电子测量原理课程设计报告
电子测试课程设计

电子测试课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握电子测试的基本原理、方法和应用;技能目标要求学生能够运用电子测试仪器进行实际操作,并分析测试结果;情感态度价值观目标要求学生树立科学探究的精神,增强团队合作意识。
通过分析课程性质、学生特点和教学要求,明确课程目标,将目标分解为具体的学习成果,以便后续的教学设计和评估。
二、教学内容根据课程目标,选择和教学内容,确保内容的科学性和系统性。
本课程的教学大纲如下:1.电子测试基本原理:介绍电子测试的定义、分类和基本原理。
2.电子测试仪器:介绍常见的电子测试仪器及其功能、使用方法。
3.电子测试方法:介绍电子测试的基本方法及其适用范围。
4.电子测试应用:介绍电子测试在实际工程中的应用案例。
教学内容将按照教材的章节进行安排,每个章节都包含理论讲解、实例分析和实践操作环节。
三、教学方法选择合适的教学方法,如讲授法、讨论法、案例分析法、实验法等,以激发学生的学习兴趣和主动性。
1.讲授法:用于讲解电子测试的基本原理和方法。
2.讨论法:用于探讨电子测试的实际应用和解决实际问题。
3.案例分析法:通过分析实际案例,使学生了解电子测试在工程中的应用。
4.实验法:让学生亲自动手进行电子测试操作,提高实际操作能力。
四、教学资源选择和准备适当的教学资源,包括教材、参考书、多媒体资料、实验设备等。
教学资源应该能够支持教学内容和教学方法的实施,丰富学生的学习体验。
1.教材:选用权威、实用的教材,为学生提供系统的学习资料。
2.参考书:提供相关的参考书籍,拓展学生的知识面。
3.多媒体资料:制作课件、视频等多媒体资料,提高学生的学习兴趣。
4.实验设备:准备充足的实验设备,确保每个学生都能动手实践。
五、教学评估为了全面、客观地评估学生的学习成果,本课程采用多种评估方式,包括平时表现、作业、考试等。
1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解程度。
电子测量技术课程设计

电子测量技术课程设计一、课程目标知识目标:1. 掌握电子测量技术的基本原理,包括电压、电流、电阻等基本物理量的测量方法。
2. 理解并掌握常用电子测量仪器的功能、使用方法及注意事项,如万用表、示波器等。
3. 学习电子测量系统误差分析及数据处理方法,提高数据分析和处理能力。
技能目标:1. 能够正确使用电子测量仪器进行基本物理量的测量,并熟练进行仪器的操作与维护。
2. 学会分析电子测量过程中的误差来源,并能采取相应措施进行修正。
3. 培养学生运用电子测量技术解决实际问题的能力,提高动手操作和团队协作能力。
情感态度价值观目标:1. 培养学生对电子测量技术学科的兴趣,激发学习热情,形成积极探索的学习态度。
2. 增强学生的安全意识,遵守实验操作规程,养成良好的实验操作习惯。
3. 培养学生的创新精神和实践能力,提高学生对测量结果的客观认识和评价。
课程性质:本课程为实践性较强的学科,注重理论联系实际,强调学生的动手操作能力和实际问题解决能力的培养。
学生特点:学生已具备一定的电子基础知识,具有较强的求知欲和动手能力,但对电子测量技术的了解有限。
教学要求:结合学生特点,通过理论讲解、实践操作和案例分析等多种教学方式,使学生掌握电子测量技术的基本知识和技能,培养其解决实际问题的能力。
在教学过程中,注重目标的分解和落实,确保学生达到预定的学习成果。
二、教学内容1. 电子测量技术原理:- 电压、电流、电阻等基本物理量的测量方法- 电子测量系统的基本构成及工作原理2. 常用电子测量仪器及其使用:- 万用表的结构、功能、操作方法及维护- 示波器的原理、应用及使用注意事项- 其他测量仪器的了解与简单应用3. 电子测量误差分析及数据处理:- 测量误差的分类、来源及消除方法- 数据处理方法,如平均值、标准差等计算- 提高测量精度的措施4. 实践操作与案例分析:- 设计简单电子测量电路,进行实际操作- 分析实际测量过程中可能出现的误差,并采取措施进行修正- 案例分析,学习解决实际问题的方法教学内容安排和进度:第一周:电子测量技术原理学习第二周:常用电子测量仪器及其使用方法学习第三周:电子测量误差分析及数据处理方法学习第四周:实践操作与案例分析教材章节关联:《电子测量技术》第一章:电子测量技术概述《电子测量技术》第二章:常用电子测量仪器《电子测量技术》第三章:测量误差及数据处理《电子测量技术》第四章:实践操作与案例分析教学内容的选择和组织确保科学性和系统性,旨在帮助学生将理论与实践相结合,提高其电子测量技术在实际应用中的能力。
电子测量课程设计

电子测量 课程设计一、课程目标知识目标:1. 让学生掌握电子测量基本概念,如测量误差、准确度、精密度等;2. 了解常见电子测量仪器的原理和使用方法,如万用表、示波器、信号发生器等;3. 掌握基本的电子测量方法,如电压、电流、电阻的测量。
技能目标:1. 能够正确使用电子测量仪器进行电压、电流、电阻等基本测量;2. 学会分析测量结果,识别并减小测量误差;3. 培养学生动手操作能力,提高实验数据的处理与分析能力。
情感态度价值观目标:1. 培养学生对电子测量学科的兴趣,激发学习热情;2. 培养学生的团队协作精神,提高实验操作的积极性和主动性;3. 引导学生树立正确的科学态度,认识测量在科技发展中的重要性。
分析课程性质、学生特点和教学要求,本课程目标旨在让学生通过实践操作,掌握电子测量基本知识和技能,培养严谨的科学态度和良好的实验习惯。
将目标分解为具体学习成果,以便后续教学设计和评估。
在教学过程中,注重理论与实践相结合,提高学生的实际操作能力。
二、教学内容1. 电子测量基本概念:包括测量误差、系统误差、随机误差、准确度、精密度2. 常用电子测量仪器:万用表、示波器、信号发生器、频谱分析仪等,涵盖其原理、结构、功能及使用方法;3. 电子测量方法:电压、电流、电阻的测量方法,以及频率、相位、功率等参数的测量;4. 测量误差分析:分析测量误差的来源,探讨减小误差的方法和措施;5. 实验操作技巧:正确使用测量仪器,进行实际操作,培养动手能力;6. 数据处理与分析:对实验数据进行处理与分析,学会使用相关软件或工具。
教学内容安排和进度:1. 第1课时:电子测量基本概念;2. 第2课时:常用电子测量仪器原理及使用方法;3. 第3课时:电子测量方法;4. 第4课时:测量误差分析;5. 第5课时:实验操作技巧;6. 第6课时:数据处理与分析。
教学内容与教材关联性:1. 教学内容与教材章节相对应,涵盖电子测量基础知识、测量仪器、测量方法等方面;2. 结合教材实例,分析实际应用中电子测量的相关问题;3. 教学内容注重理论与实践相结合,培养学生的实际操作能力。
电子测量技术课程设计

电子测量技术课程设计一、课程目标知识目标:1. 学生能理解电子测量技术的基本概念,掌握各种电子测量仪器的使用方法。
2. 学生能掌握电子测量过程中的误差分析及处理方法,了解电子测量数据的处理技巧。
3. 学生能了解电子测量技术在工程实践中的应用,掌握相关测量标准及规范。
技能目标:1. 学生具备正确使用电子测量仪器进行数据测量的能力。
2. 学生能够根据测量数据进行分析、处理,并解决实际测量问题。
3. 学生能够运用电子测量技术解决简单的工程问题,具备一定的实际操作能力。
情感态度价值观目标:1. 学生通过学习电子测量技术,培养严谨的科学态度,注重实验数据的准确性和可靠性。
2. 学生在学习过程中,培养团队协作精神,学会与他人共同探讨、解决问题。
3. 学生能够关注电子测量技术的发展动态,认识到其在现代科技领域的重要地位,激发对相关领域的学习兴趣。
本课程针对高中年级学生,结合电子测量技术的学科特点,注重理论联系实际,提高学生的动手操作能力。
课程设计遵循由浅入深、循序渐进的原则,使学生在掌握基本知识的同时,能够将所学技能应用于实际测量中,培养学生的创新意识和实践能力。
通过本课程的学习,为学生进一步学习电子技术及相关领域知识打下坚实基础。
二、教学内容1. 电子测量技术概述:介绍电子测量的基本概念、分类及发展历程,使学生了解电子测量技术在现代科技中的地位与作用。
教材章节:第一章 电子测量技术概述2. 电子测量仪器及其使用方法:讲解各类电子测量仪器的原理、性能参数及操作方法,重点掌握万用表、示波器等常用仪器的使用。
教材章节:第二章 电子测量仪器及其使用方法3. 测量误差分析与数据处理:分析电子测量过程中可能出现的误差类型,探讨减小误差的方法,学习测量数据的处理技巧。
教材章节:第三章 测量误差分析与数据处理4. 电子测量技术在工程实践中的应用:介绍电子测量技术在各个领域的应用案例,使学生了解实际工程中的测量需求及解决方法。
电子测量原理第二版课程设计

电子测量原理第二版课程设计第一章引言本课程的主要目的是为学生提供电子测量的基本知识和技能,并驱使学生掌握各种常用的电子测量仪器和测试技术。
第二章仪器和设备本章介绍了本课程所需的仪器和设备,包括交流电桥、数字万用表、示波器、信号发生器等,并对它们的工作原理和使用方法进行了详细的解析。
交流电桥交流电桥是电子测量中常用的测量电阻、电容、电感等参数的仪器。
它可以测量直流电路中难以测量的小电阻值和大电容值。
交流电桥的工作原理是利用交流信号对电路中物理量的变化进行测量。
数字万用表数字万用表是一种使用数字显示的通用测试仪器。
它可以测量电压、电流、电阻、频率等参数。
数字万用表具有稳定、精确、灵敏度高、易读取等特点。
示波器示波器是一种测试电子信号的仪器,可以显示时间和电压之间的关系曲线。
示波器是测量电子信号特性和进行故障分析的重要工具之一。
信号发生器信号发生器可以产生各种复杂的电子信号,用于测试和测量电子设备的性能。
信号发生器的输出频率、幅度、相位等参数可以手动或自动调整,便于进行实验和测试。
第三章电阻的测量本章介绍了电阻的基本概念和测量方法,包括欧姆定律的运用、电桥测量法、数字万用表测量法等,并且通过实验演示了电阻测量的过程和注意事项。
第四章电容的测量本章介绍了电容的基本概念和测量方法,包括对称电桥测量法、交流电桥测量法、数字万用表测量法等,并且通过实验演示了电容测量的过程和注意事项。
第五章电感的测量本章介绍了电感的基本概念和测量方法,包括交流电桥测量法、响应波形测量法、微分电路测量法等,并且通过实验演示了电感测量的过程和注意事项。
第六章非电量测量本章介绍了一些非电量测量的方法和技术,包括温度测量、流量测量、压力测量、光电测量等,并且介绍了各种测量仪器的使用方法和注意事项。
第七章课程总结本章对全书的内容进行了总结和归纳,回顾了电子测量的重要性和基本知识,并向学生介绍了电子测量技术的未来发展方向和趋势。
结论电子测量是一门很重要的学科,它不仅在电子工程领域中有着广泛的应用,同时也在各个行业中发挥着重要的作用。
电子测量技术基础课程报告

电子测量技术课程报告专业班级:学号:姓名:测量是通过实验方法对客观事物取得定量信息即数量概念的过程。
电子测量是指以电子技术为基本手段的一种测量技术,是测量学和电子学相互结合的产物。
电子测量除具体运用电子科学的原理、方法和设备对各种电量、电信号及电路元器件的特性和参数进行测量外,还可通过各种敏感器件和传感装置对非电量进行测量,这种测量方法往往更加方便、快捷、准确,有时是其他测量方法所不能替代的。
因此,电子测量不仅用于电学各专业,也广泛用于物理学、化学、光学等科学领域。
目前,电子测量技术已成为电子科学领域重要且发展迅速的分支学科。
本课程包括理论和实践两部分,理论部分包括:电子测量基本概念、测量误差与测量结果处理、信号发生器、电子示波器、频率时间测量、相位差测量、电压测量、阻抗测量;实践部分包括:指针式万用表(MF-47)的制作、调试、测量。
理论部分:1、电子测量基本概念:电子测量是指以电子技术理论为依据,以电子测量仪器和设备为手段,对电量和非电量进行的测量。
对电量的测量分为电能量测量、电信号特性测量、电路元件参数测量、电子设备性能测量。
非电量的测量则是利用各种敏感元件和传感装置将非电量转换成电信号,再利用电子测量设备进行测量。
电子测量具有测量频率范围广、量程宽、速度快、易于实现自动化和自能化、影响因素多,误差处理复杂的特点。
测量方法选择正确与否直接关系着测量结果的可靠性,按测量过程可分为:直接测量、间接测量和组合测量。
选择测量方法时要综合考虑被测本身特性、测量准确度、测量环境、测量设备等因素。
根据获得的测量结果评价测量仪器的性能,主要包括:精度、稳定度、灵敏度、线性度、动态特性。
精度是指测量结果与被测量真值相一致程度,其含义是:精度高,表明误差小;精度低,表明误差大。
精度可用紧密度、正确度和准确度三个指标加以表征。
稳定度指外界条件恒定条件下,仪器示值变化大小,通常用稳定度和影响量两个参数来表征。
灵敏度表示测量仪器对被测量变化的敏感程度。
电子测量原理课程设计

电子测量原理课程设计一、课程目标知识目标:1. 让学生掌握电子测量原理的基本概念,如测量误差、分辨率、灵敏度等;2. 使学生了解各种电子测量仪器的功能、原理及应用范围;3. 帮助学生掌握电子测量系统搭建与调试的方法。
技能目标:1. 培养学生运用电子测量仪器进行数据采集、处理和分析的能力;2. 培养学生设计简单电子测量系统的能力;3. 提高学生在实际操作中解决问题的能力。
情感态度价值观目标:1. 培养学生对电子测量原理的兴趣,激发学习热情;2. 培养学生严谨、细致的科学态度,注重团队合作;3. 引导学生关注电子测量技术在生活中的应用,提高社会责任感。
课程性质分析:本课程为电子测量原理课程设计,注重理论联系实际,强调实践操作能力。
课程内容紧密结合教材,旨在提高学生的实际操作能力和综合运用能力。
学生特点分析:学生为高年级本科生,具有一定的电子基础知识,具备初步的实验操作能力。
学生对电子测量原理有一定了解,但对实际应用尚缺乏深入了解。
教学要求:1. 理论教学与实验操作相结合,提高学生的实际操作能力;2. 引导学生通过小组讨论、实验总结等形式,深入理解电子测量原理;3. 注重培养学生的创新能力,鼓励学生进行探索性实验。
二、教学内容1. 电子测量原理概述:介绍电子测量的基本概念、分类及发展趋势,对应教材第一章内容。
- 测量误差与测量不确定度- 电子测量仪器的分类与原理- 电子测量技术的发展趋势2. 常用电子测量仪器及其原理:详细讲解示波器、信号发生器、万用表等常用电子测量仪器的原理与使用方法,对应教材第二章内容。
- 示波器的原理与应用- 信号发生器的原理与应用- 万用表的原理与应用3. 电子测量系统设计与搭建:介绍电子测量系统的设计方法、搭建与调试技巧,对应教材第三章内容。
- 电子测量系统的设计方法- 电子测量系统的搭建与调试- 电子测量系统抗干扰技术4. 电子测量实验操作:组织学生进行实际操作,巩固所学知识,对应教材第四章内容。
电子测量课程实验报告参考模板

福建农林大学计算机与信息学院信息工程类实验报告课程名称:电子测量技术姓名:系:电子信息工程系专业:电子信息工程年级:学号:指导教师:职称:年月日实验项目列表福建农林大学计算机与信息学院信息工程类实验报告系:电子信息工程系专业:电子信息工程年级:姓名:学号:实验课程:电子测量技术基础实验室号:_田406 实验设备号: 10 实验时间:指导教师签字:成绩:实验一:示波器、信号发生器的使用1.实验目的和要求1)了解示波器的结构。
2)掌握波形显示的基本原理、扫描及同步的概念。
3)了解电子示波器的分类及主要技术性能指标。
4)掌握通用示波器的基本组成及各部分的作用。
5)了解各种信号发生器如正弦信号发生器、低频信号发生器、超低频信号发生器、函数信号发生器等的工作原理和性能指标以及信号选择。
2.实验原理在时域信号测量中,电子示波器无疑是最具代表性的典型测量仪器。
它可以精确复现作为时间函数的电压波形(横轴为时间轴,纵轴为幅度轴),不仅可以观察相对于时间的连续信号,也可以观察某一时刻的瞬间信号,这是电压表所做不到的。
我们不仅可以从示波器上观察电压的波形,也可以读出电压信号的幅度、频率及相位等参数。
电子示波器是利用随电信号的变化而偏转的电子束不断轰击荧光屏而显示波形的,如果在示波管的X偏转板(水平偏转板)上加一随时间作线性变化的时基信号,在Y偏转板(垂直偏转板)加上要观测的电信号,示波器的荧光屏上便能显示出所要观测的电信号的时间波形。
若水平偏转板上无扫描信号,则从荧光屏上什么也看不见或只能看到一条垂直的直线。
因此,只有当X偏转板加上锯齿电压后才有可能将波形展开,看到信号的时间波形。
一般说来,Y偏转板上所加的待观测信号的周期与X偏转板上所加的扫描锯齿电压的周期是不相同的,也不一定是整数倍,因而每次扫描的起点对待观测信号来说将不固定,则显示波形便会不断向左或向右移动,波形将一片模糊。
这就有一个同步问题,即怎样使每次扫描都在待观测信号不同周期的相同相位点开始。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子测量原理课程设计报告
题目名称:通过霍尔效应测量磁场姓名:陈屹
班级:电信051
学号: 200532285126
指导老师:刘向东
完成日期: 2008-7-16
设计题目:通过霍尔效应测量磁场
设计目的:通过用霍尔元件测量磁场,判断霍尔元件载流子类型,计算载流子的浓度和迁移速度,以及了解霍尔效应测试中的各种副效应及消除方法。
设计仪器:QS-H霍尔效应组合仪,小磁针,测试仪。
设计原理:
一、通过霍尔效应测量磁场
霍尔效应装置如图2.3.1-1和图2.3.1-2所示。
将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极A、A’上施加电流I 时,薄片内定向移动的载流子(设平均速率为u)受到洛伦兹力FB的作用,
F
B
= q u B (1)
无论载流子是负电荷还是正电荷,FB的方向均沿着x方向,在磁力的作用下,载流子发生偏移,产生电荷积累,从而在薄片B、B’两侧产生一个电位差VBB’,形成一个电场E。
电场使载流子又受到一个与FB方向相反的电场力FE,
F E =q E = q V
BB’
/ b (2)
其中b为薄片宽度,FE随着电荷累积而增大,当达到稳定状态时FE=FB,即
q uB = q V
BB’
/ b (3)
这时在B、B’两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极B、B’称为霍尔电极。
另一方面,射载流子浓度为n,薄片厚度为d,则电流强度I与u的关系为:
bdnqu
I (4)
由(3)和(4)可得到
d
IB
nq V B B 1=
' (5)
令nq
R 1
=
,则 d
IB R
V B B =' (6)
R 称为霍尔系数,它体现了材料的霍尔效应大小。
根据霍尔效应制作的元件称为霍尔元件。
在应用中,(6)常以如下形式出现:
IB K V H B B ='
(7)
式中nqd
d R K H 1==
称为霍尔元件灵敏度,I 称为控制电流。
由式(7)可见,若I 、K H 已知,只要测出霍尔电压V BB’,即可算出磁场B 的大小;并且若知载流子类型(n 型半导体多数载流子为电子,P 型半导体多数载流子为空穴),则由V BB’的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。
由于霍尔效应建立所需时间很短(10-12~10-14s),因此霍尔元件使用交流电或者直流电都可。
指示交流电时,得到的霍尔电压也是交变的,(7)中的I 和V BB’应理解为有效值。
二、 霍尔效应设计中的副效应
在实际应用中,伴随霍尔效应经常存在其他效应。
例如实际中载流子迁移速率u 服从统计分布规律,速度小的载流子受到的洛伦兹力小于霍尔电场作用力,向霍尔电场作用力方向偏转,速度大的载流子受到磁场作用力大于霍尔电场作用力,向洛伦兹力方向偏转。
这样使得一侧告诉载流子较多,相当于温度较高,而另一侧低速载流子较多,相当于温度较低。
这种横向温差就是温差电动势V E ,这种现象称为爱延豪森效应。
这种效应建立需要一定时间,如果采用直流电测量时会因此而给霍尔电压测量带来误差,如果采用交流电,则由于交流变化快使得爱延豪森效应来不及建立,可以减小测量误差。
此外,在使用霍尔元件时还存在不等位电动势引起的误差,这是因为霍尔电极B 、B’不可能绝对对称焊在霍尔片两侧产生的。
由于目前生产工艺水平较高,不等位电动势很小,故一般可以忽略,也可以用一个电位器加以平衡(图2.3.1-1中电位器R 1)。
我们可以通过改变I S 和磁场B 的方向消除大多数付效应。
具体说在规定电流和磁场正反方向后,分别测量下列四组不同方向的I S 和B 组合的V BB’,即
+B, +I V
BB’=V
1
-B, +I V
BB’=-V
2
-B, -I V
BB’=V
3
+B, -I V
BB’=-V
4
然后得到霍尔电压平均值,这样虽然不能消除所有的付效应,但其引入的误差不大,可以忽略不计。
电导率测量方法如下图所示。
设B’C间距离为L,样品横截面积为S=bd,
流经样品电流为I
S ,在零磁场下,测得B’C间电压为V
B’C
,根据欧姆定律可以求
出材料的电导率。
设计内容:
霍尔效应组合仪包括电磁铁,霍尔样品和样品架,换向开关和接线柱,如下图所示。
测试仪由励磁恒流源I
M ,样品工作恒流源I
S
,数字电流表,数字
毫伏表等组成,仪器面板如下图:
将测试仪上I
M 输出,I
S
输出和V
H
输入三对接线柱分别与设计台上对应接线柱
连接。
打开测试仪电源开关,预热数分钟后开始设计。
1.I M不变,I M=0.45A,I S取1.00,1.50……,4.50mA,测绘V H-I S曲线,计算R H。
2.保持I S不变,取I S=4.50mA,I M取0.100,0.150……,0.450mA,测绘V H-I M
曲线。
3.在零磁场下,取I S=0.1mA,测V B’C(即V)。
4.确定样品导电类型,并求n , μ,
数据记录:
设计室数据:σ=5500GS/A,L=3.0mm,b=4.0mm,d=0.5mm
(1)Im=.045A
Is/mA V
H /mV V
H
/mV V
H
/mV V
H
/mV V
H
(平均)/mV
0.50 -2.03 2.03 2.18 -2.17 2.10
1.50 -6.09 6.09 6.57 -6.55 6.33
2.50 -10.10 10.11 10.90 -10.87 10.50
3.50 -1
4.13 14.17 1
5.27 -15.24 14.70
4.50 -18.16 18.14 19.57 -19.55 18.86 (2)Is=4.5mA
Im/A V
H /mV V
H
/mV V
H
/mV V
H
/mV V
H
(平均)/mV
0.05 -1.42 1.44 2.72 -2.70 2.07 0.15 -5.45 5.47 6.88 -6.86 6.17 0.25 -9.61 9.63 11.08 -11.05 10.34 0.35 -13.86 13.88 15.26 -15.23 14.56 0.45 -18.03 18.06 19.51 -19.48 18.77
(3)断开I
m 开关,即I
m
=0,调节 Is=0.10mA,测得 V=8.98mV
(4)霍尔片电路如图:测得V
H
>0,由左手定则和安培定则判定,载流子为空穴,故霍尔片为p型
数据处理:
1. 保持Im 不变,取Im =0.45A ,Is 取1.00,…,4.50mA,测绘V H -Is 曲线,计算
R H 。
V H = A + * Is
Parameter Value Error
A 0.0255 0.01869
B 4.189 0.00651
由d
IB
R
V B B =',得
2.保持Is不变,取Is=4.50mA,Im取0.100,0.150…,0.450mA,测绘V H-Im
曲线。
V H = A + * Im
Parameter Value Error
A-0.06550.04018
B41.790.13988
3.断开Im开关,即Im =0,调节 Is=0.10mA,测得 V=8.98mV
4.确定样品导电类型,并求n,μ,σ。
5.在数据记录图中,已判断霍尔元件为n型
6.载流子浓度:
7.迁移速率:
8.迁移率:
设计总结:
霍尔元件的有关设计,展示了其有关性质,它可以实现磁学量转变为电学量的功能,对于磁学量的测量、操控又十分重要的意义。
通过设计,了解了霍尔元件的线性特性,对于线性元件,采用线性拟合法可以有效减小误差。
另外,消除不对称因素也是精确测量的重要问题。
.。