小学六年级奥数逻辑推理题解
小学奥数六年级逻辑推理练习及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《⼩学奥数六年级逻辑推理练习及答案【三篇】》供您查阅。
【第⼀篇】 在下边的表格的每个空格内,填⼊⼀个整数,使它恰好表⽰它上⾯的那个数字在第⼆⾏中出现的次数,那么第⼆⾏中的五个数字依次是().分析:根据题意,采⽤假设法,依次排除不合适的数,即可得到正确的答案. 解答:先考虑表格中最右边4下⾯的填数, 如果4下⾯填1,这表明第⼆⾏中必有1个4, 由于4填在某数的下⾯,该数在第⼆⾏中就必须出现4次, 所以4必须填在1的下⾯, 这样0,2,3下⾯也都是1, 但第⼆⾏中并没有出现这些数, 所以不能满⾜要求; 同样可推知,在4下⾯不能填⼤于1的数, 所以4下⾯应该填0. 再看3下⾯的填数, 如果在3下⾯填1,那么第⼆⾏中有⼀个3,⽽且1下⾯已不能填0, 所以第⼆⾏中最多有两个0,从⽽3不能填在0的下⾯, 如果3填在1下⾯,则0和2下⾯都必须填1, 但2下⾯填1,说明第⼆⾏中有⼀个2,⽭盾, 如果3填在2下⾯,那么第⼆⾏中必须有三个2,这是不可能的. 综上所述,3下⾯不能填1,当然也不能填⼤于1的数,所以也必须填0. 如果第⼆⾏中再有⼀格填0,那么就出现三个0. 这样,在第⼀⾏的0下⾯空格中要填3,从⽽第⼀⾏中3下⾯就不能是0. 这与上⾯⽭盾.同样可推知第⼆⾏不能有四个0,所以第⼆⾏中只能有两个0,就是说在第⼀⾏的0下⾯填2. 再看第⼀⾏中剩下的1与2下⾯的填数.若在1下⾯填2,第2⾏必有两个1,这不可能,所以1下⾯必须填1. 最后我们看到第⼀⾏的2下⾯必须填2. 综上所述,第⼆⾏五个数字依次应填2,1,2,0,0. 点评:解答此题的技巧是:⽤假设法,即先假设其中填⼀个数,再根据题⽬推断,如果推出⽭盾则假设错误,反之假设正确.【第⼆篇】 在⼆⾏三列的⽅格棋盘上沿骰⼦的某条棱翻动骰⼦(相对⾯上分别标有1点和6点,2点和5点,3点和4点),在每⼀种翻动⽅式中,骰⼦只能向前或向右翻动.开始时,骰⼦如图1那样摆放,朝上的点数是2;最后翻动到如图2所⽰的位置.此时,骰⼦朝上的点数不可能是下列选项中的( )A.3 B.4 C.5 D.1 解答:解:如图所⽰:第⼀种路径:滚动到位置1处,1在下,则6在上;滚动到位置2处,2在下,5在上;滚动到3处,3在下,则4在上; 第⼆种路径:滚动到位置1处,1在下,则6在上;滚动到4处,3在下,4在上;滚动到3处,2在下,5在上; 第三种路径:滚动到5处,3在下,4在上;滚动到4处,1在下,6在上,滚动到3处,4在下,3在上; 所以最后朝上的可能性有3、4,5,6,⽽不会出现1,2. 故选:D. 点评:解决本题需要学⽣经历⼀定的实验操作过程,当然学⽣也可以将操作活动转化为思维活动,在头脑中模拟翻转活动,较好地考查了学⽣空间观念.【第三篇】 ⼀、填空1.观察下⾯这组图形的变化规律,在标号处画出相应的图形.2.下图是由9个⼩⼈排列的⽅阵,但有⼀个⼩⼈没有到位,请你从右⾯的6个⼩⼈中,选⼀位⼩⼈放到问号的位置.你认为最合适的⼈选是⼏号. 1.解答:这道题中的每⼀个图形是由⾥外两部分组成的,我们分开来看.先看外⾯的图形.外⾯的图形都是由△、□、○组成,并每⼀横⾏(或每⼀竖⾏)中都没有重复的图形.这样我们可以先确定①、②、③外⾯的图形.通过题⽬中给出的图形,我们不能确定出③的外部图形,因为不论③所在的横⾏还是③所在的竖⾏都只给出1个图形,所以我们应先确定出①和②的外部图形.①所在的横⾏中只有○和△,所以①的外部图形是□,②所在的竖⾏只有△和○,所以②的外部图形也是□,③所在的横⾏只有□和○,所以③的外部图形是△.然后按照这种⽅法确定内部图形,可知①的内部图形是□,②的内部图形是△,③的内部图形是○,形状确定好以后,我们还要注意各个图形的内部图形是有不同颜⾊的,分别由点状、斜线和空⽩三种组成,确定的⽅法和确定形状是完全相同的,请你⾃⼰把三个图的颜⾊确定出来.最后①、②、③应分别为:2.仔细观察,可发现图中⼩⼈的排列规律:即每⾏(列)的⼩⼈"⼿臂"(向上、⽔平、向下)."⾝腰"(三⾓形矩形、半圆),及"脚"(圆脚、⽅脚、平脚)各不相同.从中可知问号处的⼩⼈应是向上伸臂.矩形腰,圆脚的⼩⼈.即最合适的⼈选是6号.。
小学六年级奥数题-专题训练之逻辑推理问题

小学六年级奥数题:专题训练之逻辑推理问题1、甲、乙、丙、丁四位同学的运动衫上印了不同的号码。
赵说:甲是2号,乙是3号;钱说:丙是4号,乙是2号;孙说:丁是2号,丙是3丙;李说:丁是1号,乙是3号。
又知道赵、钱、孙、李每人都说对了一半,那么,丙的号码是( )号。
2、有一种俱乐部,里面的成员可以分成两类。
第一类是老实人,永远说真话。
第二类是骗子,永远说假话。
某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。
记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。
李四说:张三是老实人,那么李四是老实人还是骗子?3、一次游泳比赛,由甲、乙、丙、丁四个人参加决赛,赛前他们对比赛各说了一句话。
甲说:我第一,乙第二。
乙说:我第一,甲第四。
丙说:我第一,乙第四。
丁说:我第四,丙第一。
比赛结果无并列名次,且各人都只说对了一半。
那么,丁是第()。
4、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有()人。
5、甲、乙、丙、丁四人进行羽毛球双打比赛,已知:(1)甲比乙年轻;(2)丁比他的两个对手年龄都大;(3)甲比他的同伴年龄大;(4)甲与乙的年龄差距要比丙与丁的年龄差距大。
试判断谁与谁是同伴,并说出四人年龄从小到大的顺序。
6、一次国际足球邀请赛上,来自欧洲、美洲、亚洲、大洋洲、非洲的5支队伍均已到齐了,分组抽签仪式上,几位记者对各队的编号展开了讨论。
A记者:3号是欧洲队,2号是美洲队;B记者:4号是亚洲队,2号是大洋洲队;C记者:1号是亚洲队,5号是非洲队;D记者:4号是非洲队,3号是大洋洲队;E记者:2号是欧洲队,5号是美洲队。
结果,每人都只猜对了一半,那么1号是()队,3号是()队。
7、老师给甲、乙、丙各发一张写着不同整数的卡片。
老师:甲的卡片上写着一个两位整数,乙的卡片上写着一个一位整数,丙的卡片上写着一个比60小的两位整数,且甲的数×乙的数=丙的数。
【经典】小学六年级奥数— 逻辑推理图文百度文库

【经典】小学六年级奥数—逻辑推理图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.5.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.6.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是.7.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.8.如图所示的“鱼”形图案中共有个三角形.9.若质数a,b满足5a+b=2027,则a+b=.10.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.11.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.12.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.15.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.5.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.6.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,其余7个数每一个数为一组,即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,即最多能取12个数保证没有一个数是另一个的三倍,此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.所以n最小是13.7.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.8.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%11.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.12.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.15.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.。
小学六年级奥数第31讲 逻辑推理(一)(含答案分析)

第31讲逻辑推理(一)一、知识要点逻辑推理题不涉及数据,也没有几何图形,只涉及一些相互关联的条件。
它依据逻辑汇率,从一定的前提出发,通过一系列的推理来获取某种结论。
解决这类问题常用的方法有:直接法、假设法、排除法、图解法和列表法等。
逻辑推理问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,进行合情合理的推理,最后作出正确的判断。
推理的过程中往往需要交替运用“排除法”和“反正法”。
要善于借助表格,把已知条件和推出的中间结论及时填入表格内。
填表时,对正确的(或不正确的)结果要及时注上“√”(或“×”),也可以分别用“1”或“0”代替,以免引起遗忘或混乱,从而影响推理的速度。
推理的过程,必须要有充足的理由或重复内的根据,并常常伴随着论证、推理,论证的才能不是天生的,而是在不断的实践活动中逐渐锻炼、培养出来的。
二、精讲精练【例题1】星期一早晨,王老师走进教室,发现教室里的坏桌凳都修好了。
传达室人员告诉他:这是班里四个住校学生中的一个做的好事。
于是,王老师把许兵、李平、刘成、张明这四个住校学生找来了解。
(1)许兵说:桌凳不是我修的。
(2)李平说:桌凳是张明修的。
(3)刘成说:桌凳是李平修的。
(4)张明说:我没有修过桌凳。
后经了解,四人中只有一个人说的是真话。
请问:桌凳是谁修的?根据“两个互相否定的思想不能同真”可知:(2)、(4)不能同真,必有一假。
假设(2)说真话,则(4)为假话,即张明修过桌凳。
又根据题目条件了:只有1人说的是真话:可退知:(1)和(3)都是假话。
由(1)说的可退出:桌凳是许兵修的。
这样,许兵和张明都修过桌凳,这与题中“四个人中只有一个人说的是真话”相矛盾。
因此,开头假设不成立,所以,(2)李平说的为假话。
由此可退知(4)张明说了真话,则许兵、刘成说了假话。
所以桌凳是许兵修的。
练习1:1、小华、小红、小明三人中,有一人在数学竞赛中得了奖。
老师问他们谁是获奖者,小华说是小红,小红说不是我,小明也说不是我。
六年级趣味奥数题

六年级趣味奥数题我这儿有几个,不知是否好:1、逻辑推理:一个人要聘请一名职工。
同时有两个人来应聘,他就想测一测他们。
他把他们带到一个房间,拿出一个盒子,里面有2个红帽子和3个黑帽子。
他说:“我等一下把灯关掉,我们3人各重盒子里拿出一顶帽子戴上去。
开灯后,你们不能拿下自己的帽子,单看另外两个人的帽子,推出自己头上帽子的颜色。
”。
开灯了。
其中一个人看见另一个应聘者戴黑帽,主考人戴红帽。
他纳闷了。
3人迟迟没开口。
忽然,那一个人说:“我的是黑的!”他说对了。
如果两人的智力都差不多,那么,他是怎么知道自己头顶上的帽的颜色的?设主考人a,答对者b,未答对者c。
刚刚开始,a戴红,c戴黑,b不可能知道。
之后,c一直未开口。
假如b戴红的,因为只有2顶红,c智商不低,那么c肯定很快就能明白自己戴黑,但他没有,这说明b一定戴黑。
2、概率问题:3个人a,b,c进行抽奖活动。
规则是:3张盖着的票,其中一张为中奖票。
a先抽一张,如果a抽到了中奖票,奖是a的;如果没抽到,就由b抽,并且a抽过的那张没中奖票就扔掉。
b抽到了,就是b的,没抽到,奖就是c的。
问:a,b,c抽到的几率各是多少?解:都是3、1、a:13、1=3、1(a一定是3、1,这没错),b:2、13、2=3、1(b要从两张抽一张,而那两张是票总数的3、2),c:3、11=3、1(c就不用抽了,但那张是总数的3、1)。
3:列方程解应用题:甲骑着摩托车在公路上匀速行驶。
12点时,他看到的里程碑上的数是个两位数,个。
十位数的和是7;13点时里程碑上的数正好与12点时看到的数颠倒过来了;14点时碑上的数比12点时的两位数中间多了一个0。
问:12点时的数是几?(这个过程你就自己想吧。
这题如果不会,就用死推也可以。
小提示:从三个数的最高位和“匀速”下手)答:16。
六年级奥数专题 逻辑推理问题(学生版)

逻辑推理问题本讲知识可以说是多数孩子比较喜欢的一讲,有趣又可以开发智力,自主学习研究性比较高。
其中运用的一些方法和思想我们在平时的奥数学习中已经接触运用过了。
本讲我们主要从解答逻辑推理问题的方法入手讲解。
如假设法、列表法、排除法、比较法、整体考虑法等,通过实际例题具体讲解。
列表时要将同一对象的两种不同表达方式分别用行与列标出,通过横向与纵向的不断比较得出结论。
假设法“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,顺藤摸瓜,根据数量上出现的矛盾作适当调整,从而找到正确答案。
排除法还有一种组题形式的逻辑推理题(多为选择题),这种题型通常从题目条件出发,并结合排除法来确定选项。
一般的逻辑推理对于一般的逻辑推理题,要能够通过假设、枚举、列表或者列表与假设相结合等方法来分析,逐个探讨各种假设的正确性,进而得出确切的信息。
体育比赛中的逻辑推理问题对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
【试题来源】【题目】小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小. 问:谁是工人?谁是农民?谁是教师?【试题来源】【题目】甲、乙、丙每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们。
此外:(1)数学博士夸跳高冠军跳得高;(2)跳高冠军和大作家常与甲一起去看电影;(3)短跑健将请小画家画贺年卡;(4)数学博士和小画家很要好;(5)乙向大作家借过书;(6)丙下象棋常赢乙和小画家。
你知道甲、乙、丙各有哪两个外号吗?【试题来源】【题目】小明、小芳、小花各爱好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所小学上学。
小学奥数 逻辑推理 题集含答案

小学奥数逻辑推理题集含答案一、填空题1. 甲、乙、丙三人进行跑步比赛.A、B、C三人对比赛结果进行预测.A说:“甲肯定是第一名.”B说:“甲不是最后一名.”C说:“甲肯定不是第一名.”其中只有一人对比赛结果的预测是对的.预测对的是 .2. A、B、C、D、E和F六人一圆桌坐下.B是坐在A右边的第二人.C是坐在F右边的第二人.D坐在E的正对面,还有F和E不相邻.那么,坐在A和B之间的是 .3. 甲、乙、丙、丁与小明五位同学进入象棋决赛.每两人都要比赛一盘,每胜一盘得2分,和一盘得1分,输一盘得0分.到现在为止,甲赛了4盘,共得了2分;乙赛了3盘,得了4分;丙赛了2盘,得了1分;丁赛了1盘,得了2分.那么小明现在已赛了盘,得了分.4. 曹、钱、刘、洪四个人出差,住在同一个招待所.一天下午,他们分别要找一个单位去办事.甲单位星期一不接待,乙单位星期二不接待,丙单位星期四不接待,丁单位只在星期一、三、五接待,星期日四个单位都不接待.曹:“两天前,我去误了一次,今天再去一次,还可以与老洪同走一条路.”钱:“今天我一定得去,要不明天人家就不接待了.”刘:“这星期的前几天和今天我去都能办事.”洪:“我今天和明天去,对方都接待.”那么,这一天是星期 ,刘要去单位,钱要去单位,曹要去单位,洪要去单位.5. 四位外国朋友住在十八层高的饭店里,他们分别来自埃及、法国、朝鲜和墨西哥.(1)A住的层数比C住的层数高,但比D住的层数低;(2)B住的层数比朝鲜人住的层数低;(3)D住的层数恰好是法国人住的层数的5倍;(4)如果埃及人住的层数增加2层,他与朝鲜人相隔的层数,恰好和他与墨西哥人相隔的层数一样;(5)埃及人住的层数是法国人和朝鲜人住的层数的和.根据上述情况,请你确定A是人,住在层;B是人,住在层;C是人,住在层;D是人,住在层.6. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小张说:“它是84261.”小王说:“它是26048.”小李说:“它是49280.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们每人都猜对了位置不相邻的两个数字.”这个电话号码是 .7. 小赵的电话号码是一个五位数,它由五个不同的数字组成.小王说:“它是93715.”小张说:“它是79538.”小李说:“它是15239.”小赵说:“谁说的某一位上的数字与我的电话号码上的同一位数字相同,就算谁猜对了这个数字.现在你们三人猜对的数字个数都一样,并且电话号码上的每一个数字都有人猜对.而每个人猜对的数字的数位都不相邻”.这个电话号码是 .8. A、B、C、D四人定期去图书馆,四人中A、B二人每隔8天(中间空7天,下同)、C每隔6天、D每隔4天各去一次,在2月份的最后一天,四人刚好都去了图书馆,那么从3月1日到12月31日只有一个人来图书馆的日子有____ 天.9. 六年级六个班组织乒乓球单打比赛,每班派甲、乙两人参赛,根据规则每两人之间至多赛一场,且同班的两人之间不进行比赛.比赛若干场后发现,除一班队员甲以外,其他每人已比赛过的场数各不相同,那么一班队员乙已赛过____场.10. 人的血型通常为A型,B型,O型,AB型.子女的血型与其父母血型间的关系如下表所示:父母的血型子女可能的血型O,O OO,A A,OO,B B,OO,AB A,BA,A A,OA,B A,B,AB,OA,AB A,B,ABB,B B,OB,AB A,B,ABAB,AB A,B,AB现有三个分别身穿红,黄,蓝上衣的孩子,他们的血型依次为O,A,B.每个孩子的父母都戴着同颜色的帽子,颜色也分红,黄,蓝三种,依次表示所具有的血型为AB,A,O.那么穿红、黄、蓝上衣的孩子的父母戴帽子的颜色是、、 .二、解答题11. 刘毅、马宏明、张健三个男孩都有一个妹妹,六人在一起打乒乓球,进行男女混合双打,事先规定:兄妹不搭档.第一盘:刘毅和小萍对张健和小英;第二盘:张健和小红对刘毅和马宏明的妹妹.小萍、小红和小英各是谁的妹妹?12. 四位运动员分别来自北京、上海、浙江和吉林,在游泳、田径、乒乓球和足球四项运动中,每人只参加了一项,且四人的运动项目各个不相同,除此以外,只知道一些零碎情况:(1)张明是球类运动员,不是南方人;(2)胡老纯是南方人,不是球类运动员;(3)李勇和北京运动员、乒乓球运动员三人同住一个房间;(4)郑永禄不是北京运动员,年龄比吉林运动员和游泳运动员两人的年龄小;(5)浙江运动员没有参加游泳比赛.根据这些条件,请你分析一下:这四名运动员各来自什么地方?各参加什么运动?13. 老吴、老周、老杨分别是工程师、会计师和农艺师,还分别是业余作家、画家和音乐家,但不知道每人的职业及业余爱好,只知道:(1)业余音乐家、作家常和老吴一起看电影;(2)画家常请会计师讲经济学的道理;(3)老周一点也不爱好文学;(4)工程师埋怨自己对绘画、音乐一窍不通. 请你指出每个人的职业和爱好.14. 四个人聚会,每人各带了2件礼品,分赠给其余三个人中的二人,试证明:至少有两对人,每对人是互赠过礼品的.———————————————答 案——————————————————————1. CA 、C 的预测截然相反,必一对一错.因为只有一人对,不论A 、C 谁对,B 必 错,所以甲是最后一名,C 对. 2. E如右图,E 坐在A 、B 之间.3. 2,3.由题意可画出比赛图,已赛过的两人之间用线段引连(见右图).由图看出小明赛了2盘.因 为一共赛了六盘,共得12分,所以小明得了12-(2+4+1+2)=3(分).4. 三,丙,丁,甲,乙.由刘的讲话,知这一天是星期三,刘要去丙单位.钱要去丁单位,曹去的是甲单位,洪去的是乙单位.5. 埃及,8;法国,3;朝鲜,5;墨西哥,15.容易知道,墨西哥人住得最高,埃及人次之,朝鲜人又次之,法国人最低,各层次分别15,8,5和3.由(2)知B 是法国人,由(3)和D 是墨西哥人,由(1)知A 是埃及人,而C 是朝鲜人.6. 86240.因为每人猜对两个数字,三人共猜对 张:842±1 2⨯3=6(个)数字,而电话号码只有5位, 王:26048 所以必有一位数字被两人同对猜对.如右 李:49↑80图所示,猜对的是左起第三位数字2.因为每人猜对的两个数字不相邻,所以张、 李猜对的另一个数字分别在两端,推知王猜对的数字是6和4,进一步推知张猜对8,李猜对0.电话号码是86240. 7. 19735.因为每个数字都有人猜对,所以每人至少猜对两个数字.下页右上图中,同一甲丁小明位数中只有方框中的两个数相同,如果每人猜对的数字多于两位,相同的数字至少有3⨯3-5=4(组),所以每人恰好猜对两个数字. 王: 9 3 7 1 5三人共猜对2⨯3=6(个)数字,因为电话号码只有张: 7 9 5 3 85位,所以相同的一组是正确的,即左起第四位是李: 1 5 2 3 93.因为每人猜对的数字不相邻,所以张、李猜对的另一个数字都在前两位,王猜对的两个数字是7和5,进而推知张猜对9,李猜对1.电话号码是19735.8. 51天.):天, 306÷24=12…18,所以所求天数为4⨯12+3=51(天).9. 5根据题意,有11名队员比赛场数各不相同,并且每人最多比赛10场,所以除甲外的11名队员比赛的场数分别为0~10.已赛10场的队员与除已赛0场外的所有队员都赛过,所以已赛10场的队员与已赛0场的队员同班;已赛9场的队员与除已赛0、1场外的所有队员都赛过,所以已赛9场的队员与已赛1场的队员同班;同理,已赛8、7、6场的队员分别与已赛2、3、4场的队员同班;所以甲与已赛5场的队员同班,即乙赛过5场.注本题可以求出甲也赛了5场,分别与已赛10、9、8、7、6场的队员各赛1场.10. 蓝、黄、红.解法一题中表明,每个孩子的父母是同血型的.具有B型血的孩子,其父母同血型时,由表中可见,只能是B型或AB型,但题中没有同具B型血的父母,所以戴红帽子的父母的孩子穿蓝上衣.具有A型血的孩子的同血型的父母,只可能同为A型血或同为AB型血.今已知有一对父母为AB型血者,所以穿黄上衣的孩子的父母戴黄帽子.由表中可见,其孩子为O型血时,父母血型只能同为A型或B型或O型.今已知不具有同为B型血的父母,而同为A型血的父母的孩子已知具有A型血.把代表孩子的点与他的可能双亲的代表点之间连一直线段,便可得下面的图;由于孩子与其父母之间是唯一搭配的,所以,保存下来的只有连着红、蓝;黄,黄及蓝,红的三条边.所以,穿红上衣(O型血)孩子的父母戴蓝帽子.孩子衣服颜色父母帽子颜色(O型血)(AB型血)(A型血)(A型血)(B型血)(O型血)所以,穿红上衣的孩子的父母戴蓝帽子;穿黄上衣的孩子的父母戴黄帽子;穿蓝上衣的孩子的父母戴红帽子.,张健和小萍分别是兄妹.12.13.表解如下:由(3)北京运动员是乒乓球运动员, 故张是足球运动员郑是乒乓球运动员由(4)吉林运动员不是游泳运动员,故李是田径运动员,而胡是游泳运动员由(5)知胡是上海 运动员而郑是浙江运动员.张明是北京选手 李勇是吉林选手14. 设此四人为甲、乙、丙、丁并用画在平面上的四个点分别表示他们,称为它们的代表点,当某人(例如甲)赠了1件礼品给另一个(例如乙)时,就由甲向乙的代表点画一条有指向的线,无非有以下两个可能:(1)甲、乙、丙、丁每人各收到了2件礼品.(2)上面的情形不发生.这时只有以下一个可能,即有一个人接受了3件礼品 (即多于2件礼品;因为一人之外总共还有三个人,所以至多收到3件礼品).(或许会有人说,还有两个可能:有人只收到1件礼品及有人什么礼品也没收到.其实,这都可归以“有一人接受了3件礼品”这个情形.因为,当有一人(例如甲)只接受了1件礼品的情形发生时,四人共带来的8件礼品中还剩下7件在甲以外的三个人中分配,如果他们每人至多只收到2件礼品,则收受礼品数将不超过6件,这不可能,所以至少有一人收到2件以上(即3件)礼品,同样,当甲未收到礼品时,8件礼品分给乙、丙、丁三人,也必定有人收到3件礼品).当(1)发生时,例如甲收到乙、丙的礼品,由于甲发出的礼品中至少有1件给了乙或丙,为确切计,设乙收到了甲的礼品,于是我们先有了一对人:(甲、乙),他们互赠了礼品,如果丙也收到甲的礼品,那么又有了第二对互赠了礼品的人(甲、丙);如果收到甲礼品的另一人是丁(如右图)丁的2件礼品必定分赠了乙及丙(甲已收足了本情形中限定的2件礼品)丙或乙的另一件礼品给了丁,则问题也解决(这时另一对互赠了礼品的人便是(乙、丁)或(丙、丁)但丙的另一件礼品只能给丁,因为这时乙已收足了2件礼品,所以,当本情形发生时,至少能找到两对互赠过1件礼品的人.当(2)发生时,不失一般性,设甲收到了来自乙、丙、丁的各1件礼品,但甲又应向他们之中的某两人(例如乙、丙)各赠送1件礼品,于是(甲、乙),(甲、丙)便是要找的两对人.总上可知,证明完毕.老吴是业余画家,老周是业余音乐家,老杨是业余作家.工程师是老杨,会计师是老周农艺师是老吴.十八逻辑推理(B)一、填空题1. 从前一个国家里住着两种居民,一个叫宝宝族,他们永远说真话;另一个叫毛毛族,他们永远说假话.一个外地人来到这个国家,碰见三位居民,他问第一个人:“请问,你是哪个民族的人?”“匹兹乌图”.那个人回答.外地人听不懂,就问其他两个人:“他说的是什么意思?”第二个人回答:“他说他是宝宝族的.”第三个人回答:“他说他是毛毛族的.”那么,第一个人是族,第二个人是族,第三个人是族.2. 有四个人各说了一句话.第一个人说:“我是说实话的人.”第二个人说:“我们四个人都是说谎话的人.”第三个人说:“我们四个人只有一个人是说谎话的人.”第四个人说:“我们四个人只有两个人是说谎话的人.”请你确定第一个人说话,第二个人说话,第三个人说___ 话,第四个人说话.3. 某地质学院的三名学生对一种矿石进行分析.甲判断:不是铁,不是铜.乙判断:不是铁,而是锡.丙判断:不是锡,而是铁.经化验证明,有一个人判断完全正确,有一人只说对了一半,而另一人则完全说误了.那么,三人中是对的, 是错的, 只对了一半.4. 甲、乙、丙、丁四人参加一次数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名.”乙:“我第一名,丁第四名.”丙:“丁第二名,我第三名.”丁没说话.最后公布结果时,发现他们预测都只对了一半.请你说出这次竞赛的甲、乙、丙、丁四人的名次.甲是第名,乙是第名,丙是第名,丁是第名.5. 王春、陈则、殷华当中有一人做了件坏事,李老师在了解情况中,他们三人分别说了下面几句话:陈:“我没做这件事.殷华也没做这件事.”王:“我没做这件事.陈刚也没做这件事.”殷:“我没做这件事.也不知道谁做了这件事.”当老师追问时,得知他们都讲了一句真话,一句假话,则做坏事的人是 .6. 三个班的代表队进行N(N 2)次篮班比赛,每次第一名得a分,第二名得b分,第三名得c分(a、b、c为整数,且a>b>c>0).现已知这N次比赛中一班共得20分,二班共得10分,三班共得9分,且最后一次二班得了a分,那么第一次得了b分的是班.7. A、B、C、D四个队举行足球循环赛(即每两个队都要赛一场),胜一场得3分,平一场得1分,负一场得0分.已知:(1)比赛结束后四个队的得分都是奇数;(2)A队总分第一;(3)B队恰有两场平局,并且其中一场是与C队平局.那么,D队得分.8. 六个足球队进行单循环比赛,每两队都要赛一场.如果踢平,每队各得1分,否则胜队得3分,负队得0分.现在比赛已进行了四轮(每队都已与4个队比赛过),各队4场得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球赛踢成平局,那么总得分居第五位的队最多可得分,最少可得分.9. 甲、乙、丙、丁四个队参加足球循环赛,已知甲、乙、丙的情况列在下表甲与丁的比分为 ,丙与丁的比分为 .10. 某俱乐部有11个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11个人里面,总说谎话的有几个人?”那天,J和K休息,余下的9个人这样回答:A说:“有10个人.”B说:“有7个人.”C说:“有11个人.”D说:“有3个人.”E说:“有6个人.”F说:“有10个人.”G说:“有5个人.”H说:“有6个人.”I 说:“有4个人.”那么,这个俱乐部的11个成员中,总说谎话的有个人.二、解答题11. 甲、乙、丙三人,一个姓张,一个姓李和一个姓王,他们一个是银行职员,一个是计算机程序员,一个是秘书.又知甲既不是银行职员也不是秘书;丙不是秘书;张不是银行职员;王不是乙,也不是丙.问:甲、乙、丙三人分别姓什么?12. ←世界杯足球小组赛,每组四个队进行单循环比赛.每场比赛胜队得3分,败队记0分.平局时两队各记1分.小组全赛完以后,总积分最高的两个队出线进入下轮比赛.如果总积分相同,还要按小分排序.问:一个队至少要积几分才能保证本队必然出线?简述理由.↑在上述世界杯足球小组赛中,若有一个队只积3分,问:这个队有可能出线吗?为什么?13.有一个如图那样的方块网,每1个小方块里有1个人,在这些人中间,有人戴着帽子,有人没戴.每一个人都只能看见自己前方,后方和斜方的人的头,如图1所示A 方块里的人能看见8个人的头,B 方块里的人能看见5个人的头,C 方块里的人能看见3个人的头,自己看不见自已的头.在图2的方格中,写着不同方块里的人能看见的帽子的数量,那么,请在图中找出有戴帽子的人的方块,并把它涂成黑色.14. 某校学生中,没有一个学生读过学校图书馆的所有图书,又知道图书馆内任何两本书至少被一个同学都读过,问:能不能找到两个学生甲、乙和三本书A 、B 、C ,甲读过A 、B ,没读过C ,乙读过B 、C ,没读过A ?说明判断过程.———————————————答 案——————————————————————1. 宝宝,宝宝,毛毛.如果第一个人是宝宝族的,他说真话,那么他说的是“我是宝宝族的”.如果这个人是毛毛族的,他说假话,他说的还是“我是宝宝族的”.所以第二个人是宝宝族的,第三个人是毛毛族的.”2. 真,假,假,不确定.第二个人显然说的是假话.如果第三个人说的是真话,那么第四个人说的也是真话,产生矛盾.所以第三个人说假话.如果第四个人说真话,那么第一个人也说真话.如果第四个人说假话,那么只有第一个人说真话.所以可以确定第一个人主真话,第二、第三个人说假话,第四个人不能确定.3. 丙,乙,甲.如果甲的判断完全正确,那么乙说对了一半“不是铁,”所以这矿石也不是锡,这样丙也说对了一半,矛盾.如果乙的判断完全正确,那么甲对了一半,这矿石应是铜,丙也说对了一半,矛盾.所以丙的判断完全正确,而乙完全错了,甲只说对了一半.图1 图24. 三,一,四,二.假设甲说的“丙是第一名”正确,结果推出丙是第三名,矛盾,故甲说的第二句话是正确.由表中可知乙第一名,丁第二名,甲第三名,则第四名是丙.×5. 陈刚.如果王春做了坏事,则陈刚的两句话都是真话,不合题意;如果殷华做了坏事,则王春的两句话都是真话,不合题意;如果陈刚做了坏事,符合题意.所以陈刚做了坏事.6. 三.N次比赛共得20+10+9=39(分),39=3⨯13,所以共进行了3次比赛,每次比赛共得13分,即a+b+c=13.因为一班3次比赛共得20分,20÷3=6…2,所以a≥7,a,b,c可能组合为7、5、1;7、4、2;8、4、1;8、3、2;9、3、1,考虑到3次比赛得20分,只有a=8、b=4、c=1时才有可能,由此推知三个班3次比赛7. 3B队得分是奇数,并且恰有两场平局,所以B队是平2场胜1场,得5分.A队总分第1,并且没有胜B队,只能是胜2场平1场(与B队平),得7分.因为C队与B队平局,负于A队,得分是奇数,所以只能得1分.D队负于A、B队,胜C队,得3分.8. 3,1.共赛了4⨯6÷2=12(场),其中平了4场,分出胜负的8场,共得3⨯8+2⨯4=32(分).因为前三位的队至少共得7+8+9=24(分),所以后三位的队至多共得32-24=8(分).又因为第四位的队比第五位的队得分多,所以第五位的队至多得3分.因为第六位的队可能得0分,所以第五位的队至少得1分(此时这两队之间必然没有赛过).9. 3:2,3:4.由乙队共进2球,胜2场平1场推知,乙队胜的两场都是1:0,平的一场是0:0.由甲队与乙队是0:0,甲队与丙队未赛,推知甲队所有的进球都来自与丁队的比赛,所以甲队与丁队是3:2.由丙队与乙队是0:1,丙队与甲队未赛,所以丙队与丁队是3:4.10 9.因为9个人回答出了7种不同的人数,所以说谎话的不少于7人.若说谎话的有7人,则除B外,其他回答问题的8人均说了谎话,与假设出现矛盾;若说谎话的有8人,则回答问题的9人均说了谎话,出现矛盾;若说谎话的有10人,则只能1人说实话,而A和F都说了实话,出现了矛盾;若说谎话的有11人,则没有说实话的,而E说了实话,出现矛盾;显然说谎话的有9人,回答问题的9人均说谎话,休息的两人说实话.11. 根据题意有关条件,用“√”表示是、“Х”表示不是,列表所示.这样,可12. ←四个队单循环赛共6场比赛,每场均有胜负,6场最多共计18分.若该队积7分,剩下的11分被3个队去分,那么,不可能再有两个队都得7分,即至多再有一个队可得7分以上.这样该队可以出线.其次,如果该队积6分,则剩下12分,可能有另两队各得6分.如果这另两队小分都比该队高,该队就不能出线了.所以,一个队至少要积7分才能保证必然出线.↑有可能出线.当6场比赛都是平局时,4个队都得3分,这时两个小分最高的队可以出线.如果这个队恰属于两个小分最高的队,那么这个队就会出线.13.答案如右图所示←站在第一行第五列的人能看见1顶帽子,说明他周围的3人中有2人没戴帽子.↑站在第二行第四列的人能看见7顶帽子,说明他周围的8人中只有1人没戴帽子,综合结论←可知他本人没有戴帽子.→站在第二行第五列的人能看到4顶帽子,且他周围的五人中已有1人没戴帽子,说明其余4人均戴帽子,根据结论←可知他本人没戴帽子.↓利用上下对称原理可以分析出:站在第四行、第五行后三列的6个人中,只有第四行第四列、第五列两人没戴帽子,其他人均戴帽子.︒站在第四行第二列的人能看到7顶帽子,说明他周围的8人中只有1人没戴帽子.±站在第三行第1列的人能看见1顶帽子,说明他周围的5人中只有1人戴帽子.综合结论︒可知:这1人不可能是第二行第1、2列的人,也不可能是第四行第二列的人.所以只能是站在第三行第二列的人或第四行第1列的人."站在第五行第1列的人能看到2顶帽子,说明结论±所说戴帽子的人站在第四行第一列.≥站在第二行第二列的人能看到6顶帽子,说明站在第一行第1、2列的2人都戴帽子.14. 解法一首先从读书数最多的学生中找一人叫他为甲,由题设,甲至少有一本书C未读过,设B是甲读过的书中的一本,根据题设,可找到学生乙,乙读过B、C.由于甲是读书数最多的学生之一,乙读书数不能超过甲的读书数,而乙读过C书,甲未读过C书,所以甲一定读过一本书A,乙没读过A书,否则乙就比甲至少多读过一本书,这样一来,甲读过A、B,未读过C;乙读过B、C,未读过A.因此可以找到满足要求的两个学生.解法二将全体同学分成两组.若某丙学生所读的所有的书,都被另一同学全部读过,而后一同学读过的书中,至少有一本书,丙未读过,则丙同学就分在第一组.另外,凡一本书也未读过的同学也分在第一组,其余的同学就分在第二组.按照以上分组方法,不可能将全体同学都分在第一组,因为读书数最多的同学一定在第二组.在第二组中,任找一位同学叫做甲,由题设有书C,甲未读过.再从甲读过的书中任找一本书叫做B,由题设,可找到同学乙,乙读过B、C书,由于甲属于第二组,所以甲一定读过一本书A,乙未读过A,否则甲只能分在第一组.这样,甲读过A、B,未读过C;乙读过B、C,未读过A.。
六年级奥数分册:第32周 逻辑推理

第三十二周邏輯推理(二)專題簡析:解數學題,從已知條件到未知的結果需要推理,也需要計算,通常是計算與推理交替進行,而且這種推理不僅是單純的邏輯推理,而是綜合運用了數學知識和專門的生活常識相結合來運用。
這種綜合推理的問題形式多樣、妙趣橫生,也是小學數學競賽中比較流行的題型。
解答綜合推理問題,要恰當地選擇一個或幾個條件作為突破口。
統稱從已知條件出發可以推出兩個或兩個以上結論,而又一時難以肯定或否定其中任何一個時,這就要善於運用排除法、反證法逐一試驗。
當感到題中條件不夠時,要注意生活常識、數的性質、數量關係和數學規律等方面尋找隱蔽條件。
例題1:小華和甲、乙、丙、丁四個同學參加象棋比賽。
每兩人要比賽一盤。
到現在為止,小華已經比賽了4盤。
甲賽了3盤,乙賽了2盤,丁賽了1盤。
丙賽了幾盤?這道題可以利用畫圖的方法進行推理,如圖32-1所示,用5個點分別表示小華、甲、乙、丙、丁。
如果兩人之間已經進行了比賽,就在表示兩人的點之間連一條線。
現在小華賽4盤,所以小華應與其餘4個點都連線……甲賽了3盤。
由於丁只賽了一盤,所以甲與丁之間沒有比賽。
那麼,就連接甲、乙和甲、丙。
這時,乙已有了兩條線,與題中乙賽2盤相結合,就不再連了。
所以,從圖32-1中可以看出,丙與小華、甲各賽一盤。
即丙賽了兩盤。
練習1:1、A,B,C,D,E五位同學一起比賽象棋,每兩人都要比賽一盤。
到現在為止,A已經比賽了4盤。
B賽了3盤,C賽了2盤,D 賽了1盤。
E賽了幾盤?2、A先生和A太太以及三對夫妻舉行了一次家庭晚會。
規定每兩人最多握手一次,但不和自己的妻子握手。
握手完畢後,A先生問了每個人(包括他妻子)握手幾次?令他驚訝的是每人答復的數字各不相同。
那麼,A太太握了幾次手?3、五位同學一起打乒乓球,兩人之間最多只能打一盤。
打完後,甲說:“我打了四盤”。
乙說:“我打了一盤”。
丙說:“我打了三盤”。
丁說:“我打了四盤”。
戊說:“我打了三盤”。
你能肯定其中有人說錯了嗎?為什麼?例題2:圖32-2是同一個標有1,2,3,4,5,6的小正方體的三種不同的擺法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数逻辑推理题解
小学六年级奥数逻辑推理题解
1.难度:
⑵如果聪聪说:"我头上戴的是红帽子".那么,-----(A、学学;B、思思;C、学学和思思;D、学学和思思都不)能说出自己戴什么颜色的
帽子.
⑶如果聪聪说:"我不知道自己戴的是什么颜色的帽子".那么-----(A、学学;B、思思;C、学学和思思;D、学学和思思都不)能说出自
己戴什么颜色的帽子.
【解析】因为聪聪只能看见学学和思思两个人戴的帽子,如果他能确定自己戴的是什么颜色的帽子,说明学学和思思肯定戴的是同
色的帽子。
如果他不能确定自己戴什么颜色的帽子,说明学学和思
思戴的是不同颜色的帽子。
如果聪聪说:"我头上戴的是黄帽子"。
那么学学和思思都能确定自己戴的'是红帽子。
如果聪聪说:"我头上戴的是红帽子"。
那么学学和思思都能确定自己戴的是黄帽子。
如果聪聪说:"我不知道自己戴的是什么颜色的帽子"。
那么学学和思思一个人红帽子一个人。
而思思可以看见学学戴的什么帽子,那么思思就能说出自己帽子的颜色。