框架结构内力组合
框架结构课程设计(1)

M bl
r Mb
Mu c
l ib M bl l r ( M cu M cl ) ib ib r ib r M b l r ( M cu M cl ) ib ib
水平荷载作用下的D值法 六、梁剪力、柱轴力等 同用分层法进行竖向荷载下内力计算,即:
取各梁为隔离体,由平衡关系 求得梁端剪力。
15.81kN 27.39kN 31.77kN 22.33kN
A2
15.81kN
B2
59.16kN
C2
22.33kN
29.01kN 20.89kN
72.36kN 33.11kN 38.67kN
35.53kN 28.83kN
A1
49.9kN
B1
144.14kN
C1
64.36kN
竖向荷载作用下的分层法
框架在竖向荷载作用下的计算简图:
双 向 板
双向板
单
向
板
用分层法进行竖向荷载作用下框架的内力计算。
框架在水平荷载(风载)作用下的计算简图:
视为均匀分布,风压高度变 化系数按框架顶部标高确定。
进一步将均布荷载简化为作 用在梁柱节点上的水平集中力。
框架在水平荷载(风载)作用下的计算简图:
用反弯点法或D值法进行水平荷载作用下框架的内力计算。
梁端截面: M max、 M max、Vmax
跨中截面: M max
M max 及相应的N和V
Nmax及相应的M和V
N min及相应的M和V
六、框架结构的结构构件设计
1、排架柱的计算长度l0(见教材表13-2) 2、框架节点的构造要求
A2 15.81
B2 59.16
C2 22.33
框架结构的内力和位移计算(精)

假定: (1)平面结构假定; (2)忽略柱的轴向变形; (3)D值法考虑了结点转角, 假定同层结点转角相等
2019/3/19
27
D 值法
计算方法 1、D值——修正抗侧刚度的计算 水平荷载作用下,框架不仅有侧移, 且各结点有转角,设杆端有相对位 移 ,转角 、 ,转角 1 2 位移方程为:
2019/3/19
22
反弯点法
2、剪力的计算 根据假定1:
V1 j d1 j j
Vij d ij j
Vij , d ij
——第j层第I根柱的剪力及其抗侧刚度
第j层总剪力
V pj
Vpj V1 j V2 j Vmj
2019/3/19 23
反弯点法
V1 j
第j层各柱剪力为
M ( z) N B
M(z)——上部水平荷载对坐标Z力矩总和 B——两边柱轴线间的距离
N
2019/3/19 44
柱轴向变形产生的侧移
N j
任意水平荷载下柱轴向变形产生的第j层处侧移 把框架连续化,根据单位荷载法:
2 ( NN / EA)dz
N j 0
Hj
N ( H j z) / B
框架结构的内力和位移计算荷载和设计要求51计算简图计算简图计算简图计算简图计算简图52竖向荷载作用下的近似计算方法分层法分层法分层法分层法力学知识回顾分层法计算过程构件弯矩图53水平荷载作用下内力近似计算方法反弯点法反弯点法弯点法反弯点法反弯点法反弯点法反弯点法反弯点法54水平荷载作用下内力近似计算方法d55水平荷载作用下侧移的近似计算梁柱刚度比k中柱
2019/3/19
9
计算简图
二、结构构件的截面抗弯刚度 考虑楼板的影响,框架梁的截面抗弯刚度应适当提高 现浇钢筋混凝土楼盖: 中框架:I=2I0 边框架:I=1.5I0 装配整体式钢筋混凝土楼盖: 截面形式选取: 框架梁跨中截面: 中框架:I=1.5 I0 T型截面 边框架:I=1.2 I0 框架梁支座截面: 装配式钢筋混凝土楼盖: 矩形截面 中框架:I=I0 边框架:I=I0 注:I0为矩形截面框架梁的截面惯性矩
水平地震作用下框架结构的内力计算抗震设计

2 抗震设计(水平地震作用下框架结构的内力计算)抗震计算单元及动力计算简图取整个衡宇或抗震缝区段(设防震缝时)为计算单元,动力计算简图为串联多自由度体系。
即将各楼层重力荷载代表值集中于每一层楼盖或屋盖标高处。
多自由度体系的抗震计算可采用振型分解反映谱法和底部剪力法。
本工程总高不超过40m,以剪切变形为主,且质量和刚度沿高度散布比较均匀,近似于单质点体系,故采用底部剪力法。
此法是先计算出作用于结构的总水平地震作用,然后将其按必然规律分派给各质点。
计算简图2—1 如下示:图2—1重力荷载代表值按照抗震规范1.0.2 抗震设防烈度为6度及以上地域的建筑,必须进行抗震设计。
按照抗震规范5.1.3 计算地震作用时,建筑的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和。
各可变荷载的组合值系数,应按表2—1采用。
组合值系数重力荷载代表值计算:1)屋面及楼面的永久荷载标准值1.屋面(上人)苏J01—2005:a. 10厚防滑地砖铺面,干水泥擦缝,每3—6m留10宽缝m2b. 20厚1:水泥砂浆加建筑胶结合层找平层20×= kN/m2厚C20细石混凝土,内配Φ4@150双向钢筋25×= kN/m2d.隔离层/e. 三粘四油沥青油毡防水层m2f. 冷底子油一道/g. 20厚1:3水泥砂浆找平层20×= kN/m2h.保温层5×= kN/m2厚1:3水泥砂浆找平层20×= kN/m2j.现浇或预制钢筋混凝土屋面25×= kN/m2 合计kN/m2 2.1~4层楼面苏J01—2005a. 15厚1:2白水泥白石子磨光打蜡kN/m2b.耍素水泥浆结合层一道/c. 20厚1:3水泥砂浆找平层20×= kN/m2d.现浇钢筋混凝土楼面25×= kN/m2合计kN/m2 2)屋面及楼面的可变荷载标准值上人屋面均布荷载标准值kN/m2 楼面活荷载标准值kN/m2 屋面雪荷载标准值S k=μr×S o=×= kN/m2式中:μr为屋面积雪散布系数,取μr=3)梁、柱、墙、窗、门重力荷载计算:a.梁、柱可按照截面尺寸、材料容重及粉刷等计算出的单位长度上的重力荷载;对墙、门、窗等可计算出单位面积上的重力荷载,计算结构如表2—2梁、柱重力荷载标准值表b.墙、门、窗重力荷载标准值:外墙体为200mm厚的粘土空心砖,外墙面贴马赛克(kN/m2),内墙面为20mm厚的抹灰,则外墙的单位墙面重力荷载为:+15×+17×= kN/m2内墙为200mm厚的粘土空心砖,双侧均为20mm厚抹灰,则内墙单位面积重力荷载为:15×+17××2= kN/m2电梯井墙为240mm粘土空心砖,双侧均为20mm厚抹灰,则电梯井墙单位面积重力荷载为:15×+17××2= kN/m2木门单位墙面重力荷载为kN/m2,钢铁门单位墙面重力荷载为kN/m2铝合金单位墙面重力荷载为kN/m2门、窗、雨棚重力荷载代表值:一层门窗:×(2××2+××2+××3+××1+××2)+×××13+××1+××2+××2+××3+××2) +×××2)=二~四层门窗:×××2+××3)+×××16+××2+××2+××2+××3+××2)= kN五层门窗:×××2+×+×××3+××2)= kNA轴的雨蓬:25×(2××+×××3+×××2= kN9轴雨蓬:25×××= kN五层雨蓬:25×××3= kN楼梯重力荷载代表值:一层:25××××2+25×××+25××××10+25×××9×2= kN二~四层:25××××2+25×××12+25×××12= kN外墙的重力荷载代表值:一层:×[(59×2-×11×2-×14)×+-×4)×+-×4)×-××13-××1-××2-××2-××3-××2-××2-2××2-××1-××2-×]=二~四层:×[(59×2-×11×2-×14)×+-×4)×+-×4)×-××16-××2-××2-××2-××3-××2]= kN五层(包括女儿墙):×[×4+×2) ×+4××+××1-××2-××3-××3]+25×[+59+9+9+--×2)×2+--×2)×5]××+25×[4×4+×4+9×2]××=内墙的重力荷载代表值:一层:×[(4×2+×2)×++×-×++++×-×-×+4×3×-××2]= kN二~四层:×[+++×+4×3×-××3-×+×+×-×]= kN五层:×4×=电梯井墙重力荷载代表值:一层:×[+-×+(4+×]= kN二~四层:×[+-×+(4+×]= kN屋顶装饰架重力荷载代表值:25××5+×2)××= kN总的重力荷载代表值:恒荷载取全数,活荷载取50%(按均布等效荷载计算),则集中于各楼层的标高出的重力荷载代表值为:G i的计算进程:一层:×(59×-×4×2-4×+++++++++×4×59×= kN二~三层:×(59×-4××2-4×+++++++×4×59×= kN四层:×9×4+++++++×(59×-×4×2-9×4)+×4×(9×4+×4×2)+××(59×-×4×2-9×4)= kN五层:××4×2+9×4)+++++++××(9×4+×4×2)= kN 故G1=G2= kNG3= kNG4= kNG5=图2—2如下:G5=3124.87kNG4=18184.16kNG1=17311.22kNG2=17311.22kNG5=18568.35kN图2—2 各质点的重力荷载代表值框架侧移刚度计算梁线刚度:i b=E c I b/l,I b=(中框架梁),I b=(边框架梁)。
内力组合及内力调整

7 内力组合及内力调整7.1内力组合各种荷载情况下的框架内力求得后,根据最不利又是可能的原则进行内力组合。
当考虑结构塑性内力重分布的有利影响时,应在内力组合之前对竖向荷载作用下的内力进行增幅。
分别考虑恒荷载和活荷载由可变荷载效应控制的组合和由永久荷载效应控制的组合,并比较两种组合的内力,取最不利者。
由于构件控制截面的内力值应取自支座边缘处,为此,进行组合前,应先计算各控制截面处的(支座边缘处的)内力值。
1)、在恒载和活载作用下,跨间max M 可以近似取跨中的M 代替,在重力荷载代表值和水平地震作用下,跨内最大弯矩max M 采用解析法计算:先确定跨内最大弯矩max M 的位置,再计算该位置处的max M 。
当传到梁上的荷载为均布线荷载或可近似等效为均布线荷载时,按公式7-1计算。
计算方式见图7-1、7-2括号内数值,字母C 、D 仅代表公式推导,不代表本设计实际节点标号字母。
2max182M M M ql +≈-右左 且满足2max 116M ql = (7-1) 式中:q ——作用在梁上的恒荷载或活荷载的均布线荷载标准值;M 左、M 右——恒载和活载作用下梁左、右端弯矩标准值;l ——梁的计算跨度。
2)、在重力荷载代表值和地震作用组合时,左震时取梁的隔离体受力图,见图7-1所示, 调幅前后剪力值变化,见图7-2。
图7-1 框架梁内力组合图图7-2 调幅前后剪力值变化图中:GC M 、GD M ——重力荷载作用下梁端的弯矩; EC M 、CD M ——水平地震作用下梁端的弯矩C R 、D R ——竖向荷载与地震荷载共同作用下梁端支座反力。
左端梁支座反力:()C 1=2GD GC EC ED ql R M M M M l--++;由0M ddx=,可求得跨间max M 的位置为:1C /X R q = ; 将1X 代入任一截面x 处的弯矩表达式,可得跨间最大弯矩为: 弯矩最大点位置距左端的距离为1X ,1=/E X R q ;()101X ≤≤; 最大组合弯矩值:2max 1/2GE EF M qX M M =-+;当10X <或11X >时,表示最大弯矩发生在支座处,取1=0X 或1=X l ,最大弯矩组合设计值的计算式为:2max C 11/2GE EF M R X qX M M =--+; 右震作用时,上式中的GE M 、EF M 应该反号。
第七章-内力组合

第7章 框架结构的内力组合§7.1框架结构梁内力组合§7.1.1. 框架结构梁的内力组合在竖向荷载作用下,可以考虑梁端塑性变形内力重分布而对梁端负弯距进行调幅,调幅系数为现浇框架:0.8-0.9,本设计取0.85。
计算结果见表7-1 横梁弯矩调幅。
由于风荷载作用下的组合与考虑地震组合相比,一般较小,对于结构设计不起控制作用,故不考虑。
只考虑以下三种组合形式: 一.由可变荷载效应控制的组合:1.2 1.4QK QKS S S =+(71)-二.由永久荷载效应控制的组合:1.35 1.40.7QK QK S S S =+⨯⨯ (72)-三.竖向荷载与水平地震作用下的组合:1.2(0.5) 1.3QK QK EK S r S S =+⨯+ (73)-具体组合过程见表7.2,其中弯矩KN.m ,剪力KN ,弯矩的上部受拉为负,剪力的产生顺时针为正。
表7-1 横梁弯矩调幅§7.1.2 梁端弯矩控制值梁的支座截面考虑了柱支撑宽度的影响,按支座边缘截面的弯矩计算,即:`/2=-⨯(7-4),M M V b式中:M为梁内力组合表中支座轴线的弯矩值;V为相应的支座剪力;b为相应的柱的宽度;计算结果见表7-3表7-3 梁端弯矩控制值§7.1.3梁端截面组合的剪力设计值调整为防止梁在弯曲屈服前发生剪切破坏,即保证“强剪弱弯”截面设计须对有地震作用的组合剪力设计值按(7-5)进行调整。
()/lr vb b b n GB V M M l V η=-+ (7-5)式中:n l 为梁的净跨;GB V :为梁的重力荷载代表值,按简支梁分析的梁端截面剪力设计值;,l r b b M M :分别为梁左右净截面,逆时针或顺时针方向的弯矩设计值;vb η:为梁端剪力增大系数,对于二级框架取1.2 计算结果见表7-4§7.2框架结构柱的内力组合§7.2.1框架结构柱的内力组合柱上端控制值截面在梁底,下端在梁顶,应按轴线计算简图所得的柱端内力值换成控制截面的相应值,此计算为简化起见,采用轴线处内力值。
框架在地震作用下内力计算

框架在地震和重力作用下内力计算学生姓名:张育霜学号:20120322029指导老师:1建筑说明 (1)1.1工程概况 (1)1.2 设计资料 (1)1.3总平面设计 (1)1.4主要房间设计 (1)1.5辅助房间设计 (1)1.6交通联系空间的平面设计 (2)1.7剖面设计 (2)1.8立面设计 (3)1.9构造设计 (3)2框架结构布置 (3)2.1计算单元 (4)2.2框架截面尺寸 (4)2.3梁柱的计算高度(跨度) (4)2.4框架计算简图 (5)3恒荷载及其内力分析 (6)3.1屋面恒荷载 (6)3.2楼面恒荷载 (7)3.3构件自重 (7)3.6恒荷载作用下内力分析 (10)4活荷载及其内力分析 (13)4.1屋面活荷载 (13)4.2楼面活荷载 (13)4.3内力分析 (13)5重力荷载及水平振动计算 (17)5.1重力荷载代表值计算 (17)5.2水平地震作用计算 (17)6内力组合计算 (22)6.1框架梁内力组合 (22)6.2框架柱内力组合 (25)7截面设计 (31)7.1框架梁的配筋计算 (31)7.2框架柱的配筋计算 (40)7.3框架梁、柱配筋图 (52)8基础设计 (55)8.1对A柱基础配筋计算 (55)8.2 对B柱基础配筋计算....................................... 错误!未定义书签9双向板的设计...................................................... 错误!未定义书签9.1设计资料................................................. 错误!未定义书签9.2荷载设计值............................................... 错误!未定义书签参考文献.......................................................... 错误!未定义书签1建筑说明1.1工程概况本建筑位于北京市某高校内,六层现浇钢筋混凝土框架结构,房间开间7.2米,层高3.6米。
内力组合计算书

内力组合《抗震规范》第条规定如下。
截面抗震验算结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算:G GE Eh Ehk Ev Evk w w wkS S S S S γγγψγ=+++ ()式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值;γG ——重力荷载分项系数,一般情况应采用,当重力荷载效应对构件承载能力有利时,不应大于; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表 采用; γw ——风荷载分项系数,应采用;s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ;ψw ——风荷载组合值系数,一般结构取,风荷载起控制作用的高层建筑应采用。
注:本规范一般略去表示水平方向的下标。
表 地震作用分项系数结构构件的截面抗震验算,应采用下列设计表达式:RE RS γ=式中: γRE ——承载力抗震调整系数,除另有规定外,应按表采用;R ——结构构件承载力设计值。
表 承载力抗震调整系数当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用。
本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表结构安全等级设为二级,故结构重要性系数为0 1.0γ=根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。
其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+⨯ 活荷载控制下:Gk Qk S 1.2S 1.4S =+有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+±对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为,,,,。
框架结构的内力组合及截面设计

框架梁的控制截面最不利内力组合有以下几种: 1) 梁端支座截面 M 、 max M max 和 Vmax 。 2) 梁跨中截面 M 、 max M max 。
(2)框架柱 柱的内力包括弯矩、剪力和轴力。框架柱的控制截面一般在柱
的两端,柱的两端为弯矩最大值,剪力和轴力在同一层中无变化或 变化很小。
由于框架柱一般采用对称配筋,组合时要选择绝对值 最大的弯矩,柱最不利内力可归纳成以下四种:
① Mmax 及相应的 N 、V 。 ② N max 及相应的 M 、V 。 ③ Nmin 及相应的 M 、V 。 ④ M 比较大(不是绝对最大),但N比较小或比较大(不是绝 对最小或最大)。绝对最大或最小的内力不一定就是最不利 的,对大偏心受压构件,若 M 不是最大,而N较小,则 e0 M / N 最大,截面配筋可能最多;对小偏心受压构件, e0 越小截面配筋越多。
对于现浇框架,支座弯矩的调幅系数采用 0.8~0.9;对于装配整体式框架,由于钢筋焊接 及接缝不密实等原因,后浇节点连接刚度较差, 受力后可能产生节点变形,造梁端弯矩降低, 调幅系数取0.7~0.8。
支座弯矩降低会引起跨中弯矩增加,但荷 载组合求出的跨中最大正弯矩和支座最大负弯 矩不是在同一荷载作用下出现的,支座弯矩调 幅后,若调幅后的跨中弯矩不超过跨中最不利 正弯矩,跨中配筋不必增大。
以上组合中前三组用来计算柱正截面受压 承载力,以确定纵向受力钢筋数量;第四组用以 计算斜截面受剪承载力,以确定箍筋数量。
进行内力分析时是以柱轴线处考虑的,实际 梁支座截面的最不利位