练掌握无理数的常见类型是解题的关键.6.答案:D解析:解:观察图形可知:平移是先向下平移3格,再向右平移2格.故选:D .根据图形,对比图①与图②中位置关系,对选项进行分析,排除错误答案.本题是一道简单考题,考查的是图形平移的方法.7.答案:C解析:解:设运动员人数为x 人,组数为y 由题意得:{5y =x −26y =x +3, 故选:C .根据题意可得等量关系:①学生人数−2=5×组数;②学生人数+3=6×组数,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系. 8.答案:C解析:解:x ≥−1+3,x ≥2,故选:C .根据解一元一次不等式基本步骤:移项、合并同类项可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.答案:B解析:解:如图,∵长方形ABCD的三个顶点坐标分别为:A(3,2),B(−1,2),C(−1,−1),则第四个顶点D的坐标是(3,−1).故选:B.根据长方形ABCD的三个顶点A(3,2),B(−1,2),C(−1,−1),画出图形即可得第四个顶点D的坐标.本题考查了矩形的性质、坐标与图形的性质,解决本题的关键是掌握矩形的性质.10.答案:D解析:解:作图如下:(1)如图1:∠MBN=3∠CAD−60°,∵MB//CA,∴∠MBA=∠CAD,∵∠MBN+∠MBA=180°,∴3∠CAD−60°+∠CAD°=180°,∴∠CAD=60°,∴∠MBN=3×60°−60°=120°;(2)如图2:∠MBA=3∠CAD−60°,∵MB//CA,∴∠MBA=∠CAD,∴3∠CAD −60°=∠CAD ,∴∠CAD =30°,∴∠MBA =30°,故选:D .根据平行线的性质即可求解.本题考查了平行线的基本性质,本题的解题关键是要分类讨论角度关系即可得出答案.11.答案:b解析:解:∵a 2=2,c 4=4,∴c 2=2=a 2,a =c ,又∵a 6=(a 2)3=8,b 6=(b 3)2=9,∴b >a =c ,最后比较b 与d 的大小,∵b 15=(b 3)5=243,d 15=(d 5)3=125,∴b >d ,∴a 、b 、c 、d 中b 最大.故答案为b .根据题意,比较a 、b 、c 、d 的大小关系,可以比较它们的相同的次幂,乘方的值大,则对应的数就大,据此即可作出判断.本题主要考查了实数大小的比较,几个正数的相同次幂,幂的值越大则对应的数就越大,难度适中. 12.答案:AB CD 内错角相等,两直线平行解析:解:如图,因为∠1=∠2,所以AB//CD(内错角相等,两直线平行).故答案是:AB ;CD ;内错角相等,两直线平行.根据平行线的判定定理填空.考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 13.答案:−4x解析:解:由题意得,{x +2>03x −5<0或{x +2<03x −5>0, 解得,−2<x <53,则原式=|5−3x|−|x +2|−3=5−3x −2−x −3=−4x ,故答案为:−4x .解不等式组求出x 的范围,根据二次根式的性质化简即可.本题考查的是二次根式的化简、一元一次不等式的解法,掌握二次根式的性质是解题的关键. 14.答案:45解析:解:设该班女生有x 人,男生有y 人,女生的平均分为a 分,则男生的平均分为(a +0.25)分,依题意,得:{ ax−15x−1=a +0.25+1①(a+0.25)y−9y−1=a +0.25+1②ax−15+m x =(a+0.25)y−9+m y③, 由①,得:ax −15=(a +1.25)(x −1)④;由②,得:(a +0.25)y =(a +1.25)(y −1)+9⑤.将④⑤代入③,得:(a+1.25)(x−1)+m x =(a+1.25)(y−1)+m y ,∴(a +1.25)[(x −1)y −(y −1)x]=m(x −y),∴m =a +1.25,∴a =m −1.25⑥.将⑥代入①,得:(m−1.25)x−15x−1=m , ∴x =45m −12;将⑥代入②,得:(m−1.25+0.25)y−9y−1=m ,∴y =m −9.∵x 为正整数,∴m >15,m 为5的倍数.∵{x +y ≥55x +y ≤63,即{45m −12+m −9≥5545m −12+m −9≤63, ∴4229≤m ≤4623.又∵m 为正整数,且m 为5的倍数,∴m =45.故答案为:45.设该班女生有x 人,男生有y 人,女生的平均分为a 分,则男生的平均分为(a +0.25)分,根据小楠、小西及小北的言论,即可得出关于a ,x ,y 的方程组,由①②变形后代入③可得a =m −1.25⑥,分别将⑥代入①②可得出x =45m −12,y =m −9,结合x 为正整数且55≤x +y ≤63,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再由m 为正整数且m 为5的倍数,即可求出m 的值.本题考查了二元一次不定方程的应用,根据班级人数的要求,找出关于m 的一元一次不等式组是解题的关键.15.答案:12cm 2解析:解:S △ABC =12AB ⋅AC =12×6×8=24(cm 2),∵AE 是△ABC 的中线,∴BE =CE =12BC ,∵AD 是△ABC 的高,∴S △AEC =12CE ⋅AD =12×12BC ⋅AD =12S △ABC =12×24=12(cm 2),故答案为12cm 2.由中线得CE =12BC ,进而由三角形的面积公式得△AEC 的面积是△ABC 面积的一半,由直角三角形地面积公式求得△ABC 的面积便可.本题主要考查了直角三角形的性质,三角形的面积公式,三角形的中线性质,根据三角形的中线把三角形分成的两个三角形的面积相等,为原三角形面积的一半,是解题的关键.16.答案:解:解方程{x +y =4x −y =m ,得:{x =m+42y =4−m 2, 根据题意得{m+42>04−m 2>0,解得−4<m <4,又x 与y 均为正整数,∴m =−2或m =0或m =2.解析:解方程得出x 、y ,再由x 与y 均为正整数求解可得.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.答案:解:(1)∵PA//BQ ,当AP =BQ 时,四边形PABQ 是平行四边形,∴13−2t =t ,解得:t=,∴t=时,四边形PABQ是平行四边形;(2)∵A(13,0),∵BQ=t,OP=2t,BC//OA,∴△BDQ∽△ODP,∴==,∴=,∵DE//OA,∴△BDE∽△BOA,∴==,∴=,∴DE=,即在P、Q的运动过程中,线段DE的长度不变,永远是.解析:试题分析:(1)根据平行四边形的判定得出AP=BQ,代入求出即可;(2)根据平行线的性质得出相似,求出BDOB =13,证△BDE∽△BOA,得出比例式,即可得出答案.18.答案:(−2,3)解析:解:(1)△A1O1B1如图所示;(2)由图知,点A1的坐标为(−2,3).故答案为:(−2,3).(3)设点P 坐标为(x,0),则12⋅|x|⋅3=2,解得x =±43,∴P 1(43,0),P 2(−43,0). (1)将三个顶点分别向左平移3个单位得到对应点,再首尾顺次连接即可得;(2)由所作图形可得点A 1的坐标;(3)设点P 坐标为(x,0),根据△OPA 1的面积为2可得12⋅|x|⋅3=2,解之可得答案.本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质及三角形的面积公式. 19.答案:解:(1)10%,40;(2)5;(3)P(抽到4)=824=13.解析:解:(1)选择长跑训练的人数占全班人数的百分比=1−60%−10%−20%=10%;训练篮球的人数=2+1+4+7+8+2=24人,∴全班人数=24÷60%=40;故答案为:10%,40;(2)人均进球数=8×2+7×1+6×4+5×7+4×8+3×22+1+4+7+8+2=5;故答案为:5;(3)见答案.(1)根据选择长跑训练的人数占全班人数的百分比=1−60%−10%−20%=10%,进而得出训练篮球的人数和全班人数;(2)利用进球总数除以总人数即可得出平均数;(3)根据进球数为4的人数为8,运用公式进行计算,即可得到抽到4的概率.此题主要考查了扇形统计图以及加权平均数的应用,根据已知正确利用图表得出正确信息是解题关键. 20.答案:解:(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元.{10m +(20−10)n =5010m +(18−10)n =44,解得:{m =2n =3, 答:每吨水的政府补贴优惠价2元,市场调节价为3元.(2)当0≤x ≤10时,y =2x ,当x >10时,y =10×2+(x −10)×3=3x −10.解析:(1)设每吨水的政府补贴优惠价为m 元,市场调节价为n 元,根据题意列出方程组,求解此方程组即可;(2)根据(1)的结论以及x 的范围,即可得出y 与x 之间的函数关系式.本题考查了一次函数的应用,题目还考查了二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围.21.答案:解:如图所示,∵∠1是△ABC 的外角,∴∠4=∠1−∠2=140°−70°=70°,又∵m//n ,∴∠3=∠4=70°.解析:先根据三角形外角性质,得到∠4=∠1−∠2=140°−70°=70°,再根据平行线的性质,得出∠3=∠4=70°.本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省芜湖市2017-2020学年七年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.4的算术平方根是()A. −4B. 4C. −2D. 22.二元一次方程x+y=5有()个解.A. 1B. 2C. 3D. 无数3.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘4.下列各点中,在第二象限的点是()A. (−3,2)B. (−3,−2)C. (3,2)D. (3,−2)5.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A. 43%B. 50%C. 57%D. 73%6.如图,PO⊥OR,OQ⊥PR,则点O到PR所在直线的距离是线段()的长.A. POB. ROC. OQD. PQ7.若m=√40−4,则估计m的值所在的范围是()A. 1<m<2B. 2<m<3C. 3<m<4D. 4<m<58.在下列四项调查中,方式正确的是()A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式9.如图a//b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A. 180∘B. 270∘C. 360∘D. 540∘10.如图,周董从A处出发沿北偏东60∘方向行走至B处,又沿北偏西20∘方向行走至C处,则∠ABC的度数是()A. 80∘B. 90∘C. 100∘D. 95∘11. “鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是( )A. {x +2y =100x+y=36B. {4x +2y =100x+y=36C. {2x +4y =100x+y=36D. {2x +2y =100x+y=3612. 若满足方程组{2x −y =2m −13x+y=m+3的x 与y 互为相反数,则m 的值为( )A. 1B. −1C. 11D. −11二、填空题(本大题共6小题,共18.0分)13. 如图,当剪子口∠AOB 增大15∘时,∠COD 增大______度.14. 将方程3y −x =2变形成用含y 的代数式表示x ,则x =______.15. 点P(m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为______.16. 如图,两直线a ,b 被第三条直线c 所截,若∠1=50∘,∠2=130∘,则直线a ,b 的位置关系是______.17. 若不等式3x −m ≤0的正整数解是1,2,3,则m 的取值范围是______.18. 从汽车灯的点O 处发出的一束光线经灯的反光罩反射后沿CO 方向平行射出,如入射光线OA 的反射光线为AB ,∠OAB =75∘.在如图中所示的截面内,若入射光线OD 经反光罩反射后沿DE 射出,且∠ODE =22∘.则∠AOD 的度数是______.三、计算题(本大题共1小题,共6.0分)19. 某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人?A 等级的人数是多少?请在图中补全条形统计图.(2)图①中,a 等于多少?D 等级所占的圆心角为多少度?四、解答题(本大题共4小题,共32.0分)x+3≥2x−120.解不等式组{3x−5≥121.如图,EF//AD,∠1=∠2,∠BAC=80∘.求∠AGD的度数.22.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED//FB.23.实验学校共有教师办公室22间,大的教师办公室每间可以安排10名教师在里面办公,小的教师办公室每间可以安排4名教师在里面办公.而实验学校一共有178名教师,这22间恰好能把实验学校的178名教师安排下,请你帮忙算一算,实验学校各有大小教师办公室多少间?答案和解析【答案】1. D2. D3. C4. A5. C6. C7. B8. D 9. C 10. C 11. C 12. C13. 1514. 3y −215. (2,0)16. 平行17. 9≤m <1218. 53∘或97∘19. 解:(1)根据题意得:46÷23%=200(人),A 等级的人数为200−(46+70+64)=20(人), 补全条形统计图,如图所示:(2)由题意得:a%=20200,即a =10;D 等级占的圆心角度数为32%×360∘=115.2∘.20. 解:解不等式x +3≥2x −1,可得:x ≤4;解不等式3x −5≥1,可得:x ≥2;∴不等式组的解集是2≤x ≤4.21. 解:∵EF//AD ,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG//AB ,∴∠AGD =180∘−∠BAC =180∘−80∘=100∘.22. 证明:∵∠3=∠4,∴CF//BD ,∴∠5=∠FAB .∵∠5=∠6,∴∠6=∠FAB ,∴AB//CD ,∴∠2=∠EGA .∵∠1=∠2,∴∠1=∠EGA ,∴ED//FB .23. 解:设实验学校有大教师办公室x 间,小教师办公室y 间,由题意得,{10x +4y =178x+y=22,解得:{y =7x=15.答:实验学校有大教师办公室15间,小教师办公室7间.【解析】1. 解:∵22=4,∴4的算术平方根是2,即√4=2.故选:D .根据算术平方根的定义解答即可.本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2. 解:方程x+y=5有无数个解.故选:D.根据二元一次方程有无数个解即可得到结果.此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.3. 解:∵∠1+∠5=180∘,∠3+∠1=180∘,∴∠3=∠5,∴AB//CD,故选:C.根据邻补角互补和条件∠3+∠1=180∘,可得∠3=∠5,再根据同位角相等,两直线平行可得结论.此题主要考查了平行线的判定,关键是掌握:同位角相等,两直线平行.4. 解:A、(−3,2)在第二象限,故本选项正确;B、(−3,−2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,−2)在第四象限,故本选项错误.故选:A.根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5. 解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,=57%.在120≤x<200范围内人数占抽查学生总人数的百分比为57100故选:C.用120≤x<200范围内人数除以总人数即可.本题考查了频数分布直方图,把图分析透彻是解题的关键.6. 解:∵OQ⊥PR,∴点O到PR所在直线的距离是线段OQ的长.故选:C.根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离,结合图形判断即可.本题考查了点到直线的距离,熟记概念并准确识图是解题的关键.7. 解:∵36<40<49,∴6<√40<7,∴2<√40−4<3.故选:B.应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9. 解:过点P作PA//a,则a//b//PA,∴∠1+∠MPA=180∘,∠3+∠NPA=180∘,∴∠1+∠2+∠3=360∘.故选:C.首先过点P 作PA//a ,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.10. 解:∵向北方向线是平行的,∴∠A +∠ABF =180∘,∴∠ABF =180∘−60∘=120∘,∴∠ABC =∠ABF −∠CBF =120∘−20∘=100∘,故选:C .根据平行线性质求出∠ABF ,和∠CBF 相减即可得出答案.本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补.11. 解:如果设鸡为x 只,兔为y 只.根据“三十六头笼中露”,得方程x +y =36;根据“看来脚有100只”,得方程2x +4y =100.即可列出方程组{2x +4y =100x+y=36.故选:C .首先明确生活常识:一只鸡有一个头,两只脚;一只兔有一个头,四只脚.此题中的等量关系为:①鸡的只数+兔的只数=36只;②2×鸡的只数+4×兔的只数=100只.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要用常识判断出隐藏的条件.12. 解:由题意得:y =−x ,代入方程组得:{2x +x =2m −1 ②3x−x=m+3 ①, 消去x 得:m+32=2m−13,即3m +9=4m −2,解得:m =11,故选:C .由x 与y 互为相反数,得到y =−x ,代入方程组计算即可求出m 的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13. 解:因为∠AOB 与∠COD 是对顶角,∠AOB 与∠COD 始终相等,所以随∠AOB 变化,∠COD 也发生同样变化. 故当剪子口∠AOB 增大15∘时,∠COD 也增大15∘.根据对顶角的定义和性质求解.互为对顶角的两个角相等,如果一个角发生变化,则另一个角也做相同的变化.14. 解:3y −x =2,解得:x =3y −2.故答案为:3y −2将y 看做已知数求出x 即可.此题考查了解二元一次方程,解题的关键是将y 看做已知数求出x .15. 解:∵点P(m +3,m +1)在直角坐标系的x 轴上,∴这点的纵坐标是0,∴m +1=0,解得,m =−1,∴横坐标m +3=2,则点P 的坐标是(2,0).根据x 轴上点的坐标特点解答即可.本题主要考查了坐标轴上点的坐标的特点:x 轴上点的纵坐标为0.16. 解:∵∠2+∠3=180∘,∠2=130∘,∴∠3=50∘,∵∠1=50∘,∴∠1=∠3,∴a//b(同位角相等,两直线平行).因为∠2与∠3是邻补角,由已知便可求出∠3=∠1,利用同位角相等,两直线平行即可得出a ,b 的位置关系. 本题考查了邻补角的性质以及判定两直线平行的条件. 17. 解:不等式3x −m ≤0的解集是x ≤m 3,∵正整数解是1,2,3, ∴m 的取值范围是3≤m 3<4即9≤m <12.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18. 解:∵AB//CF,∴∠COA=∠OAB.(两直线平行,内错角相等)∵∠OAB=75∘,∴∠COA=75∘.∵DE//CF,∴∠COD=∠ODE.(两直线平行,内错角相等)∵∠ODE=22∘,∴∠COD=22∘.在图1的情况下,∠AOD=∠COA−∠COD=75∘−22∘=53∘.在图2的情况下,∠AOD=∠COA+∠COD=75∘+22∘=97∘.∴∠AOD的度数为53∘或97∘.故答案为:53∘或97∘.分两种情况:如果∠AOD是锐角,∠AOD=∠COA−∠COD;如果∠AOD是钝角,∠AOD=∠COA+∠COD,由平行线的性质求出∠COA,∠COD,从而求出∠AOD的度数.本题主要考查了平行线的性质,分析入射光线OD的不同位置是做本题的关键.19. (1)由B等级的人数除以占的百分比得出调查总人数,进而求出A等级人数,补全条形统计图即可;(2)求出A等级占的百分比确定出a,由D的百分比乘以360即可得到D等级占的圆心角度数.此题考查了条形统计图,以及扇形统计图,弄清题中的数据是解本题的关键.20. 首先求出每个不等式的解集,再求出这些解集的公共部分即可.此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21. 根据两直线平行,同位角相等可得∠2=∠3,然后求出∠1=∠3,再根据内错角相等,两直线平行判断出DG//AB,然后根据两直线平行,同旁内角互补解答.本题考查了平行线的判定与性质,熟记性质与判定方法并判断出DG//AB是解题的关键.22. 因为∠3=∠4,所以CF//BD,由平行的性质证明∠6=∠FAB,则有AB//CD,再利用平行的性质证明∠1=∠EGA,从而得出ED//FB.本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养学生“执果索因”的思维方式与能力.23. 设实验学校有大教师办公室x间,小教师办公室y间,根据22间办公室共有178名教师,列方程组求解.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。