最新版2019-2020年人教版八年级数学上学期期末模拟考试试题及答案解析-精编试题
人教版初中数学八年级上册期末测试题(2019-2020学年山东省临沂市河东区

2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠03.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+14.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C 6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab8.(3分)化简的结果是()A.x﹣2B.C.D.x+29.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±1010.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b212.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x元,则所列方程正确的是()A.B.C.D.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=.16.(3分)分式的计算结果是.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为cm.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y221.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.22.先化简,再求值:﹣,其中x=﹣2.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出各选项图形的对称轴的条数,然后选择即可.【解答】解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠0【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0.3.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.4.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.【点评】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C【分析】根据角平分线得出∠CAB=∠DAB,隐含条件AB=AB,根据全等三角形的判定定理判断即可.【解答】解:∵AB平分∠DAC,∴∠CAB=∠DAB,A、根据DB=CB,BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;B、根据BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;C、∵在△CAB和△DAB中,∴△CAB≌△DAB(SAS),故本选项正确;D、根据BA=BA,∠CAB=∠DAB,∠D=∠C,根据AAS可证△CAB≌△DAB,根据本选项错误;故选:C.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A =∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2c+2a2),4ab是公因式,故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.8.(3分)化简的结果是()A.x﹣2B.C.D.x+2【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+2.故选:D.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±10【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x 和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.【点评】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对【分析】根据题意表示出A、B的正确坐标,再根据坐标的关系确定A,B两点原来的位置关系.【解答】解:∵小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),∴A点的正确坐标为(b,a),∵另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a),∴B点的正确坐标为(b,﹣a),∴A,B两点原来的位置关系是关于x轴对称,故选:A.【点评】此题主要考查了关于x轴、y轴对称的点的坐标,关键是掌握:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键,难度一般.12.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x 元,则所列方程正确的是()A.B.C.D.【分析】设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,根据第二批所购数量是第一批购进数量的2倍,列出方程即可.【解答】解:设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,依题意有:2×=.故选:A.【点评】本题考查了分式方程的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.【点评】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)【分析】利用两点间的距离公式可得结果.【解答】解:设在x轴有一点P(x,0),则有(x﹣2)2+32=(x﹣4)2+1,解得,x=1,∴P(1,0);设在y轴有一点P(0,y),则有22+(y﹣3)2=42+(y﹣1)2解得,y=﹣1,∴P(0,﹣1)故选:A.【点评】本题主要考查了两点间的距离公式,熟记公式和坐标轴上点的特点是解答此题的关键.二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=3.【分析】本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查了整数指数幂、零指数幂的考点,负整数指数幂:a﹣p=(a≠0,p 为正整数);零指数幂:a0=1(a≠0).16.(3分)分式的计算结果是.【分析】先通分,再把分子相加减即可.【解答】解:原式=+==.故答案为:.【点评】本题考查的是分式的加减法,在解答此类问题时要注意通分及约分的灵活应用.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是1.【分析】先设=y,得出﹣2=,再去分母x﹣2﹣2(x﹣3)=y,最后根据此方程无解时x=3,再代入计算即可.【解答】解:设=y,则原方程可变形为:﹣2=,去分母得:x﹣2﹣2(x﹣3)=y,∵此方程无解,∴x=3,∴3﹣2﹣2×(3﹣3)=y,∴y=1;∴处的数应是1.故答案为:1.【点评】此题考查了分式方程的解,关键是求出分式方程无解时x的值,用到的知识点是解分式方程的步骤,是一道基础题.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为12cm.【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.【解答】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点动点P和E重合时则△ACP的周长最小值,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=12cm,故答案为:12.【点评】本题考查了轴对称﹣最短路线的问题以及垂直平分线的性质,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是①②④.【分析】根据等腰三角形的性质,等边三角形的性质,直角三角形的性质判断.【解答】解:∵当AP⊥CE,∠C=60°,∴∠P AC=30°,∵B是线段AC的中点,∴AB=PB,∴∠APB=∠P AC=30°,故①正确;当CP=AC时,∠C=60°,∴三角形APC为等边三角形,∵B是线段AC的中点,∴∠APB=∠CPB=30°,故②正确;在射线CE上,使△APC为直角三角形的点P有2个,一个是∠APC=90°,另一个是∠P AC=90°时;故③错误;在射线CE上,使△APC为等腰三角形的点P有1个,使AC=PC=AP,故④正确;故答案为①②④.【点评】本题考查了等腰三角形的性质,等边三角形的性质,直角三角形的性质,解题的关键是熟练掌握它们的性质.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【分析】(1)首先计算乘法,然后再合并同类项即可;(2)先算完全平方和乘法,再去括号合并同类项即可.【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.【点评】此题主要考查了整式的混合运算,关键是掌握计算法则和计算顺序.21.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.【分析】根据因式分解点的方法即可求出答案.【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.22.先化简,再求值:﹣,其中x=﹣2.【分析】根据分式的减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:﹣===,当x=﹣2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接即可;(2)根据对称的性质写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(2)作出点C关于y轴的对称点,然后连接AC1,与y轴的交点即为点P.【解答】解:(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连结AB1或BA1交y轴于点P,则点P即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法及性质是解答此题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?【分析】设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,利用购买笔记本电脑和购买台式电脑的台数和列方程+=120,然后解分式方程即可.【解答】解:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,根据题意得+=120,解得x=2400,经检验x=2400是原方程的解,当x=2400时,1.5x=3600.答:笔记本电脑和台式电脑的单价分别为3600元和2400元.【点评】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.【分析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3))①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可;②求出∠BED=∠AEC,证出△BED≌△AEC,推出∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可.【解答】解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°.【点评】本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.。
2019-2020年最新人教版数学八年级上学期期末考试模拟测试及答案解析-精编试题

六、几何探究(本题6分)
25.(1)证明:连结
∵ 平分 ,
∴
∵直线 ⊥ 于 ,
∴
∴
∴
∴
∴ 是线段 的中垂线
∴
∴
∴
∵ , ,
∴
∴
∴ ……………………………………………………………………2分
(2)当 中点时, 和 之间的等量关系为
证明:过点 作 交 于
由(1)可得 ,
∴CE=CD,∠BCE=∠ACD……………………………………………4分
∴∠BCE-∠6=∠ACD-∠6
即∠4=∠7=60°
∴△ECD是等边三角形………………………………………………5分
24.解:分类讨论
(1)如图,过A作AD⊥BC交BC(延长线)于D,………………………1分
∴∠D=90°,
∴在Rt△ABD中,∠B+∠BAD=90°,
并直接写出结论.
七、选作题
26.如图,在△ABC中,AB=AC, °,请你在图中,分别用两种不同方法,将△ABC分割成四个小三角形,使得其中两个是全等的不等边三角形(不等边三角形指除等腰三角形以外),而另外两个是不全等的等腰三角形.请画出分割线段,并在两个全等三角形中标出一对相等的内角的度数,在每个等腰三角形中标出相等两底角度数(画图工具不限,不要求证明,不要求写出画法,但要保留作图痕迹,若经过图形变换后两个图形重合,则视为同一种方法).
线BC上一动点D,从点B出发,以 厘米每秒的速度
匀速运动,若点D运动t秒时,以A、D、B为顶点的三
角形恰为等腰三角形,则所用时间t为秒.
(结果可含根号).
三、解答题(本大题共4个小题,每小题5分,共20分)
《试卷3份集锦》上海市黄浦区2019-2020年八年级上学期期末预测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.小明不慎将一个三角形玻璃摔碎成如图所示的四块,现要到玻璃店配一个与原来一样大小的三角形玻璃,你认为应带去的一块是( )A .第1块B .第2块C .第3块D .第4块【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第2块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选B.【点睛】此题考查全等三角形的应用,解题关键在于掌握判定定理.2.分式11x -有意义时x 的取值范围是( ) A .x≠1B .x >1C .x≥1D .x <1【答案】A【解析】试题解析:根据题意得:x−1≠0,解得:x≠1.故选A.点睛:分式有意义的条件:分母不为零.3.如图,已知,AB AD =,ACB AED ∠=∠,DAB EAC ∠=∠,则下列结论错误..的是( )A .B ADE ∠=∠B .BC AE = C .ACE AEC ∠=∠D .CDE BAD ∠=∠【答案】B 【分析】先根据三角形全等的判定定理证得ABC ADE ∆≅∆,再根据三角形全等的性质、等腰三角形的性质可判断A 、C 选项,又由等腰三角形的性质、三角形的内角和定理可判断出D 选项,从而可得出答案.【详解】DAB EAC ∠=∠DAB CAD EAC CAD ∴∠+∠=∠+∠,即BAC DAE ∠=∠在ABC ∆和ADE ∆中,BAC DAE ACB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC ADE AAS ∴∆≅∆,,B ADE AC AE BC DE ∴∠=∠==,则A 选项正确ACE AEC ∴∠=∠(等边对等角),则C 选项正确 AB AD =B ADB ∴∠=∠180B A B DB AD ∠+︒=∠+∠2180BA B D ∴∠=∠+︒,即1802B BAD ∠=︒∠-又180ADB A E DE CD ∠+∠+∠=︒180CDE B B ∠=∴∠+∠+︒,即1802B CDE ∠=︒∠-CDE BAD ∴∠=∠,则D 选项正确虽然,AC AE BC DE ==,但不能推出BC AE =,则B 选项错误故选:B .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出ABC ADE ∆≅∆是解题关键.4)A .2B .3C .4D .5【答案】C【分析】根据34<<,及3.52即可解答.【详解】解:∵9<13<16,∴34<<,∵23.512.2513=<,∴3.54<<,4,故选:C .【点睛】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.5.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于D .如果∠A =30°,AE =6cm ,那么CE 等于( )A .3cmB .2cmC .3cmD .4cm【答案】C 【分析】根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE =2ED ,求出ED ,再根据角平分线到两边的距离相等得出ED =CE ,即可得出CE 的值.【详解】∵ED ⊥AB ,∠A =30°,∴AE =2ED .∵AE =6cm ,∴ED =3cm .∵∠ACB =90°,BE 平分∠ABC ,∴ED =CE ,∴CE =3cm .故选C .【点睛】本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED =CE .6.如果把分式2xy x y +中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍B .缩小3倍C .缩小6倍D .不变【答案】A【分析】把原分式中的x 换成3x ,把y 换成3y 进行计算,再与原分式比较即可.【详解】解:把原分式中的x 换成3x ,把y 换成3y ,那么 23333x y x y ⋅⋅+=6xy x y+=3×2xy x y +. 故选:A .【点睛】考核知识点:分式性质.运用性质变形是关键.7.下列交通标志是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2 B.3 C.4 D.5【答案】A【解析】试题分析:根据三角形全等可以得出BD=AC=7,则DE=BD-BE=7-5=2.9.下列计算正确的是()A.m3•m2•m=m5B.(m4)3=m7C.(﹣2m)2=4m2D.m0=0【答案】C【分析】根据幂的乘方与积的乘方,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判断即可.【详解】解:∵m3•m2•m=m6,∴选项A不符合题意;∵(m4)3=m12,∴选项B不符合题意;∵(﹣2m)2=4m2,∴选项C符合题意;∵m0=1,∴选项D不符合题意.故选:C.【点睛】本题考查了幂的乘方与积的乘方,同底数幂的乘法的运算方法,以及零指数幂的运算方法,掌握运算法则是解题关键.10.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【分析】先根据第一象限内的点的坐标特征判断出a 、b 的符号,进而判断点B 所在的象限即可.【详解】∵点A(a ,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a ,b)在第四象限,故选D .【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.二、填空题11.如图,有一张长方形纸片,8,6ABCD AB AD ==.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF 沿EF 翻折,AF 与BC 相交于点G ,则AG 的长为_____.【答案】2【分析】根据折叠的性质得到45DAF BAF ∠=∠=︒(图1),进而可得2EB =,继而可得(图3中)4AB =,△ABG 是等腰直角三角形,再根据勾股定理求出AG 即可.【详解】解:由折叠的性质可知,45DAF BAF ∠=∠=︒,6AE AD ∴==,2EB AB AE ∴=-=,图3中,由操作可得,624AB EA EB =-=-=,45A ∠=︒,90ABG ∠=︒,4BG AB ∴==, 由勾股定理得,2242AG AB BG =+= 故答案为:2.【点睛】本题主要考查了翻折变换、矩形的性质和勾股定理.翻折对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题关键是得出△ABG 是等腰直角三角形.12.如图,AD 、BE 是△ABC 的两条中线,则S △EDC :S △ABD =______.【答案】1:1.【分析】根据三角形中位线定理得到DE ∥AB ,DE 12=AB ,根据相似三角形的性质得到EDC ABC SS =(DE AB)114=,根据三角形的面积公式计算,得到答案. 【详解】∵AD 、BE 是△ABC 的两条中线,∴DE ∥AB ,DE 12=AB , ∴△EDC ∽△ABC ,∴EDCABC S S =(DE AB)114=, ∵AD 是△ABC 的中线,∴12ABDABC S S =, ∴S △EDC :S △ABD =1:1.故答案为:1:1.【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质、三角形的面积计算,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13.分解因式:x 3﹣2x 2+x=______.【答案】x (x-1)2.【解析】由题意得,x 3﹣2x 2+x= x (x ﹣1)214.为了增强学生体质,某学校将“抖空竹”引阳光体育一小时活动,图1是一位同学抖空竹时的一个瞬间,小明把它抽象成图2的数学问题:已知//,80,110AB CD EAB ECD ∠=︒∠=︒,则E ∠的度数是_____.【答案】30°【分析】过E 点作EF ∥AB ,由两直线平行,同旁内角互补即可求解.【详解】解:过E 点作EF ∥AB ,如下图所示:∵EF ∥AB ,∴∠EAB+∠AEF=180°,又∠EAB=80°∴∠AEF=100°∵EF ∥AB ,AB ∥CD∴EF ∥CD∴∠CEF+∠ECD=180°,又∠ECD=110°∴∠CEF=70°∴∠AEC=∠AEF-∠CEF=100°-70°=30°.故答案为:30°.【点睛】本题考查平行线的构造及平行线的性质,关键是能想到过E 点作EF ∥AB ,再利用两直线平行同旁内角互补即可解决.15.若21x x +=,则433331x x x +++的值为_____.【答案】1【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为1.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.16.如图,在梯形ABCD 中,AD ∥BC ,若AB =AD =DC =3,∠A =120°,则梯形ABCD 的周长为_____.【答案】1【分析】首先过点A作AE∥CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD是平行四边形,△ABE是等边三角形,继而求得答案.【详解】解:过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∠B=180°﹣∠BAD=180°﹣120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=1.故答案为:1.【点睛】考核知识点:平行四边形性质.作辅助线是关键.17.如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF 的周长是_____.【答案】10cm【解析】求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.【详解】解:∵∠A=∠B,∴BC=AC=5cm,∵DF∥AC,∴∠A=∠BDF,∵∠A=∠B,∴∠B=∠BDF,∴DF=BF,同理AE=DE,∴四边形DECF 的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm ,故答案为10cm .【点睛】本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF ,DE=AE .三、解答题18.如图,点E F 、在BC 上,AB CD =,BE CF =,AF DE =,AF 与DE 交于点O . (1)求证:A D ∠=∠;(2)若90EOF ∠=︒,试判断OEF ∆的形状,并说明理由.【答案】 (1)详见解析;(2)OEF ∆为等腰直角三角形,理由详见解析.【分析】(1)利用等式的性质可证得BF CE =,利用SSS 可以证明ABF DCE ∆≅∆,由全等三角形的性质可以得到A D ∠=∠;(2)由全等三角形的性质可以得到AFB DEC ∠=∠,根据90EOF ∠=︒可得OEF ∆为等腰直角三角形.【详解】(1)证明:BE CF =.∴BE EF CF EF +=+.在ABF ∆与DCE ∆中.AB CD AF DE BF CE =⎧⎪=⎨⎪=⎩∴ABF DCE ∆∆≌.∴A D ∠=∠.(2)ABF DCE ∆∆≌∴AFB DEC ∠=∠∴OE OF =90EOF ∠=︒∴OEF ∆为等腰直角三角形.【点睛】本题考查了全等三角形的判定和性质以及等腰三角形的性质:等角对等边,正确证明两个三角形全等是解题的关键.19.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【答案】证明见解析.【分析】(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【详解】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四边形ADFE是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.20.(1)计算:(﹣2a2b)2+(﹣2ab)•(﹣3a3b).(2)分解因式:(a+b)2﹣4ab.【答案】(1)10a4b1;(1)(a﹣b)1.【分析】1)先根据幂的乘方和积的乘方、单项式乘以单项式的运算法则计算,再合并同类项即可;(1)先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.【详解】解:(1)原式=4a4b1+6a4b1=10a4b1;(1)原式=a1+1ab+b1﹣4ab=a1﹣1ab+b1=(a﹣b)1.【点睛】本题考查整式的运算和完全平方公式分解因式.解题的关键是运用幂的乘方和积的乘方、单项式乘以单项式的运算法则去括号,及熟练运用合并同类项的法则.能够正确应用完全平方公式.21.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(-3,0),B(-3,-3),C(-1,-3)(1)求Rt△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.【答案】(1)3;(2)作图见解析;D(-3,0),E(-3,3),F(-1,3).【分析】(1)直接根据三角形的面积公式求解即可;(2)先找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各点即可.【详解】解:(1)S△ABC=12AB×BC=12×3×2=3;(2)所画图形如下所示,其中△DEF即为所求,D,E,F的坐标分别为:D(-3,0),E(-3,3),F(-1,3).【点睛】本题考查三角形的面积公式及轴对称变换作图的知识,解题关键是找出各关键点关于x轴的对应点,难度一般22.某中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以下信息解答问题:(1)此次共调查了多少人?(2)求“年龄13岁”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.【答案】(1)50人;(2)72°;(3)详见解析【分析】(1)根据15岁在扇形中所占的百分比及人数即可求出总人数;(2)先求出年龄13岁人数所占比例,再乘以360°即可计算;(3)根据总人数计算出年龄14岁和年龄16岁的人数,再补全即可.【详解】解:(1)1836%50÷=,∴此次共调查了50人.(2)1036072 50⨯︒=︒,∴“年龄13岁”在扇形统计图中所占圆心角的度数为:72°.(3)年龄14岁的人数为:5028%14⨯=(人)年龄16岁的人数为:50-6-10-14-18=2(人)条形图如下:【点睛】本题考查了条形统计图与扇形统计图,解题的关键是理解条形统计图与扇形统计图之间的联系.23.(模型建立)(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.(模型运用)(2)如图2,直线l1:y=43x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.(模型迁移)如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B 到x轴的距离为2,求点P的坐标.【答案】(1)见解析;(2)3944y x=--;(3)点P坐标为(4,0)或(﹣4,0)【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.【详解】(1)证明:∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°,∴∠BCE+∠CBE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠CBE,又CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=43x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得3703k bk b =-+⎧⎨=-+⎩解得3 4 94kb⎧=-⎪⎪⎨⎪=-⎪⎩∴直线l2的函数表达式为:3944y x=--(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,PA=PB∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)【点睛】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.24.(问题解决)一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=1.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.(类比探究)如图2,若点P是正方形ABCD外一点,PA=1,PB=1,11,求∠APB的度数.【答案】(1)见解析;(2)见解析.【解析】分析:(1)先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=1,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;(2)同(1)的思路一的方法即可得出结论.详解:(1)如图1,将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,∴△ABP'≌△CBP,∴∠PBP'=90°,BP'=BP=2,AP'=CP=1,在Rt△PBP'中,BP=BP'=2,∴∠BPP'=45°,根据勾股定理得,22,∵AP=1,∴AP2+PP'2=1+8=9,∵AP'2=12=9,∴AP2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=115°;(2)如图2,将△BPC 绕点B 逆时针旋转90°,得到△BP′A ,连接PP′,∴△ABP'≌△CBP ,∴∠PBP'=90°,BP'=BP=1,11,在Rt △PBP'中,BP=BP'=1,∴∠BPP'=45°,根据勾股定理得,22∵AP=1,∴AP 2+PP'2=9+2=11,∵AP'2=11)2=11,∴AP 2+PP'2=AP'2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.点睛:此题是四边形综合题,主要考查了正方形的性质,旋转的性质,直角三角形的性质和判定,勾股定理,正确作出辅助线是解本题的关键.25.根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;1×1.(1)将以上各乘积分别写成“a 2﹣b 2”(两数平方)的形式,将以上10个乘积按照从小到大的顺序排列起来;(2)用含有a ,b 的式子表示(1)中的一个一般性的结论(不要求证明);(3)根据(2)中的一般性的结论回答下面问题:某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案方案:第一次提价p%,第二次提价q%;方案2:第一、二次提价均为2p q %,其中p ≠q ,比较哪种方案提价最多?【答案】(1)答案见解析;(2)对于:ab ,当|b ﹣a|越大时,ab 的值越小;(3)方案2提价最多.【分析】(1)根据题目中的式子和平方差公式可以解答本题;(2)根据(1)中的计算结果,可以写出相应的结论;(3)根据题意列出代数式,根据(2)中的结论可以解答本题.【详解】(1)11×29=(1﹣9)×(1+9)=12﹣92,12×28=(1﹣8)×(1+8)=12﹣82,13×27=(1﹣7)×(1+7)=12﹣72,14×26=(1﹣6)×(1+6)=12﹣6215×25=(1﹣5)×(1+5)=12﹣52,16×24=(1﹣4)×(1+4)=12﹣4217×23=(1﹣3)×(1+3)=12﹣32,18×22=(1﹣2)×(1+2)=12﹣22,19×21=(1﹣1)×(1+1)=12﹣12,1×1=(1+2)×(1﹣2)=12﹣22,11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<1×1;(2)由(1)可得:对于ab ,当|b ﹣a|越大时,ab 的值越小;(3)设原价为a ,则方案1:a(1+p%)(1+q%)方案2:a(1%2p q ++)2 ∵|1+p%﹣(1+q%)|=|(p ﹣q)%|, |1%2p q ++-(1%2p q ++)|=2. ∵p≠q ,∴|(p ﹣q)%|>2,∴由(2)的结论可知:方案2提价最多.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分B.中位数C.方差D.平均数【答案】B【解析】试题分析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.考点:统计量的选择.2.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是A.50s sx x v+=+B.50s sx v x+=+C.50s sx x v+=-D.50s sx v x+=-【答案】A【解析】试题分析:列车提速前行驶skm用的时间是sx小时,列车提速后行驶s+50km用的时间是50sx v++小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是50s sx x v+=+.故选A.考点:由实际问题抽象出分式方程.3.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若122EFC'∠=︒,那么ABE∠的度数为()A.24︒B.32︒C.30D.26︒【答案】D【分析】由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF,∠EBC′、∠BC′F都是直角,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt △ABE 中,∠ABE=90°-∠AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.4.下列二次根式的运算正确的是( )A .()25=5--B .482552÷= C .355410+= D .5323103⨯= 【答案】B【分析】根据二次根式的性质对A 进行判断,根据二次根式的除法法则对B 进行判断,根据二次根式的加法对C 进行判断,根据二次根式的乘法法则对D 进行判断.【详解】解:A 、()25-=5,所以A 选项的计算错误;B 、4848452==555558÷=÷⨯,所以B 选项的计算正确;C 、35545+=,所以C 选项的计算错误;D 、532330⨯=,所以D 选项的计算错误;故选B.【点睛】本题考查了二次根式的混合运算、二次根式的化简;熟练掌握二次根式的化简与运算是解决问题的关键. 5.如图,在ABC ∆中,60ABC ∠=,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E ,F ,且3DE DF ==,则线段BE 的长为( )A 3B .2C .3D .3【答案】C【分析】连接BD ,根据题意得到BD 平分∠CBA ,得到∠DBE=30°,再根据三角函数即可求解.【详解】连接BD ,∵DE AB ⊥,DF BC ⊥,3DE DF ==∴BD 平分∠CBA∴∠DBE=30°,∴BE=DE÷tan30°=33÷=3, 故选C.【点睛】此题主要考查解直角三角形,解题的关键是熟知角平分线的判定及性质、三角函数的应用.6.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x+y ,a+b ,x 2﹣y 2,a 2﹣b 2分别表示下列六个字兴、爱、我、义、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码可能是( )A .我爱美B .兴义游C .美我兴义D .爱我兴义【答案】D【分析】将所给整式利用提取公因式法和平方差公式进行因式分解,再与所给的整式与对应的汉字比较,即可得解.【详解】解:∵(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2=(x 2﹣y 2)(a 2﹣b 2)=(x+y )(x ﹣y )(a+b )(a ﹣b )∵x ﹣y ,x+y ,a ﹣b ,a+b 四个代数式分别对应:爱、我、兴、义∴结果呈现的密码可能是爱我兴义.故选:D .【点睛】本题主要考查因式分解,掌握提取公因式和因式分解的方法是解题的关键.7.已知等腰三角形的周长是22,其中一边长为8,则其它两边的长度分别是( )A .3和11B .7和7C .6和8或7和7D .3和11或7和7 【答案】C【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.【详解】解:等腰三角形的周长是22.∴当8为腰时,它的底边长=22-8-8=6,8+6>8,能构成等腰三角形.÷,7+7>8,能构成等腰三角形.当8为底时,它的腰长=(22-8)2=7即它两边的长度分别是6和8或7和7.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.8.在下列长度的四根木棒中,能与4cm,9cm长的两根木棒钉成一个三角形的是()A.3cm B.8cm C.13cm D.16cm【答案】B【分析】首先设第三根木棒长为xcm,根据三角形的三边关系定理可得9−4<x<9+4,计算出x的取值范围,然后可确定答案.【详解】设第三根木棒长为xcm,由题意得:9−4<x<9+4,5<x<13,故选B.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.9.点P(3,﹣2)关于x轴的对称点P′的坐标是( )A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(3,2)【答案】D【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点P(3,﹣2)关于x轴的对称点P′的坐标是(3,2).故选D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10.浚县古城是闻名遐迩的历史文化名城,“元旦”期间相关部门对到浚县观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是()A .此次调查的总人数为5000人B .扇形图中的m 为10%C .样本中选择公共交通出行的有2500人D .若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有2.5万人【答案】D【分析】根据自驾人数及其对应的百分比可得样本容量,根据各部分百分比之和等于1可得其它m 的值,用总人数乘以对应的百分比可得选择公共交通出行的人数,利用样本估计总体思想可得选择自驾方式出行的人数.【详解】A .本次抽样调查的样本容量是2000÷40%=5000,此选项正确;B .扇形统计图中的m 为1-(50%+40%)=10%,此选项正确;C .样本中选择公共交通出行的约有5000×50%=2500(人),此选项正确;D .若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有5×40%=2(万人),此选项错误; 故选:D .【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.二、填空题11.如图,点P 在AOB ∠内,因为PM OA ⊥,PN OB ⊥,垂足分别是M 、N ,PM PN =,所以OP 平分AOB ∠,理由是______.【答案】角的内部到角两边距离相等的点在角的角平分线上【分析】根据角平分线判定定理即可得到结果.【详解】解:∵PM ⊥OA ,PN ⊥OB ,PM=PN∴OP 平分∠AOB (在角的内部,到角的两边距离相等的点在这个角的平分线上)故答案为:角的内部到角两边距离相等的点在角的角平分线上.【点睛】本题考查角平分线判定定理,掌握角平分线判定定理的内容是解题的关键.12.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.【答案】如果两个角互为对顶角,那么这两个角相等【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【点睛】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.13.用四舍五入法将2.056精确到十分位的近似值为________.【答案】2.1【分析】把百分位上的数字5进行四舍五入即可.【详解】解:2.056精确到十分位的近似值为2.1;故答案为:2.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为____.【答案】45°或36°或(54011)°.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】∵过点C的直线能将△ABC分成两个等腰三角形,①如图1.∵∠ACB=2∠A,∴AD=DC=BD,∴∠ACB=90°,∴∠A=45°;②如图2,AD=DC=BC,∴∠A=∠ACD,∠BDC=∠B,∴∠BDC=2∠A,∴∠A=36°,③AD=DC,BD=BC,∴∠BDC=∠BCD,∠A=∠ACD,∴∠BCD=∠BDC=2∠A,∴∠BCD=2∠A.∵∠ACB=2∠A,故这种情况不存在.④如图3,AD=AC,BD=CD,∴∠ADC=∠ACD,∠B=∠BCD,设∠B=∠BCD=α,∴∠ADC=∠ACD=2α,∴∠ACB=3α,∴∠A=32α.∵∠A+∠B+∠ACB=180°,∴32α+α+3α=180°,∴α=36011︒,∴∠A=54011︒,综上所述:∠A的度数为45°或36°或(54011)°.故答案为:45°或36°或(54011)°.【点睛】此题考查等腰三角形的性质.解题关键在于掌握数形结合思想与分类讨论思想的应用.15.在平面直角坐标系中,点A,B的坐标分别为(3,5),(3,7),直线y=2x+b与线段AB有公共点,则b的取值范围是______.【答案】-1≤b≤1【分析】由一次函数图象上点的坐标特征结合直线与线段有公共点,即可得出关于b的一元一次不等式,解之即可得出b 的取值范围.【详解】解:当x=3时,y =2×3+b=6+b ,∴若直线y =2x +b 与线段AB 有公共点,则6567b b +≥⎧⎨+≤⎩,解得-1≤b≤1 故答案为:-1≤b≤1.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征结合直线与线段有公共点,列出关于b 的一元一次不等式是解题的关键.16.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.【答案】t=﹣0.006h+1【解析】根据题意得到每升高1m 气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m 气温下降6℃,∴每升高1m 气温下降0.006℃,∴气温t (℃)与高度h (m )的函数关系式为t=﹣0.006h+1,故答案为:t=﹣0.006h+1.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.17.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x 棵,则根据题意可列方程为__________. 【答案】2400240081.2x x-= 【分析】设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x ,根据“原计划所用时间﹣实际所用时间=8”列方程即可.【详解】解:设原计划每天植树x 棵,则实际每天植树(1+20%)x=1.2x 棵, 根据题意可得:2400240081.2x x-=, 故答案为2400240081.2x x -=. 三、解答题18.如图,长方形纸片ABCD ,6AB =,8BC =,沿BD 折叠BCD ∆,使点C 落在'C 处,'BC 交AD 于点E .(1)BE 与DE 相等吗?请说明理由.(2)求纸片重叠部分的面积.。
最新2019-2020年度人教版八年级数学上册《全等三角形》单元测试题及答案解析-精品试题

《第12章全等三角形》一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG 为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.《第12章全等三角形》参考答案与试题解析一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.【考点】全等三角形的判定与性质;三角形三边关系.【分析】延长AD到E,使AD=DE,连结BE,证明△ADC≌△EDB就可以得出BE=AC,根据三角形的三边关系就可以得出结论.【解答】解:延长AD到E,使AD=DE,连结BE.∵AD是△ABC的中线,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE.∵AB﹣AE<AE<AB+BE,∴AB﹣AC<2AD<AB+AC.∵AB=8,AC=5,∴1.5<AD<6.5.【点评】本题考查了全等三角形的判定及性质的运用,三角形的中线的性质的运用,三角形三边关系的性质的运用,解答时证明三角形全等是关键.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可延长ED至P,使DP=DE,连接FP,连接CP,将BE转化为PC,EF转化为FP,进而在△PCF中即可得出结论.【解答】答:BE+CF>FP=EF.证明:延长ED至P,使DP=DE,连接FP,CP,∵D是BC的中点,∴BD=CD,在△BDE和△CDP中,∴△BDE≌△CDP(SAS),∴BE=CP,∵DE⊥DF,DE=DP,∴EF=FP,(垂直平分线上的点到线段两端点距离相等)在△CFP中,CP+CF=BE+CF>FP=EF.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AC上截取AE=AB,连接DE,证明△ABD≌△AED,得到∠B=∠AED,再证明ED=EC 即可.【解答】证明:在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.【点评】本题考查了全等三角形的判定和性质;此题利用了全等三角形中常用辅助线﹣截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD.【解答】证明:如图,延长AD至F,使得CF⊥AC.∵AB⊥AC,AD⊥BM,∴∠ABM=∠DAC,在△ABM与△CAF中,,∴△ABM≌△CAF(ASA),∴∠BMA=∠F,AM=CF,在△FCD与△MCD中,,∴△FCD≌△MCD(SAS),∴∠F=∠CMD,∴∠AMB=∠DMC.【点评】此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和全等三角形的判断与性质进行解答即可.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】将△ADQ绕点A顺时针旋转90°得到△ABE,根据旋转的性质可得BE=DQ,AE=AQ,∠BAE=∠DAQ,然后求出∠EAP=∠PAQ=45°,再利用“边角边”证明△APE和△APQ全等,根据全等三角形对应边相等可得PQ=PE,再根据PE=PB+BE等量代换即可得证.【解答】证明:如图,将△ADQ绕点A顺时针旋转90°得到△ABE,由旋转的性质得,BE=DQ,AE=AQ,∠BAE=∠DAQ,∵∠PAQ=45°,∴∠EAP=∠PAQ=45°,在△APE和△APQ中,,∴△APE≌△APQ(SAS),∴PQ=PE,∵PE=PB+BE,∴PQ=PB+DQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用旋转作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.【考点】等边三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】延长AC到E,使CE=BM,连接DE,求证△BMD≌△CDE可得∠BDM=∠CDE,进而求证△MDN≌△EDN可得MN=NE=NC+CE=NC+BM,即可计算△AMN周长,即可解题.【解答】解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.【点评】本题考查了全等三角形的证明和全等三角形对应边、对应角相等的性质,等边三角形各边长相等、各内角为60°的性质,本题中求证MN=NE=NC+CE=NC+BM是解题的关键.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.【点评】此题考查全等三角形的判定与性质,注意分类讨论思想的渗透.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的性质.【专题】几何综合题.【分析】(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.【解答】题干引论:证明:如答图1,过点D作DF⊥MN,交AB于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠FDP=90°,∠FDP+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(1)答:BD=DP成立.证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(2)答:BD=DP.证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质等知识点,作辅助线构造全等三角形是解题的关键.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.【考点】全等三角形的判定与性质;角平分线的性质;等边三角形的性质.【分析】(1)根据角平分线上的点到角的两边的距离相等直接回答;(2)过P作OA、OB的垂线,构造图①的图形,利用(1)的结论证明PC、PD所在的三角形全等;(3)仿(2)的证明可得PC=PD.【解答】解:(1)证明:∵OP平分∠AOB,PC⊥OA于C,OM平分∠AOB,∴∠CPO=∠OPD=30°,∠AOP=∠POB=60°,∴PD⊥OB于D,∴PC=PD.(角平分线上的点到角的两边的距离相等)(2)解:PC=PD.过P点作PQ⊥OA于Q,PN⊥OB于N.由(1)得PQ=PN.∵∠AOB=120°,∴∠QPN=360°﹣90°﹣90°﹣120°=60°.∴∠QPC=∠NPD=60°﹣∠CPN.∴△PQC≌△PND.(ASA)∴PC=PD.(3)解:PC=PD.【点评】此题考查全等三角形的判定和性质,由易到难层层递进,把握解题思路是关键.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.【考点】全等三角形的判定与性质.【分析】(1)由AD=BC=8,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设G点的移动距离为y,分两种情况,一种F由C到B,一种F由B到C,再结合△DEG≌△BFG可得到DE=BF,DG=BG,或DE=BG,DG=BF可得到方程,解出时间t和y的值即可.【解答】(1)证明:在△ABD和△CDB中∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC;(2)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得,或,解得(舍去),当F由B到C,即时,有,解得,或,解得,综上可知共有三次,移动的时间分别为2秒、4秒、5秒,移动的距离分别为6、6、5.【点评】本题主要考查三角形全等的判定和性质,第(2)题解题的关键是利用好三角形全等,从而得到方程解得.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG 为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.【考点】正方形的性质;全等三角形的判定与性质.【专题】动点型;操作型.【分析】(1)根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;(2)结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论.【解答】解:(1)BG=DE,BG⊥DE;∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∴BG=DE;延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE,即BG⊥DE;(2)BG=DE,BG⊥DE仍然成立,在图(2)中证明如下∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°∴∠CDE+∠DHO=90°∴∠DOH=90°∴BG⊥DE.【点评】此题考查的知识点是正方形的性质,解答本题关键要充分利用正方形的特殊性质,利用三角形全等论证.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形,再由HL定理得出△DOP′≌△DOP,△EOP″≌△EOP′根据全等三角形的性质即可得出结论;(2)根据题意画出图形,同(1)可得出结论.【解答】解:(1)猜想:∠POP″=2α.理由:如图1,在△DOP′与△DOP中∵,∴△DOP′≌△DOP.同理可得,△EOP″≌△EOP′∴∠POP″=2α;(2)成立.如图2,当点P在∠AOB内时,∵同(1)可得,△DOP′≌△DOP,EOP″≌△EOP′,∴∠POD=∠P′OD,∠EOP″=∠EOP′,∴∠POP″=∠P′OP″﹣∠POP′=3α﹣α=2α.如图3,当点P在∠AOB的边上时,∵同(1)可得△EOP″≌△EOP,∴∠POP″=2α.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)【考点】作图—应用与设计作图.【分析】根据角平分线的作法,作出铁路与公路所形成的角的平分线,角平分线与河流的交点即为所求.【解答】解:如图所示:,点Q即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握角平分线上的点到角两边的距离相等.15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?【考点】轴对称-最短路线问题;角平分线的性质;线段垂直平分线的性质.【分析】(1)作∠AOB的平分线和线段CD的中垂线,两者的交点就是P;(2)作出A关于m的对称点A',连接A'B于直线m的交点就是P.【解答】解:如图所示:【点评】本题考查了基本作图,理解角平分线的性质、以及线段的中垂线的性质是关键.16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.【考点】轴对称-最短路线问题.【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,△PCD 的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,CP=P1C,PD=P2D,则△PCD的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,△PCD的周长=P1P2,∴P1P2=OP1=OP2=OP=24cm.【点评】本题考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.【考点】作图—应用与设计作图.【分析】(1)利用线段垂直平分线的性质得出P点即可;(2)利用角平分线的性质分别得出符合题意的答案.【解答】解:(1)如图所示:P点即为所求;(2)如图所示:D,E,F,G点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键.。
最新2019-2020年度人教版八年级数学上册《分式方程应用题》综合测试卷及解析-精品试题

15.3 分式方程一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?20.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?21.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?22.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)23.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?24.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?25.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?26.2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.27.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.30.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.15.3 分式方程参考答案一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?【解答】解:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解答】解:设票价为x元,由题意得,=+2,解得:x=60,经检验,x=60是原分式方程的解.则小伙伴的人数为:=8.答:小伙伴们的人数为8人.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【解答】解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?【解答】解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?【解答】解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100个,乙粽子为:=160个.答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.20.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【解答】解:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2(+)=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;。
2019—2020年最新人教版八年级数学上学期期末模拟测试及答案解析(试卷).doc

第一学期期末模拟考试八年级数学试题一、选择题(每小题3分,共30分)1.(3分)下列计算错误的是()A.=B.=a﹣bC.=D.﹣=﹣2.(3分)若x2﹣kxy+9y2是一个整式完全平方后的结果,则k值为()A.3B.6C.±6D.±813.(3分)若等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的底边为()A.4cm B.6cm C.4cm或8cm D.8cm4.(3分)已知A,B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A,B关于x轴对称;②A,B关于y轴对称;③A,B关于原点对称;④A,B之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个5.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A.1080°B.900°C.1440°D.720°6.(3分)如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°7.(3分)如图,点A,B分别是∠NOP,∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,则以下结论错误的是()A.AD+BC=AB B.∠AOB=90°C.与∠CBO互余的角有2个D.点O是CD的中点8.(3分)关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣1B.m≠1C.m>1且m≠﹣1D.m>﹣1且m≠19.(3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=4cm,△ADC的周长为15cm,则BC的长()A.8cm B.11cm C.13cm D.19cm10.(3分)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:6a2b÷2a= .12.(3分)若a+b=5,ab=3,则2a2+2b2= .13.(3分)若分式的值为零,则x的值是.14.(3分)如图,已知AB∥CF,E为DF的中点,若AB=11cm,CF=5cm,则BD= cm.15.(3分)如图,已知∠ACB=90°,BD=BC,AE=AC,则∠DCE= 度.16.(3分)如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E= 度.三、解答题(共8小题,共72分)17.(8分)计算:(1)1﹣;(2).18.(8分)把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y219.(8分)解方程:(1)+1=;(2)20.(8分)如图,在折纸活动中,小明制作了一张△ABC的纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,求∠1+∠2的度数.21.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.22.(9分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A,B,C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′(2)三角形ABC的面积为;(3)在直线l上找一点P,使PA+PB的长最短.23.(10分)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.24.(12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,延长DE交x轴于点F,在ED的延长线上取点G,使DG=DF,连接BG.①BG与y轴的位置关系怎样?说明理由;②求OF的长;(3)如图2,若点F的坐标为(10,10),E是y轴的正半轴上一动点,P是直线AB 上一点,且P的横坐标为6,是否存在点E使△EFP为等腰直角三角形?若存在,求出点E的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列计算错误的是()A.=B.=a﹣bC.=D.﹣=﹣【分析】根据分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案.【解答】解:A、分子分母都除以a2b2,故A正确;B、分子除以(a﹣b),分母除以(b﹣a),故B错误;C、分子分母都乘以10,故C正确;D、同分母分式相加减,分母不变,分子相加减,故D正确;故选:B.【点评】本题考查了分式的基本性质,规律总结:(1)同类分式中的操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式变号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.2.(3分)若x2﹣kxy+9y2是一个整式完全平方后的结果,则k值为()A.3B.6C.±6D.±81【分析】根据首末两项是x和3y的平方,那么中间项为加上或减去x和3y的乘积的2倍,进而得出答案.【解答】解:∵x2﹣kxy+9y2是完全平方式,∴﹣kxy=±2×3y•x,解得k=±6.故选:C.【点评】本题主要考查了完全平方公式,根据两平方项确定出这两个数,再根据乘积二倍项求解是解题关键.3.(3分)若等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的底边为()A.4cm B.6cm C.4cm或8cm D.8cm【分析】分4cm是底边和腰长两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形.【解答】解:①4cm是底边时,腰长为×(16﹣4)=6,能组成三角形,②4cm是腰长时,底边为16﹣2×4=8,∵4+4=8,∴不能组成三角形,综上所述,该等腰三角形的底边长为4cm.故选:A.【点评】本题考查了等腰三角形的性质,三角形的任意两边之和大于第三边的性质,难点在于分情况讨论.4.(3分)已知A,B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A,B关于x轴对称;②A,B关于y轴对称;③A,B关于原点对称;④A,B之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个【分析】关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;A,B两点的坐标分别是(﹣2,3)和(2,3),纵坐标相同,因而AB平行于x轴,A,B之间的距离为4.【解答】解:正确的是:②A,B关于y轴对称;④若A,B之间的距离为4.故选:B.【点评】本题考查的是如何利用点的坐标判断两点关于x轴,y轴是否对称.5.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于()A.1080°B.900°C.1440°D.720°【分析】根据外角和以及每一个外角确定出多边形的边数,即可求出内角和.【解答】解:根据题意得:360°÷36°=10,(10﹣2)×180°=1440°,则该多边形的内角和等于1440°,故选:C.【点评】此题考查了多边形的内角与外角,熟练掌握各自的性质是解本题的关键.6.(3分)如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°【分析】易证△ABD≌△BCE,可得∠1=∠CBE,根据∠2=∠1+∠ABE可以求得∠2的度数,即可解题.【解答】解:在△ABD和△BCE中,,∴△ABD≌△BCE,∴∠1=∠CBE,∵∠2=∠1+∠ABE,∴∠2=∠CBE+∠ABE=∠ABC=60°.故选:D.【点评】本题考查了全等三角形的证明,全等三角形对应角相等的性质,等边三角形内角为60°的性质,本题中求证△ABD≌△BCE是解题的关键.7.(3分)如图,点A,B分别是∠NOP,∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,则以下结论错误的是()A.AD+BC=AB B.∠AOB=90°C.与∠CBO互余的角有2个D.点O是CD的中点【分析】根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,∠AOE=∠AOD,同理可得OC=OE,∠BOC=∠BOE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.【解答】解:∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE,∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;在Rt△AOD和Rt△AOE中,,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,∠AOE=∠AOD,同理可得OC=OE,∠BOC=∠BOE,∴∠AOB=×180°=90°,故B选项结论正确;与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故C选项结论错误;∵OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选:C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.8.(3分)关于x的分式方程=2的解为正数,则m的取值范围是()A.m>﹣1B.m≠1C.m>1且m≠﹣1D.m>﹣1且m≠1【分析】先去分母,用含m的代数式表示出x,根据解为正数求出m的范围即可.【解答】解:两边都乘以x﹣1,得:m﹣1=2(x﹣1),解得:x=,因为分式方程的解为正数,所以>0且≠1,解得:m>﹣1且m≠1,故选:D.【点评】本题考查了分式方程的解法和分式方程的解以及一元一次不等式.确定m的取值范围时,容易忽略x不等于1的条件.9.(3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=4cm,△ADC的周长为15cm,则BC的长()A.8cm B.11cm C.13cm D.19cm【分析】利用翻折变换的性质得出AD=BD,进而利用AD+CD=BC得出即可.【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=4cm,△ADC的周长为15cm,∴AD+CD=BC=15﹣4=11(cm).故选:B.【点评】此题主要考查了翻折变换的性质,根据题意得出AD=BD是解题关键.10.(3分)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg,根据题意,可得方程()A.B.C .D .【分析】关键描述语是:有两块面积相同的试验田.等量关系为:第一块的亩数=第二块的亩数.【解答】解:第一块试验田的亩数为:;第二块试验田的亩数为:.那么所列方程为:=. 故选:C .【点评】题中一般有三个量,已知一个量,求一个量,一定是根据另一个量来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:6a 2b ÷2a= 3ab .【分析】根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.【解答】解:原式=3ab .故答案是:3ab .【点评】本题考查了单项式的除法法则,正确理解法则是关键.12.(3分)若a+b=5,ab=3,则2a 2+2b 2= 38 .【分析】2a 2+2b 2=2(a 2+b 2),然后根据a 2+b 2=(a+b )2﹣2ab 进行计算即可.【解答】解:原式=2(a 2+b 2)=2[(a+b )2﹣2ab]=2[52﹣2×3]=38.故答案为:38.【点评】本题主要考查的是完全平方公式的应用,依据完全平方公式将a 2+b 2变形为(a+b )2﹣2ab 是解题的关键.13.(3分)若分式的值为零,则x的值是﹣2 .【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得|x|﹣2=0且x2﹣5x+6≠0,解得x=﹣2.故答案为:﹣2.【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.14.(3分)如图,已知AB∥CF,E为DF的中点,若AB=11cm,CF=5cm,则BD=6 cm.【分析】根据平行线的性质得出∠A=∠ACF,∠AED=∠CEF,进而利用全等三角形的判定与性质得出答案.【解答】解:∵AB∥CF,∴∠A=∠ACF,∠AED=∠CEF,在△AED和△CEF中,∴△AED≌△CEF(AAS),∴FC=AD=5cm,∴BD=AB﹣AD=11﹣5=6(cm).故答案为:6.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.15.(3分)如图,已知∠ACB=90°,BD=BC,AE=AC,则∠DCE= 45 度.【分析】根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.【解答】解:∵BD=BC,AE=AC,∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴90+(180﹣2x)+(180﹣2y)=180,∴x+y=135,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=45°.故答案为:45.【点评】考查了等腰三角形的性质,根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.16.(3分)如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E= 80 度.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E=2(42°+y),即可得到结论.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.【点评】本题考查了平行线的性质以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和,正确设未知数是关键.三、解答题(共8小题,共72分)17.(8分)计算:(1)1﹣;(2).【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式=1﹣•=1﹣=(2)原式=﹣=﹣=﹣=﹣【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)把下列各式因式分解:(1)9a2(x﹣y)+4b2(y﹣x)(2)(x2y2+1)2﹣4x2y2【分析】(1)首先提取公因式(x﹣y),再利用平方差公式分解因式得出答案;(2)首先利用平方差公式分解因式,再利用完全平方公式分解因式得出答案.【解答】解:(1)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(2)(x2y2+1)2﹣4x2y2=(x2y2+1+2xy)(x2y2+1﹣2xy)=(xy﹣1)2(xy+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.(8分)解方程:(1)+1=;(2)【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.依此即可求解.【解答】解:(1)+1=,4x+2x+6=7,6x=1,x=,检验:当x=时,2(x+3)≠0.故原方程的解是x=;(2),12﹣2(x+3)=x﹣3,12﹣2x﹣6=x﹣3,﹣2x﹣x=﹣3﹣12+6,﹣3x=﹣9,x=3,检验:当x=3时,(x+3)(x﹣3)=0.故原方程无解.【点评】考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.20.(8分)如图,在折纸活动中,小明制作了一张△ABC的纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,求∠1+∠2的度数.【分析】先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.【解答】解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.【点评】本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.21.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,CE经过点D,求四边形ABCD的面积.【分析】(1)求出∠BAC=∠EAD,根据SAS推出△ABC≌△ADE,利用全等三角形的性质证明即可;(2)由△ABC≌△ADE,推出四边形ABCD的面积=三角形ACE的面积,即可得出答案;【解答】(1)解:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAC=∠EAD.在△ABC和△ADE中,∴△ABC≌△ADE(SAS).∴BC=DE(2)∵△ABC≌△ADE,∴S△ABC=S△ADE,∴S四边形ABCD=S△ABC+S△ACD=S△ADE+S△ACD=S△ACE=×122=72.【点评】本题考查了全等三角形的性质和判定,等腰直角三角形的性质和判定,并利用割补法求四边形ABCD的面积是解此题的关键,难度适中.22.(9分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A,B,C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′(2)三角形ABC的面积为12.5 ;(3)在直线l上找一点P,使PA+PB的长最短.【分析】(1)根据网格结构找出点A、B、C关于直线l成轴对称的点A′、B′、C′的位置,然后顺次连接即可;(2)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(3)连接B与点A关于直线l的对称点A′,根据轴对称确定最短路线问题,A′B与直线l的交点即为所求的点P的位置.【解答】解:(1)△A′B′C′如图所示;(2)S△ABC=6×5﹣×6×1﹣×5×5﹣×4×1,=30﹣3﹣12.5﹣2,=30﹣17.5,=12.5;故答案为:12.5;(3)如图,点P即为所求的使PA+PB的长最短的点.【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.23.(10分)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.【解答】解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时,则题意得:=﹣3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.24.(12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,延长DE交x轴于点F,在ED的延长线上取点G,使DG=DF,连接BG.①BG与y轴的位置关系怎样?说明理由;②求OF的长;(3)如图2,若点F的坐标为(10,10),E是y轴的正半轴上一动点,P是直线AB 上一点,且P的横坐标为6,是否存在点E使△EFP为等腰直角三角形?若存在,求出点E的坐标;若不存在,说明理由.【分析】(1)先求出m,n的值,即可得出结论;(2)①先判断出△BDG≌△ADF,得出BG=AF,∠G=∠DFA,最后根据平行线的性质得出∠DFA=45°,∠G=45°,即可得出结论;②利用等腰三角形的性质,建立方程即可得出结论;(3)先求出点P坐标,进而得出Rt△FME≌Rt△ENP,进而得出求出OE,即可得出结论.【解答】(1)由n2﹣12n+36+|n﹣2m|=0.得:(x﹣6)2+|n﹣2m|=0,∴n=6,m=3,∴A(3,0),B(0,6).(2)①BG⊥y轴.在△BDG与△ADF中,,∴△BDG≌△ADF∴BG=AF,∠G=∠DFA∵OC平分∠ABC,∴∠COA=45°,∵DE∥OC,∴∠DFA=45°,∠G=45°.∵∠FOE=90°,∴∠FEO═45°∵∠BEG=45°,∴∠EBG=90°,即BG与y轴垂直.②从①可知,BG=FA,△BDE为等腰直角三角形.∴BG=BE.设OF=x,则有OE=x,3+x=6﹣x,解得x=1.5,即:OF=1.5.(3)∵A(3,0),B(0,6).∵直线AB的解析式为:y=﹣2x+6,∵P点的横坐标为6,故P(6,﹣6)要使△EFP为等腰直角三角形,必有EF=EP,且∠FEP═90°,如图2,过F、P分别向y轴作垂线垂足分别为M、N.∵∠FEP═90°∴∠FEM+∠PEN=90°,又∠FEM+∠MFE=90°∴∠PEN=∠MFE∴Rt△FME≌Rt△ENP∴ME=NP=6,∴OE=10﹣6=4.即存在点E(0,4),使△EFP为等腰直角三角形【点评】此题是三角形综合题,主要考查了非负的性质,全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,求出点P的坐标是解本题的关键.。
江苏省徐州市部分中学2019-2020八年级上学期期末数学试卷 及答案解析
江苏省徐州市部分中学2019-2020八年级上学期期末数学试卷一、选择题(本大题共8小题,共24.0分)1.16的平方根是()A. ±4B. 4C. −4D. ±82.下列交通标志是轴对称图形的是()A. B. C. D.3.在平面直角坐标系中,点(3,−1)关于x轴对称的点的坐标为()A. (3,1)B. (−3,1)C. (1,−3)D. (−3,−1)4.下列图形具有稳定性的是()A. B.C. D.5.将数427609.2精确到千位,用科学记数法表示()A. 4.28×105B. 4.27×105C. 428×105D. 427×1056.已知等腰三角形的一内角度数为40°,则它的顶角的度数为()A. 40°B. 80°C. 100°D. 40°或100°7.如图,3×3方格中小方格的边长为1,图中的线段长度是()A. √8B. √10C. √13D. π8.若函数y=kx−b的图象如图2所示,则关于x的不等式k(x−1)−b>0的解集为()A. x<2B. x>2C. x<3D. x>3二、填空题(本大题共8小题,共32.0分)9.化简:√(−2)2=________.10.已知y关于x的一次函数y=kx−8,函数图象经过点(−5,2),则k=______;当−3≤x≤3时,y的最大值是______.11.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为____.12.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为______.13.点P(−5,12)到原点的距离是_________.14.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB于点E,S△ABC=14,DE=3,AB=6,则AC长是______.15.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE等于______ .16.如图,△ABC中,∠BAC=90°,AB=AC,D为BC上一点,BE//AC,且DE⊥AD,若BD=2,CD=4,则BE的长为________.三、解答题(本大题共9小题,共84.0分))−1−√27+(−1)0+|1−3√3|.17.计算:(−1218.在3×3的正方形格点图中,△ABC和△DEF是关于某条直线成轴对称的两个格点三角形,现给出了△ABC,在下面的图中画出5个符合条件的△DEF,并画出对称轴.19.已知:如图,AB⊥BC,AD⊥DC,垂足分别为B、D,∠1=∠2.求证:AB=AD.20.一次函数y=2x−4的图象与x轴的交点为A,与y轴的交点为B.(1)A,B两点的坐标分别为A(______,______),B(______,______);(2)在平面直角坐标系中,画出此一次函数的图象.21.如图,在△ABC中,AD平分∠BAC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)判断△ABC的形状.并给出证明;(2)若AB=10,AD=8,求BC和DE的长.22.已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.23.如图,在平面直角坐标系中,矩形ABCD的顶点A,D在坐标轴上,两点的坐标分别是点A(0,m),点D(m,0),且m满足√m−3√2+2m=6√2,边AB与x轴交于点E,点F是边AD上一动点,连接FB,分别与x轴,y轴交于点P,点H,且FD=BE.(1)求m的值;(2)若∠APF=45°,求证:∠AHF=∠HFA;(3)若点F的纵坐标为n,则线段HF的长为________。
2019-2020人教版八年级数学上学期期末单元复习第12章全等三角形解析版
第12章全等三角形一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法中,正确的是()A.全等图形是形状相同的两个图形B.全等三角形是指面积相同的两个三角形C.等边三角形都是全等三角形D.全等图形的周长、面积都相等3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.AC=CA C.∠B=∠D D.BC=DC4.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50°B.55°C.60°D.65°5.如图,∠C=∠D,那么补充下列一个条件后,仍无法判定△ABC≌△BAD的是()A.AD=BC B.AC=BD C.∠CAB=∠DBA D.∠ABC=∠BAD 6.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.ASA B.SAS C.SSS D.AAS7.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.38.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.59.如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为()A.3cm B.4cm C.1cm D.2cm10.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS11.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.2812.有一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条中线的交点D.△ABC三条高所在直线的交点二.填空题(共4小题)13.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=cm.14.如图,已知△ABC≌△DEF,A和D是对应顶点,若∠A=80°,∠B=65°,则∠F°.15.如图,点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,垂足分别是点E,F,若PE =3.则PF=.16.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是cm.三.解答题(共5小题)17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.21.如图,在△ABC和△DEF中,AB∥DE,点A,F,C,D在同一直线上,AF=CD,∠AFE=∠BCD.试说明:(1)△ABC≌△DEF;(2)BF∥EC.参考答案与试题解析一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两个图形能够完全重合,故本选项正确.B、圆内两条相交的线段不能完全重合,故本选项错误;C、两个正方形的边长不相等,不能完全重合,故本选项错误;D、两只眼睛下面的嘴巴不能完全重合,故本选项错误;故选:A.2.下列说法中,正确的是()A.全等图形是形状相同的两个图形B.全等三角形是指面积相同的两个三角形C.等边三角形都是全等三角形D.全等图形的周长、面积都相等【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、全等图形是指形状相同、大小相等的两个图形,故本选项错误;B、全等三角形是指能够完全重合的两个三角形,故本选项错误;C、等边三角形的形状相同、但是大小不一定相等,所以不一定都是全等三角形,故本选项错误;D、全等图形的周长、面积相等,故本选项正确;故选:D.3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.AC=CA C.∠B=∠D D.BC=DC【分析】直接利用全等三角形的性质得出对应角以及对应边相等进而得出答案.【解答】解:∵△ABC≌△CDA,∴∠1=∠2,AC=CA,∠B=∠D,BC=AD,故只有选项D,BC=DC错误.故选:D.4.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50°B.55°C.60°D.65°【分析】直接利用全等三角形的性质得出AB=AD,∠B=∠ADE,进而利用已知得出答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠B=∠ADE,∴∠B=∠ADB,∴∠BDA=∠ADE,∵∠EDC=70°,∴∠BDA=∠ADE=×(180°﹣70°)=55°.故选:B.5.如图,∠C=∠D,那么补充下列一个条件后,仍无法判定△ABC≌△BAD的是()A.AD=BC B.AC=BD C.∠CAB=∠DBA D.∠ABC=∠BAD 【分析】根据全等三角形的判定方法即可一一判断.【解答】解:A、SSA无法判断三角形全等,故本选项符合题意;B、根据ASA即可判断△ACO≌△BDO,得OC=OD,OA=OB,再用SAS可得三角形全等,故本选项不符合题意;C、根据AAS即可判断三角形全等,故本选项不符合题意;D、根据AAS即可判断三角形全等,故本选项不符合题意;故选:A.6.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.ASA B.SAS C.SSS D.AAS【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【解答】解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故选:A.7.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3【分析】证明△ABC≌△EFD可得DE=AC=10,根据AD=AE﹣DE可求解.【解答】解:∵AB∥EF,∴∠A=∠E.又AB=EF,∠B=∠F,∴△ABC≌△EFD(ASA).∴AC=DE=10.∴AD=AE﹣DE=10﹣7=3.故选:D.8.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED=90°,AE=DE,则BE=()A.13 B.8 C.6 D.5【分析】证明△ABE≌△ECD得到CE值,则BE可求.【解答】解:在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.9.如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC=3cm,则BD的长为()A.3cm B.4cm C.1cm D.2cm【分析】根据垂直的定义得到∠C=∠ADE=90°,利用AAS定理证明△ACE≌△ADE,根据全等三角形的性质计算即可.【解答】解:∵AC⊥BC,ED⊥AB,∴∠C=∠ADE=90°,在△ACE和△ADE中,,∴△ACE≌△ADE(AAS),∴AD=AC=3cm,∴BD=AB﹣AD=4cm,故选:B.10.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS【分析】根据全等三角形的判断方法解答.【解答】解:由图可知,带第4块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:B.11.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5 B.7 C.14 D.28【分析】根据角平分线的性质得出DE=CD=2,根据三角形的面积公式求出即可.【解答】解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD=2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.12.有一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条中线的交点D.△ABC三条高所在直线的交点【分析】根据角平分线的性质解答即可.【解答】解:∵三角形角平分线上的点到角两边的距离相等,∴亭的位置应选在三角形三条角平分线的交点上.故选:A.二.填空题(共4小题)13.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE= 5 cm.【分析】由△ABD≌△ACE可得AD=AE,AC=AB,因为BE=AE﹣AB,即可AE的长度.【解答】解:∵△ABD≌△ACE,∴AD=AE,AC=AB,又AD=8cm,AB=3cm,∵BE=AE﹣AB=8﹣3=5,∴BE=5cm.故填5.14.如图,已知△ABC≌△DEF,A和D是对应顶点,若∠A=80°,∠B=65°,则∠F=35 °.【分析】利用三角形内角和定理可得∠ACB,再根据全等三角形的性质可得∠F=∠ACB =35°.【解答】解:∵∠A=80°,∠B=65°,∴∠ACB=180°﹣80°﹣65°=35°,∵△ABC≌△DEF,∴∠F=∠ACB=35°,故答案为:=35.15.如图,点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,垂足分别是点E,F,若PE =3.则PF= 3 .【分析】根据角平分线的性质直接写出结论即可.【解答】解:∵点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,∴PE=PF,∵PE=3,∴PF=PE=3,故答案为:3.16.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是69 cm.【分析】设升旗台的高度是zcm,AC=xcm,BC=ycm.构建方程组即可解决问题.【解答】解:设升旗台的高度是zcm,AC=xcm,BC=ycm.由题意:,①+②可得,2z=138,∴z=69,故答案为69.三.解答题(共5小题)17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明△ACD≌△CAB,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,AC=CA,∴△ACD≌△CAB,∴∠ACD=∠CAB,∴AB∥CD.18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.【分析】首先根据△ACO≌△BDO得到CO=OD,AO=OB,进而得到OE=OF,再证明△COE ≌△DOF,即可得到结论.【解答】解:∵△ACO≌△BDO,∴CO=OD,AO=OB,∵AE=BF,∴OE=OF,∴△COE≌△DOF,∴CE=DF.19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.【分析】根据垂直的定义可得∠BDC=∠CEB=90°,根据等腰三角形的性质可得∠ABC =∠ACB,再有公共边BC,利用AAS可得△BCD≌△CBE,据此可得BD=CE.【解答】证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCD和△CBE中,∠BDC=∠CEB,∠DBC=∠ECB,BC=CB,∴△BCD≌△CBE(AAS),∴BD=CE.20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.【分析】根据已知条件,利用直角三角形的特殊判定方法可以证明题目结论.【解答】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=∠B=90°,∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)21.如图,在△ABC和△DEF中,AB∥DE,点A,F,C,D在同一直线上,AF=CD,∠AFE=∠BCD.试说明:(1)△ABC≌△DEF;(2)BF∥EC.【分析】(1)由角边角可证明△ABC和△DEF全等;(2)证明△BFC和△ECF全等,可得∠BFC=∠ECF,继而可得BF∥EC.【解答】证:(1)∵AB∥DE,∴∠A=∠D∵AF=CD,∴AF+FC=CD+FC即AC=DF∵∠AFE=∠BCD,∴∠DFE=∠ACB在△ABC和△DEF中,∴△ABC≌△DEF(ASA)(2)∵△ABC≌△DEF∴BC=EF在△BCF和△EFC中,∴△BCF≌△EFC(SAS)∴∠BFC=∠ECF∴BF∥EC。
期末检测卷02(解析版) -2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)
2020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)期末检测卷02一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·大庆市万宝学校八年级期中)下列哪组数据能构成三角形的三边( )A .1cm 、2cm 、3cmB .2cm 、3cm 、4cmC .14cm 、4cm 、9cmD .7cm 、2cm 、4cm【答案】B2.(2020·营山县化育初级中学校八年级期中)下列图形中一定是轴对称图形的是( )A .B .C .D .【答案】A3.(2020·河北唐山市·八年级月考)下列计算错误的是( )A .32a b ⋅=5abB .2a a -⋅=3a -C .()()936-x -x =x÷ D .()2362a 4a -=【答案】A4.(2020·浙江杭州市·七年级其他模拟)若24(1)9xm x --+是完全平方式,则m 的值为( )A .13B .12±C .11或13-D .11-或13.【答案】D5.(2020·营山县化育初级中学校八年级期中)如图所示,在△ABC 中,∠C =90°,BC =40,AD 是∠BAC 的平分线,交BC 于点D .若DC ∶DB =3∶5,则点D 到AB 的距离是( )A .40B .15C .25D .20【答案】B6.(2020·广东广州市·执信中学八年级期中)如图,已知长方形ABCD 的边长AB =20cm ,BC =16cm ,点E 在边AB 上,AE =6cm ,如果点P 从点B 出发在线段BC 上以2cm /s 的速度向点C 向运动,同时,点Q 在线段CD 上从点C 到点D 运动.则当时间t 为( )s 时,能够使BPE 与CQP 全等.A .1B .1或4C .1或2D .2或4【答案】B二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·上海市建平中学西校七年级期中)分解因式:32327-=xxy ______.【答案】()()333+-xx y x y8.(2019·江西赣州市·八年级期末)为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,根据题意列方程为____.【答案】12000120001001.2x x=+ 9.(2020·昌乐县白塔镇第一中学八年级期中)若关于x 的分式方程4333x ax x --=--有增根,则a 的值是______. 【答案】-110.(2020·重庆市南川道南中学校八年级期中)如图,△ABC 的外角∠MBC 和∠NCB 的平分线BP 、CP 相交于点P ,PE ⊥BC 于E 且PE =3cm ,若△ABC 的周长为14cm ,S △BPC =7.5,则△ABC 的面积为______cm 2.【答案】611.(2020·宁津县育新中学八年级期中)如图,在△ABC 中,∠A =64°,∠ABC 与∠ACD 的平分线交于点A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A n -1BC 与∠A n -1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的值最大为______.【答案】612.(2020·南昌市心远中学八年级期中)如图:一条船从A 处出发向正北航行,从A 望灯塔C 测得30NAC ∠=︒,当点B在射线AN 上,且BAC 为等腰三角形,则NBC ∠的度数是__________.【答案】105°或60°或150°三、(本题共计5小题,每小题6分,共计30分)13.(2020·福建泉州市·泉州七中八年级期中)分解因式:(1)2x x 30--(2)222ax8axy 8ay -+【答案】解:(1)230x x --()()65x x =-+(2)22288axaxy ay -+()22244a x xy y =-+()222a x y =-【点睛】本题考查的是利用十字乘法,提公因式,完全平方公式分解因式,掌握以上因式分解的方法是解题的关键.14.(2020·剑阁县公兴初级中学校九年级月考)先化简(21x x +-x +1)÷22121x x x -++,再从-1,0,1中选择合适的x 值代入求值.【答案】2221(21)11x x x x x x -+÷++-+ 222121(1)1111x x x x x x x x x x ⎡⎤++=-+⨯⎢⎥++++⎣⎦-+ 222(1)1(1)(1)1x x x x x x x x ⎡⎤-+=⨯⎢⎥+-⎣+++-⎦2(1)()1(1)(1)1x x x x +=⨯+-+ 11x =- 11x x x ≠-≠∴=,0当0x=时,原式11==1101x =--- 【点睛】本题考查分式的化简求值,其中涉及分式有意义的条件、完全平方公式、平方差公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.(2020·马鞍山二中实验学校八年级期中)如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数. 【答案】(1)延长BP 交AC 于D ,如图所示:∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角,∴∠BPC >∠1,∠1>∠A ,∴∠BPC >∠A ;(2)在△ABC 中,∵∠A =40°,∴∠ABC +∠ACB =180°﹣∠A =180°﹣40°=140°,∵PB 平分∠ABC ,PC 平分∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB , 在△PBC 中,∠P =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB )=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.16.(2020·江苏淮安市·八年级期中)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(请用直尺保留作图痕迹).(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)△ABC的面积是;(3)在DE上画出点Q,使△QAB的周长最小.【答案】解:(1)如图所示,△A1B1C1即为所求;(2)S△ABC=2×3−12×1×3−12×1×2−12×1×2=52.故答案为:5 2.(3)如图所示,点Q即为所求;【点睛】本题主要考查了利用轴对称作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(2020·武威第十九中学八年级月考)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4 (第一步)= y2+8y+16 (第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式B.平方差公式C.完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”),若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.【答案】解:(1)该同学第二步到第三步运用了因式分解的完全平方公式,故选:C;(2)∵x2-4x+4=(x-2)2 ,∴该同学因式分解的结果不彻底,最后结果为(x-2)4 ,故答案为:不彻底,(x-2)4 ;(3)设x2-2x=y,则:原式=y(y+2)+1=y2+2y+1=(y+1)2=( x2-2x+1)2=(x﹣1)4.【点睛】本题考查利用换元法和公式法进行因式分解,熟记完全平方公式,熟练掌握因式分解的各种方法是解答的关键.四、(本题共计3小题,每小题8分,共计24分)18.(2020·全国八年级期中)如图所示,△ABC中,AB=BC.DE⊥AB于点E.DF⊥BC于点D,交AC于F..若∠AFD=155°,求∠EDF的度数;.若点F是AC的中点,求证:∠CFD=12∠B.【答案】. ∵∠AFD=155°.∴∠DFC=25°.∵DF⊥BC.DE⊥AB.∴∠FDC =∠AED =90°.在Rt △EDC 中,∴∠C =90°.25°=65°.∵AB =BC .∴∠C =∠A =65°.∴∠EDF =360°.65°.155°.90°=50°.. 连接BF .∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC .12ABFCBF ABC ∠=∠=∠.∴∠CFD +∠BFD =90°.∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴12CFDABC ∠=∠. 19.(2020·重庆西南大学银翔实验中学八年级月考)西南大学银翔实验中学初2022级举行“迎篮而上,求进不止”的篮球比赛,在某商场购买甲、乙两种不同篮球,购买甲种篮球共花费3000元,购买乙种篮球共花费2100元,购买甲种篮球数量是购买乙种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花60元;(1)求购买一个甲种篮球、一个乙种篮球各需多少元?(2)活动结束以后,学校决定再次购买甲、乙两种篮球共50个.恰逢该商场对两种篮球的售价进行调整,甲种篮球售价比第一次购买时提高了10%,乙种篮球售价比第一次购买时降低了10%.如果此次购买甲、乙两种篮球的总费用不超过8730元,那么这所学校最多可购买多少个乙种篮球?【答案】解:(1)设购买一个甲种篮球需x 元,则购买一个乙种篮球需()60x +元,根据题意可得:30002100260x x =⨯+, 解得:150x =,经检验得150x =是分式方程的解,∴60210x +=,答:购买一个甲种篮球需150元,则购买一个乙种篮球需210元;(2)调整之后的价格为:甲种篮球()150110165⨯+%=(元),乙种篮球()210110189⨯-%=(元),设购买m 个乙种篮球,则购买()50m -个甲种篮球,根据题意可得:()165501898730m m -+≤,解得:20m ≤,∴这所学校最多可购买20个乙种篮球.【点睛】本题考查分式方程的应用、不等式的实际应用,理解题意并列出方程和不等式是解题的关键.20.(2020·昌乐县白塔镇第一中学八年级期中)如图1,在△ABC 中,90ACB ∠=︒,AC =BC ,直线MN 经过点C ,AD MN ⊥,垂足为点D ,BE MN ⊥,垂足为点E .(1)请说明:①ADC CEB △≌△,②DE AD BE =+;(2)当直线MN 绕着点C 旋转到如图2所示的位置时,猜想线段DE ,AD ,BE 之间有怎样的数量关系?并说明理由.【答案】解:(1)①AD MN ⊥,BE MN ⊥,∴∠=∠=︒,ADC CEB90∴∠+∠=︒,DAC ACD90∠=︒,ACB90∴∠+∠=︒-︒=︒,ACD BCE1809090∴∠=∠;DAC ECB△中,在ADC和CEB=,∠=∠,AC CBADC CEB∠=∠,DAC ECB()∴△≌△;ADC CEBAAS△≌△,②由①得ADC CEB=,DC EB∴=,AD CE=+,DE CD CE∴=+;DE AD BE=-,(2)DE AD BE△≌△,由(1)同理可得:ADC CEB∴=,CD BE=,AD CEDE CE CD,∴=-.DE AD BE【点睛】本题考查了全等三角形的判定和性质,涉及到补角和余角的性质,熟练掌握全等三角形的判定方法是解题的关键.五、(本题共计2小题,每小题9分,共计18分)21.(2020·张家口市宣化区教学研究中心八年级期末)阅读理解 (发现)如果记22()1x f x x =+,并且f (1)表示当x =1时的值,则f (1)=______;()2f 表示当2x =时的值,则()2f =______;12f ⎛⎫ ⎪⎝⎭表示当12x =时的值,则12f ⎛⎫ ⎪⎝⎭=______; ()3f 表示当3x =时的值,则()3f =______;13f ⎛⎫ ⎪⎝⎭表示当13x =时的值,则13f ⎛⎫= ⎪⎝⎭______; (拓展)试计算111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 【答案】解:【发现】2211(1)=211=+f ; 2224(2)=512=+f ;221112()=25112⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f ; 2239(3)=1013=+f ;221113()=310113⎛⎫ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭f 【拓展】∵22()1x f x x =+ ∴2221()11(),111()x f x x x∴1()()1,f x f x += ∴111(2013)(2012)(2)(1)220122013f f f f f f f ⎛⎫⎛⎫⎛⎫++⋯++++⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()111=2012+=201222=2012+f 【点睛】本题考查了函数值,数字变化规律,读懂题目信息,理解变化规律f 的方法并确定出1()()1f x f x+=是解题的关键. 22.(2020·广州市白云区明德中学七年级期中)如图1是一个长为2a ,宽为2b 的长方形()a b >,沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形(1)你认为图2中大正方形的边长为______;小正方形(阴影部分)的边长为______.(用含a 、b 代数式表示)(2)仔细观察图2,利用图2中存在的面积关系,直接写出下列三个代数式.2()a b -,2()a b +,4ab 之间的等量关系.(3)利用(2)中得出的结论解决下面的问题.已知7a b +=,6ab =,求代数式()a b -的值.【答案】解:(1)图2中大正方形的边长为(a +b );小正方形(阴影部分)的边长为(a −b ),故填:()a b +,()a b -;(2)三个代数式之间的等量关系是:(a +b )2=(a −b )2+4ab ;(3)(a −b )2=(a +b )2−4ab =72-4×6=25,∴a −b =5.【点睛】本题主要考查公式变形能力,如何准确地确定三个代数式之间的等量关系是解题的关键.六、(本题共计1小题,每小题12分,共计12分)23.(2020·阳泉市第三中学校八年级期中)问题情境:在自习课上,小雪拿来了如下一道题目(原问题)和合作学习小组的同学们交流,如图①,△ACB 和△∠CDE 均为等腰三角形.CA =CB ,CD =CE ,∠ACB =∠DCE .点A 、D 、E 在同一条直线上,连接BE .求证:∠CDE =∠BCE +∠CBE . 问题发现:小华说:我做过一道类似的题目:如图②,△ACB 和△CDE 均为等边三角形,其他条件不变,求∠AEB 的度数. (1)请聪明的你完成小雪的题目要求并直接写出小华的题目要求.拓展研究:(2)如图③,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一条直线上,CF 为△DCE 中DE 边上的高,连接BE .请求∠AEB 的度数及线段CF 、AE 、BE 之间的数量关系,并说明理由.【答案】(1)小雪的题目:证明:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△CAD CBE ∴∠=∠又ACD BCE ∠=∠,CDE CAD ACD ∠=∠+∠CDE CBE BCE ∴∠=∠+∠;小华的题目:解:ACB DCE ∠=∠ACD BCE ∠∠∴=在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△ADC BEC ∠∠∴= CDE 为等边三角形60CDE CED ∴∠=∠=︒ 又点A 、D 、E 在同一条直线上120ADC BEC ∴∠=∠=︒60AEB BEC CED ∴∠=∠-∠=︒(2)∠AEB =90︒;2AE BE CF =+;理由如下:△ACB 和△DCE 均为等腰直角三角形,,,9045AC BC CD CE ACB DCE CDE CED ∴==∠=∠=︒∠=∠=︒,,ACB DCB DCE DCB ∴∠-∠=∠-∠即ACD BCE ∠=∠在ADC 和DCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ADC BEC SAS ∴≅△△,BE AD BEC ADC ∴=∠=∠,点A 、D 、E 在同一直线上∴∠=︒-︒=︒ADC18045135∴∠=︒BEC135∴∠=∠-∠=︒-︒=︒AEB BEC CED1354590,∠=︒=⊥DCE CD CE CF DE90,∴==CF DF EF∴=+=DE DF EF CF2∴=+=+.AE AD DE BE CF2【点睛】本题考查了全等三角形的判定及性质、等腰三角形的性质、等边三角形的性质,熟练掌握性质定理是解题的关键.。
2019—2020人教版八年级数学上册期期末质量检查数学试卷及答案
2019—2019—2020人教版八年级数学上册期期末质量检查数学试卷及答案数 学 试 题(满分:150分;考试时间:120分钟)温馨提示:请在答题卡上相应题目的答题区域内作答;否则不得分。
一、选择题(每题4分;共24分):在答题卡上相应题目的答题区域内作答. 1.9的算术平方根是( )A .3±B .3C .3-D .3 2.下列运算正确的是( )A .523a a a =+B .632a a a =⋅ C .65332)(b a b a = D .632)(a a =3.下列图形中不是..中心对称图形的是( )A .B .C .D .4.如图;AOC ∆≌BOD ∆;∠C 与∠D 是对应角;AC 与BD 是对应边;AC=8㎝; AD=10㎝;OD=OC=2㎝;那么OB 的长是( )A .8㎝B .10㎝C .2㎝D .无法确定5.矩形具有而一般平行四边形不一定具有的性质是( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等6.如图;OAB ∆绕点O 逆时针旋转80得到OCD ∆;若∠A=110;∠D=∙40;则∠AOD 的度数是( )A . 30B . 40C . 50D .60二、填空题(每题3分;共36分)在答题卡上相应题目的答题区域内作答. 7。
(填“>”;“<”或 “=”号)8.一个正方体木块的体积是64㎝3;则它的棱长是 ㎝。
ODA CBADC9.若3=mx;2=n x ;则=+n m x 。
10.若=-++32y x 0;则=xy 。
11.在菱形ABCD 中;AC=4cm ;BD=3cm ;则菱形的面积是 ㎝2。
12.一个边长为a 的正方形广场;扩建后的正方形广场的边长比原来大10米;则扩建后的广场面积增大了 米2.13.如图;一次强风中;一棵大树在离地面3米高处折断;树的顶端落在离树杆底部4米远处;那么这棵树折断之前的高度是 米.AEDCAB14.如图;ABC Rt ∆中;∠B=90;AB=3㎝;AC=5㎝;将ABC ∆折叠;使点C与点A重合;折痕为DE ;则CE = ㎝.15.如图;在□ABCD 中;已知AD=8㎝;AB=6㎝;DE 平分∠ADC ;交BC 边于点E ;则BE=㎝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期数学期末模拟试卷
(考试时间:120分钟,满分:150分)
一、选择题:(本大题12个小题,每小题4分,共48分) 1.下列大学的校徽图案中,是轴对称图形的是( )
A. B. C. D. 2.下列长度的三条线段,能组成三角形的是( ) A .3,4,8; B .5,6,11; C .12,5,6; D .3,4,5 . 3.若分式
1
x x
-有意义,则x 的取值范围是( ) A .x ≠-1; B .x ≠1; C .x ≥-1; D .x ≥1. 4.下列运算正确的是( )
A .3x 2+2x 3=5x 5;
B .0)14.3(0=-π;
C .3-2=-6;
D .(x 3)2=x 6. 5.下列因式分解正确的是( )
β
α
D
C
B
A P
D
C
B
A A .x 2-xy+x=x(x-y);
B .a 3+2a 2b+ab 2=a(a+b)2;
C .x 2-2x+4=(x-1)2+3;
D .ax 2-9=a(x+3)(x-3).
6.化简:
=+++1
x x
1x x 2( ) A .1; B .0; C .x ; D .x 2。
7.如图,一个等边三角形纸片,剪去一个角后得到一个 四边形,则图中∠α+∠β的度数是( ) A .180°; B .220°; C .240°;
D .300°.
8如图,在△ABC 中,D 是BC 边上一点,且AB=AD=DC ,
∠B AD=40°,则∠C 为( ).
A .25°;
B .35°;
C .40°;
D .50°。
9.如图,△ABC 的外角∠ACD 的平分线CP 与∠ABC 平分线BP 交于点P ,若∠B PC=40°,则∠CAP 的度数是( )
A.30°;
B.40°;
C.50°;
D.60°。
10.若分式
2y 1x 1=-,则分式y
xy 3x y
4xy 5x 4---+的值等于( ) A .53-
; B .5
3; C .54
-; D .54.
N M
D C
B
A
M
D A 11.关于x 的方程
21
x m
1x 2x 3=+-+-无解,则m 的值为( ) A.-8; B.-5; C.-2; D.5.
12. 在△ABC 中,∠A CB=90°,AC=BC=4,点D 为AB 的中点,M ,N 分别在BC ,AC 上,且BM=CN 现有以下四个结论:
①DN=DM ; ② ∠NDM=90°; ③ 四边形CMDN 的面积为4; ④△CMN 的面积最大为2.其中正确的结论有( ) A.①②④; B. ①②③; C. ②③④; D. ①②③④. 二、填空题:(本大题6个小题,每小题4分,共24分)
13.已知一个多边形的内角和等于1260°,则这个多边形是 边形.
14.因式分解:2a 2-2= . 15.解方程:
13
x 32
1x x -+=+,则x= .
16.如图,∠ABF=∠DCE ,BE=CF 能使用“AAS ”的方法得△ABF ≌△DCE. 17.若3x
1
x =+
,则1x x x 2
++的值是 . 18.在锐角△ABC 中,BC=8,∠A BC=30°,BD 平分∠ABC ,
O D
C
B
A
M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。
三、解答题:(本大题2个小题,每小题8分,共16分) 19. 如图,AB ∥DC ,AB=DC ,AC 与BD 相交于点O.求证:AO=CO
20.△ABC 在平面直角坐标系中的位置如图所示.A(2,3),B(3,1),C(-2,-2)三点在格点上.
(1)作出△ABC 关于y 轴对称的△A 1B 1C 1;
(2)直接写出△ABC 关于x 轴对称的△A 2B 2C 2的各点坐标; (3)求出△ABC 的面积.
四、解答题:(本大题4个小题,每小题10分,共40分)
21.(1)计算:[(x+y)2-(x-y)2]÷(2xy).
(2)因式分解:(x-8)(x+2)+6x.
22.先化简,2x x
1
x 2x x x x x 2
22++--+÷+,再在-2,0,1,2四个数中选一个合适的代入求值.
23.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.
(1)甲、乙两种款型的T 恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T 恤衫商店共获利多少元?
图1
E
D
C B
A
N
M
E
D
C B A 图2
24. 如图1,C 是线段BE 上一点,以BC 、CE 为边分别在BE 的同侧作等边△ABC 和等边△DCE ,连结AE 、BD . (1)求证:BD=AE ;
(2)如图2,若M 、N 分别是线段AE 、BD 上的点,且AM=BN ,请判断△CMN 的形状,并说明理由.
五、解答题:(本大题2个小题,共22分)
25. 若一个两位正整数m 的个位数为8,则称m 为“好数”. (1)求证:对任意“好数”m ,m 2-64一定为20的倍数; (2)若m=p 2-q 2,且p ,q 为正整数,则称数对(p,q)为“友好数对”,规定:p
q
)m (H
,例如68=182-162,称数对(18,16)
为“友好数对”,则9
8
1816)68(H ==
,求小于50的“好数”中,所有“友好数对”的H(m)的最大值.
26. 如图,△BAD 和△BCE 均为等腰直角三角形,∠BAD=∠BCE=90°,M 为DE 的中点.过点E 作与AD 平行的直线,交射线AM 于点N.
(1)当A ,B ,C 三点在同一条直线上时(如图1),求证:M 为
图1N
M E D
C
B
A
N
M
E
D
C
B
A
图2
N
M
E
D
C
B
A
图3
AN中点.
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一条直线上时(如图2),求证:△CAN为等腰直角三角形.
(3)将图1中的△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
参考答案:
一、选择题:。