一元一次方程与二次函数之间的关系教学案例

合集下载

二次函数与一元二次方程教案

二次函数与一元二次方程教案

二次函数与一元二次方程教案公开示范二次函数与一元二次方程》一、研究目标根据新课标的要求及九年级学生的认知水平,特制定本节课的教学目标如下:知识与技能:1.掌握二次函数与一元二次方程的联系。

2.掌握利用二次函数的图像求一元二次方程的近似根。

过程与方法:1.通过探索二次函数与一元二次方程的关系,体会方程与函数之间的联系。

2.通过使用二次函数图像求一元二次方程近似解,获得用图像法求方程近似解的体验。

情感、态度与价值观:1.经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力。

2.培养学生合作研究的良好意识和积极进取的精神。

3.培养学生用联系的观点看问题。

二、教学重点、难点根据新课标的要求及九年级学生的认知和发展水平,结合学情,我制定本节课的研究重、难点如下:教学重点:把握二次函数图像与x轴(或y=h)交点的个数与一元二次方程的根的关系。

关键是理解其实质就是把函数值换成常数求一元二次方程的解。

教学难点:利用函数的性质,用逐步逼近去试探求出近似解。

较难理解,培养学生的数形结合的意识和学会用数形结合的方法解决问题。

三、教学过程设计一)研究准备1.解方程:x2-2x-3=02.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。

当△>0时,方程有两个根;当△=0时,方程有一个根;当△<0时,方程无实根。

3.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)图像是一条抛物线,它与x轴的交点有几种可能的情况?4.回顾一次函数与一元一次方程的关系:一次函数y=-x+5与x轴的交点坐标是(5,0),一元一次方程-x+5=0的解是x=5.你发现了什么?5.回顾一次函数与二元一次方程组的关系:一次函数y=-x+5与y=2x-1的图像的交点坐标与方程组x+y=52x-y=1的解有什么关系?利用类比的方法让学生在自学的基础上进行小组合作交流研究)二)创设情境引入新课我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+vt+h0表示,其中h0(m)是抛出时的高度,v(m/s)是抛出时的速度。

初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思

初中数学_二次函数的图象与一元二次方程教学设计学情分析教材分析课后反思《二次函数与一元二次方程》教学设计【课题】九年级下册5.6《二次函数与一元二次方程》(第1课时)一、教材分析本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系。

因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。

2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。

三、教学目标知识与技能:1.探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系2.能根据二次函数y=ax2+bx+c的系数,判断它的图象与x轴的位置关系3.应用二次函数和一元二次方程的关系解决相关问题过程与方法:经历探索二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0的关系的过程,培养学生分析问题,解决问题的能力。

情感态度和价值观:使学生在数学应用增强自信心,在合作学习中增强集体责任感,加强学生数形结合思想的应用。

四、教学重难点重点:应用二次函数和一元二次方程的关系解决相关问题难点:理解二次函数y=ax2+bx+c及其图象与一元二次方程ax2+bx+c=0根的关系五、教法学法教法:类比探究法、归纳总结法、讲练结合法学法:合作探究法、小组讨论法六、教学内容与过程(一)、立体式复习检测(1)一次函数y=-3x+6的图象与x轴的交点(,)一元一次方程-3x+6=0的根为________(2)不解方程,判断方程x2-3x+3=0根的情况是________(3)解方程: x2-2x-3=0(4)(中考·白银)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________【师生活动】:同桌提问判别式△与方程实数根的关系,然后请4位同学分别板书以上4个题目,其他同学在导学案完成以上题目。

222二次函数与一元二次方程(教学设计)九年级数学上册(人教版)

222二次函数与一元二次方程(教学设计)九年级数学上册(人教版)

22.2 二次函数与一元二次方程教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十二章“二次函数”22.2 二次函数与一元二次方程,内容包括:二次函数与一元二次方程的联系.2.内容解析解一元二次方程ax2+bx+c=0可以看作已知二次函数y=ax2+bx+c的值为0,求自变量的值.从图象上看,如果二次函数的图象与x轴有公共点,当自变量取公共点的横坐标时,函数的值为0.由此可求出相应的一元二次方程的根.当二次函数的图象与x轴有两个公共点时,相应的一元二次方程有两个不等的实数根;当二次函数的图象与x轴有一个公共点时,相应的一元二次方程有两个相等的实数根;当二次函数的图象与x 轴没有公共点时,相应的一元二次方程没有实数根.通过探究二次函数与一元二次方程的联系,进而掌握利用二次函数的图象求一元二次方程的近似解的方法。

基于以上分析,确定本节课的教学重点:二次函数与一元二次方程的联系.二、目标和目标解析1.目标1) 理解二次函数与一元二次方程之间的联系,能够利用二次函数的图象求一元二次方程的近似解。

2)通过图象理解二次函数与一元二次方程联系的过程中,体会综合运用函数解析式和函数图象的数形结合思想。

2.目标解析达成目标1)的标志是:学生能够利用二次函数的图象,通过观察与x轴交点的横坐标,确定一元二次方程的近似解.达成目标2)的标志是:在探索二次函数与一元二次方程联系的过程中,理解二次函数与x轴的公共点个数与对应的一元二次方程的实数根的数量关系.三、教学问题诊断分析探究二次函数与一元二次方程的联系的过程与函数和一元一次方程的探究过程一致,但二次函数与x 轴公共点的个数共有三种情况.需学生理解当二次函数图象与x轴有公共点时,公共点的横坐标就是相应的一元二次方程的根.基于以上分析,本节课的教学难点是:用数形结合的思想探究二次函数与一元二次方程的联系.四、教学过程设计(一)探究新知以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h (单位:m)与飞行时间t (单位:s)之间具有关系:h= 20t–5t2 .[问题一]球的飞行高度能否达到15 m? 若能,需要多少时间?[问题二]球的飞行高度能否达到20 m? 若能,需要多少时间?[问题三]结合图形,你知道为什么在问题一中有两个点符合题意,而在问题二中只有一个点符合题意?[问题四]球的飞行高度能否达到20.5 m? 若能,需要多少时间?[问题五]球从飞出到落地要用多少时间?[问题六]结合此问题,你发现二次函数与一元二次方程的联系.师生活动:教师提出问题,学生积极回答问题。

二次函数与一元二次方程教学设计人教版九年级数学上册

二次函数与一元二次方程教学设计人教版九年级数学上册

探究新知问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线。

如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系。

考虑以下问题:(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如果能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地需要多少时间?归纳:从上面的问题可以看出,二次函数与一元二次方程有如下关系第(1)问师生共同分析,先用代数的方法解答,然后引导学生用图象法对此问进行解释和分析.第(2)问由学生分析并展示过程,同时让学生用图象演示为什只有一个时间小球的飞行高度达到20m?接着老师引导学生从二次函数的性质(即二次函数的最大值)来说明为什么只有一个时间?剩下的学生独立完成,学生代表分析并展示过程.根据刚才例题的讲解,类比一次函数与一元一次方程的联系,现在以小组为单位对二次函数与一元二次方程的关系进行讨论,并请代表展示结果.利用快传采集学生结果采用笔记通过探究问题体现数学来源于生活,其次也以解决实际问题的形式为后续体验一元二次方程与二次函数的联系作铺垫.让学生用数与形这两种不同的方法解决实际问题.培养学生自主思考的习惯,增强学生的归纳概括能力和表达能力,并激发好奇心和求知欲.探究新知问题:观察下图抛物线与x轴的交点情况,回答下列问题.(1)二次函数y=x2+x−2的图象与x轴有个交点,分别为则一元二次方程方程的解为,根的判别式Δ0。

(2)二次函数y=x2−6x+9的图像与x轴有个交点,分别为则一元二次方程方程的解为,根的判别式Δ0。

(3)二次函数y=x2−x+1的图象与x轴公共点,则一元二次方程方程,根的判别式Δ0。

第(1)问师生共同分析,先引导学生观察图象对此问进行解释和分析.再用代数的方法解答验证。

剩下的学生独立完成,学生代表分析并展示过程.利用快传采集学生结果通过学生讨论、观察,得出判别式和二次函数与x轴交点个数的情况的关系.并让学生掌握特殊到一般的学习方法.归纳:二次函数的图象与x轴交点横坐标与一元二次方程根的关系:.二次函数y=ax2+bx+c(a≠0)的图象和x轴交点的情况一元二次方ax2+bx+c=0(a≠0)的根的情况一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b24ac的情况有两个相等的实数根分别为:x1=x2=x0Δ=b2 – 4ac < 0通过以上环节的探究,教师指导学生思考归纳,并展示结果。

高中数学必修一 (教案)二次函数与一元二次方程、不等式

高中数学必修一 (教案)二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。

2.使学生能够运用二次函数及其图像,性质解决实际问题。

3.渗透数形结合思想,进一步培养学生综合解题能力。

数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。

【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。

类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察。

研探。

二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。

2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。

九年级数学上册《二次函数与一元二次方程》教案、教学设计

九年级数学上册《二次函数与一元二次方程》教案、教学设计
2.教学过程:
(1)教师给出练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生的疑问。
(3)教师挑选部分学生的作业进行展示、讲解,总结解题方法。
(五)总结归纳
1.教学内容:总结二次函数与一元二次方程的知识点,梳理知识结构。
2.教学过程:
(1)教师引导学生回顾本节课所学内容,总结二次函数与一元二次方程的知识点。
(2)学生分享自己的学习心得,交流学习过程中遇到的困难和解决方法。
(3)教师总结归纳,强调重点,指出易错点,为课后复习提供指导。
五、作业布置
为了巩固学生对二次函数与一元二次方程知识点的掌握,提高学生的实际应用能力,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,加深对二次函数与一元二次方程概念的理解。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一次函数、一元一次方程等知识点有了深入的理解和掌握。在此基础上,学生对二次函数与一元二次方程的学习将更加顺利。然而,由于二次函数与一元二次方程的概念较为抽象,学生在理解上可能会遇到一定的困难。此外,学生在解决实际问题时,可能会对知识点的运用感到困惑。
2.从生活中的实际问题出发,选取一个案例,将其抽象为二次函数与一元二次方程模型,并求解。要求撰写解题过程,明确解题思路和方法。
3.小组合作,共同完成一道拓展题。题目如下:
拓展题:已知抛物线y = ax^2 + bx + c(a≠0)的图象,求该抛物线与x轴的交点坐标。
要求:各小组通过讨论、探究,给出至少两种解题方法,并在课堂上分享解题过程和心得。
4.培养学生面对困难、挑战的精神,鼓励学生勇于尝试、不断探索,树立克服困难的信心。

初中数学《二次函数与一元二次方程》教案

初中数学《二次函数与一元二次方程》教案

教学设计如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?探究点一:二次函数与一元二次方程 【类型一】二次函数图象与x 轴交点情况判断下列函数的图象与x 只有一个交点的是( )A .y =x 2+2x -3B .y =x 2+2x +3C .y =x 2-2x +3D .y =x 2-2x +1解析:选项A 中b 2-4ac =22-4×1×(-3)=16>0,选项B 中b 2-4ac =22-4×1×3=-8<0,选项C 中b 2-4ac =(-2)2-4×1×3=-8<0,选项D 中b 2-4ac =(-2)2-4×1×1=0,所以选项D 的函数图象与x 轴只有一个交点,故选D.【类型二】利用二次函数图象与x 轴交点坐标确定抛物线的对称轴如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x =2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x 轴交点情况确定字母取值范围若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-2解析:若m ≠0,二次函数与x 轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m =0,原函数是一次函数,图象与x 轴也有一个交点.由(m +2)2-4m (12m +1)=0,解得m =2或-2,当m =0时原函数是一次函数,图象与x 轴有一个交点,所以当m =0,2或-2时,图象与x 轴只有一个交点.方法总结:二次函数y =ax 2+bx +c ,当b 2-4ac >0时,图象与x 轴有两个交点;当b 2-4ac =0时,图象与x 轴有一个交点;当b 2-4ac <0时,图象与x 轴没有交点.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x>3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.。

《22.2 二次函数与一元二次方程》教案、教学设计、导学案

《22.2 二次函数与一元二次方程》教案、教学设计、导学案

《22.2 二次函数与一元二次方程》教案【教学目标】1.通过探索,理解二次函数与一元二次方程之间的联系.2.能运用二次函数及其图象确定方程和不等式的解或解集.3.根据函数图象与x轴的交点情况确定未知字母的值或取值范围.【教学过程】一、情境导入如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?二、合作探究探究点一:二次函数与一元二次方程【类型一】二次函数图象与x轴交点情况判断下列函数的图象与x只有一个交点的是( )A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点,故选D.【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x=2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x轴交点情况确定字母取值范围若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0 B.0或2C.2或-2 D.0,2或-2解析:若m≠0,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m=0,原函数是一次函数,图象与x轴也有一个交点.由(m+2)2-4m(12m+1)=0,解得m=2或-2,当m=0时原函数是一次函数,图象与x轴有一个交点,所以当m=0,2或-2时,图象与x轴只有一个交点.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x 轴没有交点.【类型四】利用抛物线与x轴交点坐标确定一元二次方程的解小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax +b=0的解是( )A.无解B.x=1C.x=-4D.x=-1或x=4解析:∵二次函数y=x2+ax+b的图象与x轴交于(-1,0)和(4,0),即当x=-1或4时,x2+ax+b=0,∴关于x的方程x2+ax+b=0的解为x1=-1,x=4,故选D.2方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1解析:观察图象,可知当-3<x<1时,抛物线在x轴上方,此时y>0,即ax2+bx+c>0,∴关于x的不等式ax2+bx+c>0的解集是-3<x<1.故选C.方法总结:抛物线y=ax2+bx+c在x轴上方部分的点的纵坐标都为正,所对应的x的所有值就是一元二次不等式ax2+bx+c>0的解集;在x轴下方部分的点的纵坐标均为负,所对应的x的所有值就是一元二次不等式ax2+bx+c<0的解集.【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x >3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.三、板书设计【教学反思】教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况.体会知识间的相互转化和相互联系.《22.2 二次函数与一元二次方程》教学设计【教学目标】知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.【教学重点和难点】重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.【教学过程设计】(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t—5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2ax bx c++的图像与x轴相交,那么交点的横坐标就是一元二次方程2ax bx c++=0的根.(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x,那么当x=x0时,函数的值是0,因此x=x就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计《22.2 二次函数与一元二次方程(第一课时)》教案【教学目标】:1.知识与技能:通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系.2.方法与过程:使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识.3.情感、态度与价值观:进一步培养学生综合解题能力,渗透数形结合思想.【教学重点】:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点.【教学难点】:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.本节课,请同学们共同研究,尝试解决以下几个问题二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+4 5 .(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?问题2:画出函数y=x2-x-3/4的图象,根据图象回答下列问题.(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y=0?这里x的取值与方程x2-x-34=0有什么关系?(3)你能从中得到什么启发?对于问题(2),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x-34的图象与x轴交点的横坐标,即为方程x2-x-34=0的解;从“数”的方面看,当二次函数y=x2-x-34的函数值为0时,相应的自变量的值即为方程x2-x-34=0的解.更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系.三、课堂练习: P23练习1、2.五、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况.六、作业:《22.2 二次函数与一元二次方程(第二课时)》教案【教学目标】:1.知识与能力:复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.2.方法与过程:让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解.3.情感、态度与价值观:提高学生综合解题能力,渗透数形结合思想.【教学重点】;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点.【教学难点】:提高学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解.(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解.二、探索问题已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m =1所以y1=x+1,P(3,4). 因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k +8 解得 k =2 所以y 1=2x 2-8x +10(2)依题意,得⎩⎪⎨⎪⎧y =x +1y =2x 2-8x +10 解这个方程组,得⎩⎪⎨⎪⎧x 1=3y 1=4 ,⎩⎪⎨⎪⎧x 2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).五、小结: 如何用画函数图象的方法求方程的解?六、作业:《22.2二次函数与一元二次方程》导学案【学习目标】:1.探索二次函数与一元二次方程、一元二次不等式之间的关系.2.掌握一元二次方程(组)的图象解法.【重点、难点】1.重点:探索二次函数与一元二次方程、一元二次不等式之间的关系.2.难点:掌握一元二次方程(组)的图象解法.【导学过程】:阅读教材P16 — 19 , 完成课前预习【课前预习】1:准备知识(1) 一元二次方程根的情况:(2)一次函数与一元一次方程的关系:2:探究1以40米/秒的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程与二次函数之间的关系教学案例一、教材分析:
本节是(人教版)九年级上册第二十一章第二节,这节课是在学生学习了二次函数的概念、图象、性质及其相关应用的基础上,进一步探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。

这样,学生结合实际问题就能对二次函数与一元二次方程的关系有很好的体会;从而利用二次函数的图象求一元二次方程的解。

从而把数与形有机的结合起来。

利用函数解决方程以及实际问题。

本节教学时间安排1课时
二、教学目标:
知识技能:
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解抛物线交x轴的交点的个数与一元二次方程的根的个数之间的关系。

3.能够利用二次函数的图象求一元二次方程的近似根。

方法与过程
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.
3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

情感态度与价值观
1.经历探索二次函数与一元二次方程的关系的过程,体验数学的奥妙,感受数学的严谨性以及数学结论的确定性。

2.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。

2.通过学生共同观察和讨论,培养大家的合作交流意识。

三、教学重点、难点:
教学重点:
1.一元一次方程的解与二次函数图像之间的关系。

2.能够利用二次函数的图象求一元二次方程的近似根。

教学难点:
1.探索方程与函数之间关系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

四、教学方法:启发引导合作交流总结发现
五:教具、学具:课件
六、教学过程:
[活动1] 复习回顾1.一元一次方程和二次函数的有关知识
预习作业:
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x -2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
师生共识:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2] 创设情境探究新知
1. 课本P94问题.
2. 结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?
1. 结合预习题1,完成课本P94 观察中的题目。

师生共识:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程
ax2+bx+c=0的根有什么关系?
二次函数y=ax2+bx+c的图象和x 轴交点一元二次方程ax2+bx+c=0的根
一元二次方程ax2+bx+c=0根的判别式
Δ=b2-4ac
两个交点两个相异的实数根 b2-4ac > 0一个交点两个相等的实数根 b2-4ac = 0
没有交点没有实数根 b2-4ac < 0
教师重点关注:
1.学生能否把实际问题准确地转化为数学问题;
2.学生在思考问题时能否注重数形结合思想的应用;
3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3] 展示评价巩固深化
问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4] 练习反馈巩固新知
(1)P97.习题1、2(1)。

师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

七、自主小结,深化提高:
1.通过这节课的学习,你获得了哪些数学知识和方法?
2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

设计意图:
1.题促使学生反思在知识和技能方面的收获;
2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。

八、分层作业,发展个性:
作业设计:(必做题)
1.阅读教材并完成P97习题21。

2:3、4.
设计意图:分层作业,使不同层次的学生都能有所收获。

十、教学反思:
1.注重知识的发生过程与思想方法的应用
本节内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。

这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

2.关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

3.强化行为反思
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。

说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。

通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。

“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程
标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。

通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

4.优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

相关文档
最新文档