实验二典型系统的时域响应分析实验仿真报告答案

合集下载

《自动控制原理》典型环节的时域响应实验报告

《自动控制原理》典型环节的时域响应实验报告
Td脉冲函数,脉冲宽度为零,幅值为无穷大,在实际中是得不到的。
(4)模拟电路图:如图1.1-10所示。
图1.1-10
6.比例积分微分环节(PID)
(1)方框图:如图1.1-11所示。
图1.1-11
(2)传递函数:0(()) =+ 1+
(3)阶跃响应:() =+ 1+(),
其中=01,=01,=1220,()为单位脉冲函数。
(4)模拟电路图:如图1.1-12所示。
图1.1-12
三、主要仪器设备
计算机1台,MATLAB软件
四、操作方法与实验步骤
1、在Simulink中分别按照各典型环节的框图构建各环节,观察仿真波形,对于同一个典型环节:改变s的系数,比较仿真波形,分析波形特点;对于不同的典型环节:对比s具有相同系数时的仿真波形。
4、了解参数变化对典型环节动态特性的影响,掌握各典型环节的工作特点。
二、实验内容和原理
典型环节分别有比例、积分、微分、惯性、比例积分、比例微分、比例积分微分等环节,在不同输入信号下将会有不同的输出响应,呈现出不同的工作特点,其方框图、传递函数、模拟电路等如下所示:
1、比例环节(P)
(1)方框图:如图1.1-1所示。
2、检查搭接电路,确保电路无误;将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。开启设备电源;将开关设在“方波”档,分别调节调幅和调频旋钮,使得“OUT”端输出的方波幅值为1V,周期为10s左右。
3、将调整好的方波信号(替代阶跃信号)加至典型环节的输入端Ui,用示波器的“CH1”和“CH2”分别测量模拟电路的输入Ui端和输出U0端,观测输出端的实际响应曲线U0(t),记录实验波形及结果。

《自动控制原理》实验2(线性系统时域响应分析)

《自动控制原理》实验2(线性系统时域响应分析)

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。

则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。

实验2离散时间LTI系统的时域分析

实验2离散时间LTI系统的时域分析

实验二 离散时间LTI 系统的时域分析一 实验目的(1) 学会运用MATLAB 求解离散时间系统的零状态响应;(2) 学会运用MATLAB 求解离散时间系统的单位取样响应;(3) 学会运用MATLAB 求解离散时间系统的卷积和。

二 实验原理及实例分析1、离散时间系统的响应离散时间LTI 系统可用线性常系数差分方程来描述,即∑∑==-=-Mj jN i i j n x b i n y a 00)()( (1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。

MATLAB 中函数filter 可对式(1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。

函数filter 的语句格式为y = filter (b , a , x )其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。

【实例1】 已知某LTI 系统的差分方程为)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n=时,该系统的零状态响应。

解:MATLAB 源程序为>>a=[3 -4 0 2];>>b=[1 2]; >>n=0:30;>>x=(1/2).^n;>>y=filter(b,a,x);>>stem(n,y,'fill'),grid on>>xlabel('n'),title('系统响应y(n)')程序运行结果如图1所示。

2、离散时间系统的单位取样响应系统的单位取样响应定义为系统在)(n δ激励下系统的零状态响应,用)(n h 表示。

MATLAB 求解单位取样响应可利用函数filter ,并将激励设为前面所定义的impDT 函数。

自动控制原理实验 典型系统的时域响应和稳定性分析

自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

实验二-典型环节的时域分析和频域分析

实验二-典型环节的时域分析和频域分析

一、 实验名称:典型环节的时域分析和频域分析二、实验目的:(1) 理解、掌握matlab 模拟典型环节的根本方法,包括:比例环节、积分环节、一阶微分环节、惯性环节和振荡环节等。

(2) 熟悉各种典型环节的阶跃响应曲线和频域响应曲线 (3) 理解参数变化对动态特性的影响三、 实验要求:(1) 一人一机,独立完成实验内容 。

(2) 根据实验结果完成实验报告,并用A4纸打印后上交。

四、 时间:2022年11月21日 五、 地点:信自楼234实验报告:一、比例环节的时域分析和频域分析 比例环节的传递函数:()G s k(1) 当k=1:3:10时,绘制系统的阶跃响应曲线,分析k值的影响情况。

程序:for k=1:3:10;num=k;den=1;G=tf(num,den);figure(1);step(G); hold on; %翻开第1个图形窗口,绘制系统的阶跃响应曲线 endfigure(1); legend('k=1','k=4','k=7','k=10'); 曲线:结果分析:时域响应的结果就是把输入信号放大k 倍。

如图,输入信号为幅值为1的阶跃信号,因此,输出是幅值为k 的阶跃信号。

程序:for k=1:3:10;num=k;den=1;G=tf(num,den);figure(1);bode(G);hold on; %翻开第1个图形窗口,绘制系统的阶跃响应曲线 endfigure(1); legend('k=1','k=4','k=7','k=10');曲线:结果分析:比例环节对幅频有影响,输出信号的幅值为输入信号的20*lgk倍。

比例环节对相位没有影响,如图显示,相位特性为一条0度的程度线。

二、积分环节的时域分析和频域分析积分环节的传递函数:1 ()G ss=(1) 当k=1:3:10时,绘制系统()kG ss=的阶跃响应曲线,分析曲线特点。

典型环节的时域响应实验报告.doc

典型环节的时域响应实验报告.doc

典型环节的时域响应实验报告.doc
时域品响实验报告
实验目的:
本实验要求使用示波器对典型环节进行时域响应测试以及分析、评估环节上增益与相位特性。

实验原理:
示波器通过采用双向采样,检测来自信号源传输器的输入信号并将其转换为数字数据以及图形显示。

实验中使用一个典型环节对信号进行处理,示波器将其输入和输出的波形作为时域响应的测试对象,实验的目的是了解环节的相位特性以及增益计算,及通过观察响应信号的特点,判断环节的性能。

实验方法及步骤:
1. 使用测试设备准备实验的元器件,一个典型环节、一组示波器(主从),以及两组不同频率的信号源传输器
2. 使用示波器图形界面设置测量范围及分辨率,让示波器开始记录信号波形
3. 用信号源传输器向典型环节输入不同频率的信号
4. 记录典型环节响应信号输入及输出的幅值,计算该环节增益
5. 观察输入及输出信号的波形特性,判断环节的相位特性,以及反应时间等
6. 根据测量数据,计算环节的有效增益
实验结果:
通过这次实验得出的时域响应特性,描述了典型环节在不同信号频率下输出信号幅值以及输出信号相位特性及其波形特征,同时计算出该环节的有效增益。

结论:
本次实验分析该环节的时域特性,包括输出信号的增益以及相位特性,计算出该环节的有效增益处理,检测与测量数据吻合良好,可以正常使用该典型环节进行实际应用。

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告实验介绍:本实验以中南大学典型系统为研究对象,通过构建数学模型和实际建模结果,分析系统的时域响应和稳定性,以及初步探讨系统的性能和优化方法。

实验步骤:1、对中南大学典型系统进行数学建模,并得到系统的传递函数。

2、通过Matlab对系统的传递函数进行分析,得到系统的时域响应。

3、分析系统特征方程的根,判断系统的稳定性。

4、探讨系统的性能指标,并初步探讨系统的优化方法。

实验结果:1、数学模型及传递函数:根据中南大学典型系统的构成,我们可以得到其传递函数为:$$G(s) = \frac{Y(s)}{X(s)}=\frac{K}{s(T_1s+1)(T_2s+1)}$$2、时域响应分析:阶跃响应脉冲响应可以看出,在系统输入为阶跃信号时,系统的响应随着时间的增加逐渐趋于稳定;在系统输入为脉冲信号时,系统的响应在一定时间范围内会有一个稳定的振荡。

3、稳定性分析:我们根据系统的特征方程$$1+G(s)=0$$得到特征方程为:$$s^3+T_1T_2s^2+(T_1+T_2)s+K=0$$我们通过Matlab计算特征方程的根,得到系统的特征根分别为:$-0.0327\pm0.6480j$和$-2.4341$。

根据根的位置,我们可以判断系统的稳定性。

由于系统的根都在左半平面,因此系统是稳定的。

4、性能指标和优化方法:本实验中,我们主要关注系统的稳定性和响应速度等性能指标。

在实际应用中,我们可以通过调整系统控制参数,如增益$K$和时间常数$T_1$和$T_2$等,来优化系统的性能。

结论:本实验通过对中南大学典型系统进行数学建模和实际响应分析,得到了系统的传递函数、阶跃响应和脉冲响应等数学模型,并根据特征方程的根判断了系统的稳定性。

在探讨系统性能指标和优化方法的基础上,我们可以进一步探究系统的优化方案,并为实际控制应用提供参考。

【实验报告】一、二阶系统的电子模拟及时域响应测试

【实验报告】一、二阶系统的电子模拟及时域响应测试

实验名称:一二阶系统的电子模拟及时域响应测试课程名称:自动控制原理实验目录(一)实验目的 (3)(二)实验内容 (3)(三)实验设备 (3)(四)实验原理 (3)(五)一阶系统实验结果 (3)(六)一阶系统实验数据记录及分析 (7)(七)二阶系统实验结果记录 (8)(八)二阶系统实验数据记录及分析 (11)(九)实验总结及感想............................................................................错误!未定义书签。

图片目录图片1 一阶模拟运算电路 (3)图片2 二阶模拟运算电路 (3)图片3 T=0.25仿真图形 (4)图片4 T=0.25测试图形 (4)图片5 T=0.5仿真图形 (5)图片6 T=0.5测试图形 (5)图片7 T=1仿真图形 (6)图片8 T=1测试图形 (6)图片9 ζ=0.25s仿真图形 (8)图片10 ζ=0.25s测试图形 (8)图片11 ζ=0.5s仿真图形 (9)图片12 ζ=0.5s测试图形 (9)图片13 ζ=0.8s仿真图形 (10)图片14 ζ=0.8s测试图形 (10)图片15 ζ=1s仿真图形 (11)图片16 ζ=1s测试图形 (11)表格目录表格1 一阶系统实验结果 (7)表格2 二阶系统实验结果 (11)一二阶系统的电子模拟及时域响应测试(一)实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

(二)实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

(三)实验设备HHMN电子模拟机,实验用电脑,数字万用表(四)实验原理一阶系统:在实验中取不同的时间常数T,由模拟运算电路,可得到不同时间常数下阶跃响应曲线及不同的过渡时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二典型系统的时域响应分析
1. 实验目的
1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。

2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。

3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值范围的二阶系统曲线比较图。

4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。

2. 实验仪器
PC计算机一台,MATLAB软件1套
3. 实验内容
1)一阶系统的响应
(1) 一阶系统的单位阶跃响应
在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。

理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0)
由此得知,图形是一条单调上升的指数曲线,与理论分析相符。

(2) 一阶系统的单位斜坡响应
在SIMULINK 环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。

理论分析:C (s )=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4.
3) 一阶系统的单位脉冲响应
在medit 环境下,编译一个.m 文件,利用impulse ()函数可以得出仿真曲线图。

此处注意分析在SIMULINK 环境中可否得到该曲线图。

理论分析:C (s )=5/(0.8s+2)=(5/2)/(0.4s+1)可求的g(t)=6.25e^(-t/0.4),是一个单调递减的函数。

两种环境下得到的曲线图不一致。

2)二阶系统的单位阶跃响应
二阶系统的闭环传递函数标准形式为
其阶跃响应可以分以下情况解出
①当0=ζ时,系统阶跃响应为 )cos(1)(t t c n ω-=
②当10<<ζ时,系统阶跃响应为 )sin(11
1)(2θωζζω+--=-t e t c d t n
其中ζζθ/121-=-tg ,21ζωω-=n d
③当1=ζ时,系统阶跃响应为 t n n e t t c ωω-+-=)1(1)(
④当1>ζ时,系统阶跃响应为 ⎪⎪⎭⎫ ⎝⎛---=21221121)(λλζωλλt t n
e e t c 其中121---=ζζλ,122-+-=ζζλ
(1)自然角频率1=n ω
选取不同阻尼比=ζ0,0.2,0.4,0.6,0.8,1.0,2.0,用MATLAB 得到二阶系统阶跃响应曲线。

二阶系统ζ对系统响应的影响
分析:当wn一定时,?越小,振荡越厉害,当?增大到1以后,曲线变为单调上升。

(2)阻尼比5.0
ζ
=
选取不同自然角频率=
ω0.2,0.4,0.6,0.8,1.0,用MATLAB得到二阶系统阶跃响应曲
n
线,并分析比较不同自然角频率对应的系统输出的情况。

本题采用第三种,在SIMULINK 环境下搭建图1的模型,进行仿真,二阶系统阶跃响应
曲线。

分析:当?一定时,且处于欠阻尼状态时,wn 越大,则系统达到稳定时,所需要的时间越短。

(3) 系统动态性能分析 对于20520)(2++=
s s s G 表示的二阶系统 上升时间(s) 峰值时间(s) 最大超调量 调整时间(s)
曲线图 0.586 0.829 12% 1.57
公式计算 0.577 0.85 12% 1.60
解:wn=20=25,?=5/4..可知系统处于欠阻尼状态,由课本上的计算公式可得tr=0.577s ,tp=0.85s,Mp=0.12*100%,因为0〈?〈0.8,所以ts=1.60s.
结论:通过比较得知,tp,Mp,ts,的理论值与图片中的值基本一致。

3)高阶系统的单位阶跃响应
已知高阶系统的闭环传递函数为
用下式低阶系统近似原系统
解:p1=-5,p2=-1.5+2.5j,p3=-1.5-2.5j,p4=-0.3+j,p5=-0.3-j.由于闭环极点与系统的原闭环极点传递函数之极点相同,零点则不同。

对于高阶系统,极点均为负实数,而且无零点,则系统的暂态响应一定是非振荡的,响应主要取决于据虚轴最近的极点,。

若其他极点比最近极点的最大距离大5倍以上,则可以忽略前者对系统暂态过程的影响。

P1距p2没有5倍以上,而p3和p2不能看成一对偶极子,由于p4和p5离原点很近,所以影响也不能忽略。

所以不能被低阶系统代替。

(2)利用单位阶跃响应step( )、figure( )和hold on( )等函数和指令,在medit 环境下,编译一个.m 文件,能够将原系统和降阶系统的单位阶跃响应绘制在一个图中,记录它们的响应曲线和暂态性能指标(上升时间、峰值时间、超调量以及调整时间),进行比较分析。

num=[45];
den=[1,8.6,29.8,67.4,51,45];
G=tf(num,den);
step(G);
figure(1)
hold on
num1=[1];
den1=[1,0.6,1]; G1=tf(num1,den1); step(G1);
hold off。

相关文档
最新文档