电动力学教学大纲

电动力学教学大纲
电动力学教学大纲

电动力学教学大纲

课程编号: 060093 适用专业:物理学

学时数: 72 学分数: 4

1.课程类别:本课程是物理学专业的专业基础课程。

2.教学目的:通过电磁现象的普遍规律——麦克斯韦方程组及洛伦兹力公式的学习,掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解。通过应用麦克斯韦方程组研究静电场和静磁场的主要特征及电磁波的传播和辐射的基本性质,进一步掌握电磁学的基本理论,同时学习理论物理学处理问题解决问题的一些基本方法。获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础。通过狭义相对论及电磁场与带电粒子相互作用的学习,建立新的时空观念,并了解近代物理对高速和微观现象的一些处理方法。

3.学时分配:见下表

学时分配表

绪论和相关数学知识回顾

教学时数:8学时

重点难点:重点:梯度、散度、旋度,高斯定理、斯托克斯定理。难点:?算符的运算、?算符等微分算符在不同坐标系(柱坐标系、球坐标系)中的表示。教学要求:了解本课程的研究对象、学习目的、学习方法、学习要求;掌握数学基础:梯度、散度、旋度;高斯定理、斯托克斯定理。

教学内容:

(1)电动力学课程的研究对象与主要内容

(2)矢量代数

(3)场的概念和标量场的梯度

(4)高斯定理与矢量场的散度

(5)斯托克斯公式与矢量场的旋度

(6)常用的运算公式

(7)有关矢量场的一些定理

(8)“三度”在各种坐标系中的表示式

第一章电磁现象的普遍规律

教学时数:12学时

重点难点:重点:麦克斯韦方程组,电磁场的能量和边值关系。难点:麦克斯韦方程组及其边值关系。

教学要求:掌握高斯定理和电场的散度及旋度。掌握毕奥--萨伐尔定律及磁场的环量和旋度、磁场的散度。了解磁场的旋度和散度公式的证明。理解位移电流。掌握麦克斯韦方程组,电磁场的能量和边值关系。

教学内容:

(1)电荷和电场,库仑定律,高斯定理和电场的散度,静电场的旋度

(2)电流和磁场,电荷守恒定律;毕奥--萨伐尔定律;磁场的环量和旋度;磁场的散度;磁场的旋度和散度公式的证明

(3)麦克斯韦方程组,电磁感应定律;位移电流;麦克斯韦方程组;洛仑兹力公式

(4)介质的电磁性质,关于介质的概念;介质的极化;介质的磁化;介质中的麦克斯韦方程组

(5)电磁场边值关系,法向分量的跃变;切向分量的跃变

(6)电磁场的能量和能流,场和电荷系统的能量守恒定律的一般形式;电磁场能量密度和能流密度表示式;*电磁能量的传输

第二章静电场

教学时数:12学时

重点难点:重点:静电场的标势及其微分方程,镜象法,分离变量法。难点:电多极矩法。

教学要求:掌握静电场的标势及其微分方程。唯一性定理只证明两导体的第一和第二类问题。分离变量法着重在拉普拉斯方程的应用。掌握镜象法解题方法,了解点电荷密度的δ函数表示及格林函数问题。

教学内容:

(1)静电场的标势及其微分方程,静电场的标势;静电势的微分方程和边值关系;静电场的能量

(2)唯一性定理,静电问题的唯一性定理;有导体存在时的唯一性定理(3)拉普拉斯方程,分离变量法

(4)镜象法

(5)格林函数,点电荷密度的δ函数表示;格林函数;格林公式和边值问题的解(6)电多极矩,电势的多极展开;电多极矩;电荷体系在外电长中的能量

第三章静磁场

教学时数:8学时

重点难点:重点:矢势及其微分方程、磁偶极子及其外场的作用。难点:矢势及其边值关系。

教学要求:掌握矢势及其微分方程和矢势边值关系。磁标势法介绍从场方程得出磁场问题的两中观点,加以比较。

教学内容:

(1)矢势及其微分方程矢势;矢势微分方程;矢势边值关系;静磁场的能量(2)磁标势

(3)磁多极矩矢势的多极展开;磁偶极矩的场和磁标势;小区域内电流分布在外磁场中的能量

*(4)阿哈罗诺夫--玻姆效应

*(5)超导体的电磁性质超导体的基本电磁现象;超导体的电磁性质方程;超导体作为完全搞磁体;超导环内的磁能量子化;非局域理论第一类和第二类超导体

第四章电磁波的传播

教学时数:12学时

重点难点:重点:平面电磁波、理想导体边界条件、截止频率。难点:电磁波在导体表面的反射和折射。

教学要求:掌握平面电磁波及波动方程。了解电磁波的能量和能流。波导只讲矩形波并掌握波导中电磁波传波的特点。理解截止频率的含义。

教学内容:

(1)平面电磁波电磁场波动方程;时谐电磁波;平面电磁波;电磁波的能量和能流

(2)电磁波在介质介面上的反射和折射反射和折射定律;振幅关系菲涅耳公式;全反射

(3)有导体存在时的电磁波的传播导体内的自由电荷分布;导体内的电磁波;趋肤效应和穿透深度;导体表面上的反射

(4)谐振腔;有界空间中的电磁波;理想导体边界条件;谐振腔

*(5)波导;高频电磁能量的传输;矩形波导中的电磁波;截止频率;

TE波的

10

电磁场和管壁电流

*(6)高斯光束亥姆霍兹定律的波束解;高斯光束的传播特性

第五章电磁波的辐射

教学时数:8学时

重点难点:重点:电磁场的势、达郎贝尔方程、推迟势。难点:电偶极辐射。教学要求:重点掌握用矢势和标势描素电磁场的方法。重点掌握达郎贝尔方程、推迟势及其物理意义。了解电偶极辐射的相关内容。

教学内容:

(1)电磁场的矢势和标势,用势描述电磁场;规范变换和规范不变换;达郎贝尔方程

(2)推迟势

(3)电偶极辐射,计算辐射场的一般公式;矢势的展开;偶极辐射;辐射能流角

分布辐射功率;短天线辐射辐射电阻

(4)磁偶极辐射和电四极辐射

*(5)天线辐射,天线上的电流分布;半波天线;天线阵

*(6)电磁波的衍射,衍射问题;基尔霍夫公式;小孔衍射

*(7)电磁场的动量,电磁场的动量密度和动量流密度;辐射电压

第六章狭义相对论

教学时数:12学时

重点难点:重点:相对论的基本原理洛伦兹变换、时空理论、速度相加原理。难点:光速不变原理的理解、“同时”的相对性的理解与应用

教学要求:了解狭义相对论的实验基础是迈克耳逊--莫雷实验,适当介绍一些近年来的新实验。重点掌握相对论的基本原理洛伦兹变换、时空理论、速度相加原理。了解相对论力学的相关知识。

教学内容:

(1)相对论的实验基础;相对论产生的历史背景;相对论的实验基础

(2)相对论的基本原理;洛伦兹变换;相对论的基本原理;间隔不变性;洛伦兹变换

(3)相对论的时空理论;相对论时空结构;因果律和相互作用的最大传播速度;同时相对性;运动时钟的延缓;运动尺度的缩短;速度变换公式

(4)相对论理论的四维形式;三维空间的正交变换;物理量按空间变换性质得分类;洛伦兹变换的四维形式;四维协变换量;物理规律的协变性

(5)电动力学的相对论不变性;四维电流密度矢量;四维势矢量;电磁场张量;电磁场的不变量

(6)相对论力学;能量--动量四维矢量;质能关系;相对论力学方程;洛伦兹力

*(7)电磁场中带电粒子的拉格朗日量和哈密顿量;拉格朗日形式;哈密顿形式;非相对论情形

带“*”部分为选讲内容。

1.成绩评定:平时成绩占期末总成绩的30%。期末采用笔试,考试命题严格按照课程教学大纲要求出题,占期末总成绩的70%。

2. 建议教材:郭硕鸿. 电动力学(第二版).北京:高等教育出版社,1997

3. 参考教材:[1]俞允强,《电动力学简明教程》,北京大学出版社,1999.;[2]虞福春郑春开编著.《电动力学》(修订版),北京大学出版社,2004;[2]阚仲元编.《电动力学教程》.高等教育出版社,1979

电动力学期末考试试题库word版本

第一章 电磁现象的普遍规律 1) 麦克斯韦方程组是整个电动力学理论的完全描述。 1-1) 在介质中微分形式为 D ρ??=r 来自库仑定律,说明电荷是电场的源,电场是有源场。 0B ??=r 来自毕—萨定律,说明磁场是无源场。 B E t ???=-?r r 来自法拉第电磁感应定律,说明变化的磁场B t ??r 能产生电场。 D H J t ???=+?r r r 来自位移电流假说,说明变化的电场D t ??r 能产生磁场。 1-2) 在介质中积分形式为 L S d E dl B dS dt =-??r r r r g g ? , f L S d H dl I D dS dt =+??r r r r g g ?, f S D dl Q =?r r g ?, 0S B dl =?r r g ?。 2)电位移矢量D r 和磁场强度H r 并不是明确的物理量,电场强E r 度和磁感应强度B r ,两者 在实验上都能被测定。D r 和H r 不能被实验所测定,引入两个符号是为了简洁的表示电磁规律。 3)电荷守恒定律的微分形式为0J t ρ ??+ =?r g 。 4)麦克斯韦方程组的积分形式可以求得边值关系,矢量形式为 ()210n e E E ?-=r r r ,()21n e H H α?-=r r r r ,()21n e D D σ?-=r r r ,() 210n e B B ?-=r r r 具体写出是标量关系 21t t E E =,21t t H H α-=,21n n D D σ-=,21n n B B = 矢量比标量更广泛,所以教材用矢量来表示边值关系。 例题(28页)无穷大平行板电容器内有两层线性介质,极板上面电荷密度为f σ±,求电场和束缚电荷分布。 解:在介质1ε和下极板f σ+界面上,根据边值关系1f D D σ+-=和极板内电场为0,0 D +=r 得1f D σ=。同理得2f D σ=。由于是线性介质,有D E ε=r r ,得

污染环境修复(自己总结,供参考)

污染环境修复技术复习(自己总结,非准确答案,供参考) 一、名词解释 1、物理修复:利用污染物与环境之间各种物理特性的差异,达到将污染物从环境中去除、分离的目的。 2、化学修复:利用化学清除剂的物理化学性质及对污染物的吸附、吸收、迁移、淋溶、挥发、扩散和降解,改变污染物在环境中的残留积累,清除污染物或降低污染物的浓度至安全标准范围,且所施化学药剂不对环境系统造成二次污染。 3、生物修复(广义):指利用细菌、真菌、水生藻类、陆生植物等的代谢活性降解有机污染物,减轻其毒性,改变重金属的活性或在土壤中的结合态,通过改变污染物的化学或物理特性而影响他们在环境中的迁移、转化和降解速率。 4、植物修复:以植物耐受和超量积累某种或某些化学元素的理论为基础,利用植物及其根际圈微生物体系的吸收、挥发、降解和转化作用来清除环境中污染物质的一项新兴的污染治理技术。 5、生态工程:应用生态系统中物种共生与物质循环再生原理,结构与功能协调原则,结合系统最优化方法设计的分层多级利用物质的生产工艺系统。 6、污染土壤修复技术:通过物理、化学、生物和生态学等方法和原理,并采用人工调控措施,使土壤污染物浓(活)度降低,实现污染物无害化和稳定化,以达到人们期望的解毒效果的技术和措施。 7、土壤玻璃化修复技术:通过高强度能量输入,使污染土壤熔化,将含有挥发性污染物的蒸汽回收处理,同时污染土壤冷却后成玻璃状团块固定。 8、电动力学修复:向污染土壤中插入两个电极,形成低压直流电场,通过电化学和电动力学的复合作用,使水溶态和吸附于土壤的颗粒态污染物根据自身带电特性在电场内定向移动,在电极附近富集或收集回收而去除的过程。 9、蒸汽浸提修复技术:在污染土壤内引入清洁空气产生驱动力,利用土壤固相、液相和气相之间的浓度梯度,在气压降低的情况下,将其转化为气态污染物排出土壤的过程。 10、化学淋洗修复:包括原位和异位化学淋洗,是指借助于能促进土壤环境中污染物浓度或迁移的溶解剂(既冲洗助剂)通过水利压头推动清洗液,将其注

电动力学

《电动力学》课程教学大纲 课程英文名称:Electrodynamics 课程编号:0312033002 课程计划学时:48 学分:3 课程简介: 电动力学的研究对象是电磁场的基本属性, 它的运动规律以及它和带电物质之间的相互作用,本课程在电磁学的基础上系统阐述电磁场的基本理论。另外,本课程还系统地阐述狭义相对论的重要内容,而相对论是现代物理学的重要基础,它与量子论一起对物理学的发展影响深刻,是二十世纪科学与技术飞速发展的基础。本课程是材料物理专业本科的重要专业基础课。 电动力学是物理类有关各专业的一门基础理论课。学电动力学的目的:(1)是使学生系统地掌握电磁运动的基本概念和基本规律,加深对电磁场性质的理解;(2)是使学生获得分析和处理一些问题的基本方法和解决问题的能力,提高逻辑推理和插象思维的能力,为后继课程的学习和独立解决实际问题打下必要的理论基础。 在教学过程中,使用启发式教学,尽量多介绍与该课程相关的前沿科技动态,充分调动和发挥学生的主动性和创新性;提倡学生自学,培养学生的自学能力。 一、课程教学内容及教学基本要求 第一章电磁现象的普遍规律 本章重点:在复习矢量分析、?算符、?算符及其运算法则、δ函数性质的基础上,从电磁场的几个基本实验律(库仑定律,毕奥--萨伐尔定律,电磁感应定律,电荷守恒律) 出发,加上位移电流假定, 总结出电磁场的基本运动规律Maxwell方程组、电荷守恒律和洛仑兹力公式。讨论了介质中的Maxwell方程, 电磁场的能量。本章内容是本课程的基础,必须深刻掌握。 难点:电磁场边值关系,电磁场的能量和能流。 本章学时:10学时 教学形式:讲授 教具:黑板,粉笔 第一节矢量分析和张量;?算符、?算符及其运算规则、δ函数性质 本节要求:理解:矢量分析和张量运算。掌握:?算符、?算符及其运算法则、δ函数性质(重点:考核概率50%)。 1 矢量分析和张量(理解:矢量运算法则,在电动力学中张量是如何引入的;了解:线性各

电动力学章节总结

第一章 一、总结 1.电磁场的六大基本方程及其对应的边值关系 2.介质的特性 欧姆定律: 焦耳定律: 另外常用: ; (可由上面相关公式推出) 3.洛仑兹力密度公式、电荷守恒定律 洛仑兹力密度公式: 由此式可导出: 电荷守恒定律: 稳恒条件下: 4.能量的转化与守恒定律 积分式: 其中, 微分式: 或 5.重要推导及例题 (1) .六个边值关系的导出; (2) .由真空中的麦克斯韦方程推出介质中的麦克斯韦方程; (3) .能流密度和能量密度公式的推导;

(4) .单根导线及平行双导线的能量传输图象; (5) .例题:所有课堂例题。 6.几个重要的概念、定义 (1) ; (2) ; (3) .矢量场的“三量三度”(见《矢量场论和张量知识》)和麦克斯韦电磁理论的“四、三、二、一”,其中“三量三度”见《矢量场论和张量知识》。 第二章 (1).唯一性定理的两种叙述 一般介质情况下的唯一性定理 有导体存在时的唯一性定理 (2).引入静电场标势的根据,的物理意义,的积 分表式 (3).与静电场标势有关的公式 (4).电多极展开的思想与表式,Dij=? a. 小区域电荷系在远区的电势 其中 为体系总电量集中在原点激发的电势; 为系统电偶极矩激发的电势; 为四极矩激发的势。 b. 电偶极矩、电四极矩 为体系的总电量 为体系的总电偶极矩 为体系的总电四极矩 c. 小电荷系在外电场中的能量 为电荷集中于原点时在外电场中的能量; 电力线 ;

为偶极矩在外场中的能量 为四极矩在外场中的能量 d. 用函数表示偶极矩的计算公式 其中;的定义满足 2.本章重要的推导 (1).静电场泊松方程和拉普拉斯方程导出:(1).;(2). (2).势函数的边值关系:(1);(2) (3).静电场能量: (4).静电场的引出。 由于静电场与静磁场的理论在许多情况下具有很强的对称性的,许多概念、知识点及公式也具有类似的形式,所以我们将第二、第三章的小结编排在一起,以利于巩固和复习。 第三章 1.基本内容 (1).引入的根据,的积分表式,的物理意义 (2).引入的根据及条件,的积分表式及物理意义 (3).磁标势与电标势()的比较及解题对照 标势 引入根据; ; 等势面电力线等势面磁力线等势面 势位差 微分方程 ; ; 边值关系 (4).磁多极展开与有关公式, a. 小区域电流在外场中的矢势

《电磁学》教学大纲解析

《电磁学》教学大纲 英文名称:electromagnetics 授课专业:物理学学时:72学分:4 开课学期:二年级上学期 适用对象:物理学专业 一、课程性质与任务 电磁学是物理学专业的一门专业基础课。电磁学已渗透到物理学的各个领域,成为研究物质过程必不可少的基础。通过本门课程的教学,要求:使学生能全面地认识和理解电磁运动的基本现象和基本概念,系统地掌握电磁运动的基本规律,具有一定的分析和解决电磁学问题的能力,并为学习后继课程打下必要的基础。通过对电磁学发展史上某些重大的发现和发明的介绍,使学生了解物理学思想和实验方法,培养学生的辩证唯物主义世界观,使学生获得科学方法论上的教益。 二、课程教学的基本要求 1 、正确理解以下基本概念和术语: 基本粒子、静电场、库仑力、电场强度、电通量、电位、电位差、电功、静电平衡、静电屏蔽、电容、加速器、静电能、极化强度、电位移向量、电流密度、超导、电功率、经典金属电子论、电动势、非静电力、温差电动势、静磁场、磁感应强度、安培力、磁通量、磁矩、电磁感应、感生电场、自感、互感、涡电流、趋肤效应、磁能、磁化强度、磁化电流、磁场强度、顺磁性、抗磁性、铁磁性、磁畴、铁磁屏蔽、位移电流、电磁场、能流密度、电磁波谱。 2 、掌握以下基本规律及分析计算方法 (1)静电场基本定律和定理:库仑定律、电荷守恒定律、高斯定理、环路积分定理、叠加原理。 (2)稳恒电流和电路:欧姆定律、焦耳定律、基尔霍夫定律(节点方程、回路电压方程)

(3)稳恒磁场的基本定律和定理:毕——伐定律,安培定律、高斯定理、环路积分定理。 (4)交变电磁场的基本定律和定理:楞次定律、法拉第电磁感应定律、麦克斯韦方程组。 (5)掌握以下物理量的分析计算方法:电场强度、电位、电位差、电通量、电容、磁感应强度、磁通量、安培力、磁矩、电动势、电磁能量等。 3 、注意培养学生以下几方面能力 (1)分析电磁运动规律及物理实验构思方法,重视对实验现象的总结,培养科学分析问题的能力。 (2)积极思考并总结研究方法、实验技能,培养创新意识。 (3)灵活有效应用高等数学知识,解决物理问题,进一步提高科学知识、科学方法、科学态度和科学精神等科学素质。 三、课程教学内容 第一章静电场的基本规律(12课时) 第二章有导体时的静电场(8课时) 第三章静电场中的电介质(8课时) 第四章恒定电流和电路(8课时) 第五章恒定电流的磁场(12课时) 第六章电磁感应与暂态过程(12课时) 第七章磁介质 (8课时) 第九章时变电磁场和电磁波(4课时) 四、教学重点、难点 静电场的高斯定理,静电场的环路定理,电位,静电平衡时导体的性质,用电力线工具讨论静电平衡的若干电现象,电介质存在时场的讨论方法及场强计算,电介质存在时高斯定理的应用,电动势的物理意义及数学表示方法,基尔霍夫方程组求解电路,磁感应强度矢量的概念,毕奥—萨伐尔定律,磁场的

物理学专业函授业余本科教学提纲等专业必修课

物理学专业函授(业余)本科教学大纲 《数理方法》教学大纲 (1) 《线性代数》教学大纲 (5) 《计算机原理》教学大纲 (9) 《计算机实验》教学大纲 (13) 《理论力学》教学大纲 (16) 《统计物理》教学大纲 (22) 《光学原理》教学大纲 (29) 《电动力学》教学大纲 (31) 《物理教学法》教学大纲 (39) 《电化教育学》教学大纲 (47) 《量子力学》教学大纲 (59) 《教育统计与测量》教学大纲 (64) 《普物选讲》教学大纲 (72) 《近代物理实验》教学大纲 (79) 《物理学史》教学大纲 (81)

《数理方法》教学大纲 一、课程类别专业必修课 二、教学目的 数理方法是专业必修课。通过本课程的教学,帮助学生掌握并能运用复变函数,数学物理方程等理论物理的基本数学工具。培养学生严谨的逻辑和推演等理性思维能力,为学习物理系基础理论课量子力学、统计物理和电动力学等打好数学基础。 三、开课对象物理学专业函授(业余)本科 四、学时分配 总学时168 其中面授:42学时自学:126学时 五、教学内容与基本要求、教学的重点和难点 第一章一维波动方程的付氏解(面授4学时、自学12学时) 教学内容: 1.1 一维波动方程的付氏解 1.2 齐次方程混合问题的付里叶解法(分立变量法、驻波法) 1.3 电报方程 1.4 强迫震动,非齐次方程的求解 教学任务: 通过本章教学,使学生了解一维波动方程——弦振动方程的建立,掌握齐次方程混合问题的傅立叶解法,理解特征值和特征函数的概念。 教学重点和难点: 分离变量法,非齐次方程和边界条件的处理,特征值和特征函数。弦振动方程的建立,定解条件的提出,利用分离变量法求解齐次方程的混合问题,付氏解的物理意义,强迫振动,非齐次方程的求解。 第二章热传导方程的付氏解(面授5学时、自学15学时) 教学内容:

电动力学期末考试试卷及答案五

. . 20___ - 20___ 学年度 学期 ____ 级物理教育专业 《电动力学》试题(五) 试卷类别:闭卷 考试时间:120分钟 ______________________ 学号____________________ 一. 判断以下概念是否正确,对的打(√),错的打(×)(共15分,每 题3分) 1. 库仑力3 04r r Q Q F πε '=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。 ( ) 2. 电磁场有能量、动量,在真空中它的传播速度是光速。 ( ) 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: t j ??=??/ρ 。 ( )

. . 4. 在介质的界面两侧,电场强度E 切向分量连续,而磁感应强度B 法向分 量 连续。 ( ) 5.在相对论中,粒子能量,动量以及静止质量的关系为: 4 2022c m c P W += 。 ( ) 二. 简答题(每题5分,共15分)。 1.如果0>??E ,请画出电力线方向图,并标明源电荷符号。 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3.以真空中平面波为例,说明动量密度g ,能流密度s 之间的关系。 三. 证明题(共15分)。

多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率 ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -= ,其中 122)/1(--=c v γ;v 为光源运动速度。(15分) 四. 综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体、外空间的B 、H ; (2)体磁化电流密度M j ;(15分)。 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔的电势 和电场(分离变量法)。(15分) 3.两频率和振幅均相等的单色平面电磁波沿z 轴方向传播,一个沿x 方向偏振,另一个沿y 方向偏振,且其相位比前者超前2 π 。求合成波的偏振。若 合成波代表电场矢量,求磁场矢量B 以及能流密度平均值S 。(15分)

电动力学复习总结电动力学复习总结答案

第二章 静 电 场 一、 填空题 1、若一半径为R 的导体球外电势为b a b r a ,,+=φ为非零常数,球外为真空,则球面上的电荷密度为 。 答案: 02a R ε 2、若一半径为R 的导体球外电势为3 002cos cos =-+E R E r r φθθ,0E 为非零常数, 球外为真空,则球面上的电荷密度为 . 球外电场强度为 . 答案:003cos E εθ ,303[cos (1)sin ]=-+-v v v r R E E e e r θθθ 3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。 答案: σφ εφσφεφεφφερφ-=??=-=??-??=- =?n c n n ,,,,1122212 4、设某一静电场的电势可以表示为bz y ax -=2φ,该电场的电场强度是_______。 答案:z y x e b e ax e axy ? ??+--22 5、真空中静场中的导体表面电荷密度_______。 答案:0n ? σε?=-? 6、均匀介质部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ_____的倍。 答案: -(1- ε ε0 ) 7、电荷分布ρ激发的电场总能量1 ()() 8x x W dv dv r ρρπε''= ??v v 的适用于 情 形. 答案:全空间充满均匀介质 8、无限大均匀介质中点电荷的电场强度等于_______。 答案: 3 4qR R πεv 9、接地导体球外距球心a 处有一点电荷q, 导体球上的感应电荷在球心处产生

的电势为等于 . 答案: 04q a πε 10、无电荷分布的空间电势 极值.(填写“有”或“无”) 答案:无 11、镜象法的理论依据是_______,象电荷只能放在_______区域。 答案:唯一性定理, 求解区以外空间 12、当电荷分布关于原点对称时,体系的电偶极矩等于_______。 答案:零 13、一个外半径分别为R 1、R 2的接地导体球壳,球壳距球心a 处有一个点电荷,点电荷q 受到导体球壳的静电力的大小等于_______。 答案:212014() R q a R a a πε- 二、 选择题 1、泊松方程ε ρ φ- =?2适用于 A.任何电场 B. 静电场; C. 静电场而且介质分区均匀; D.高频电场 答案: C 2、下列标量函数中能描述无电荷区域静电势的是 A .2363y x + B. 222532z y x -+ C. 32285z y x ++ D. 2237z x + 答案: B 3、真空中有两个静止的点电荷1q 和2q ,相距为a ,它们之间的相互作用能是 A .a q q 0214πε B. a q q 0218πε C. a q q 0212πε D. a q q 02132πε 答案:A 4、线性介质中,电场的能量密度可表示为 A. ρφ21; B.E D ? ??21; C. ρφ D. E D ??? 答案:B 5、两个半径为12,R R ,124R R =带电量分别是12,q q ,且12q q =导体球相距为a(a>>12,R R ),将他们接触后又放回原处,系统的相互作用能变为原来的 A. 16,25倍 B. 1,倍 C. 1,4倍 D. 1 ,16倍 答案: A

“电磁场理论”课程教学大纲

西安交通大学 “电磁场理论”课程教学大纲 英文名称:Theory of Electromagnetic Field 课程编码:PHYS2012 学时:64 学分:4 适用对象:电子科学与技术专业本科生 先修课程:普通物理,数理方程,矢量与张量分析 使用教材及参考书: 金泽松,《电磁场理论>>, 电子科技大学出版社, 1995 郭硕鸿,《电动力学》,高等教育出版社,1989 冯慈璋,《电磁场》高等教育出版社,1983 李承祖,《电动力学教程》(修订版),国防科技大学出版社,1997 一、课程性质、目的和任务 本课程是电子科学与技术系各专业本科生必修的一门工程基础课.通过本课程的学习,使学生熟悉电磁场的基本理论,掌握基本规律,加深对电磁场的性质和时空概念的理解,获得分析和处理一些电磁现象的方法和能力,为以后的专业课程学习打下基础。 二、教学基本要求 1. 了解电磁现象的普遍规律,掌握库仑定律、高斯定理、毕奥定律、电磁感应定律和麦克斯韦方程组, 熟悉电磁场的边值关系。 2. 了解静电场和稳恒电流磁场的性质,熟悉静电势和微分方程、磁矢势和微分方程,掌握求解静电场和磁场问题的常用分析方法。 3.掌握波动方程和亥姆霍兹方程,熟悉平面电磁波的性质, 掌握电磁波传播的规律。 4.了解时变电磁场的性质和势,掌握辐射电磁场的规律和计算方法。 5.了解狭义相对论和相对论电动力学,掌握电磁场量在不同参考系间的变化规律。了解带电粒子和电磁场的相互作用,掌握运动带电粒子的位和电磁场,了解加速运动带电粒子的辐射。 三、教学内容及要求 第一章:电磁现象的普遍规律 1.了解电荷和电场、电流和磁场。 2.掌握库仑定律、高斯定理、毕奥定律、电磁感应定律。 3.重点掌握麦克斯韦方程组和电磁场的边值关系。 4.了解介质的电磁性质。 5.掌握电磁场的能量和能流密度表示式,了解电磁能量的传输。

【热门】个人自我鉴定范文合集五篇

【热门】个人自我鉴定范文合集五篇 个人自我鉴定范文合集五篇 一般来说,自我鉴定即是自我总结,自我鉴定可以让我们对自己有个正确的认知,因此我们是时候写一份自我鉴定了。但是自我鉴定有什么要求呢?下面是小编帮大家整理的个人自我鉴定5篇,仅供参考,希望能够帮助到大家。个人自我鉴定篇1 本人目前就读于北航材料科学与工程学院,主要从事激光粉末沉积钛合金结构材料的研究,重点在于激光粉末沉积加工过程中复杂的热-力变化与耦合以及固态相变问题。对于理论知识,我始终有着浓厚的兴趣,在本科学习期间我选修了应用物理专业的四大力学和有关课程,并且获取了辅修第二专业的资格。最令人激动的是电动力学的中求解的精致和理论力学所揭示的优美,由于用心投入,我的成绩一直十分突出。那时我是计算机学院的一名学生,当时之所以选择了软件工程专业是因为那是我的喜好以及当时的热门。后来不久我意识到依此来作出选择有考虑不周全的地方,脱离了数学、逻辑的基础的计算机相关工作几乎只能是索然无味的重复劳动,因为对操作系统、编译器乃至中央处理器的研究离不开这些知识。于是怀着对科学的热爱我考进了北航理学院凝聚态物理专业,在读硕期间学习了许多更深入的理论课,论文课题的研究对象是氧化锡气敏材料及与其制备相关的多孔阳极氧化铝。计算机便成为了我的一项业余爱好。我对计算机知识的学习绝对是值得的,这不但使创造力得以施展而且锻炼了逻辑思维。作为个人兴趣我编写过一些小游戏还有简单的编程语言解释器;架设了学院的上海市精品课程网站;编写的数据库操作演示系统也被列为了学院的教学评估成果之一。能够熟练运用C++ .NET语言,这对许多工作都是有益的,能够使某些劳动时间降至可以忽略不计的程度。此外与计算机的接触使我会基本操作常见的2D、3D软件,还能够使用一些数学、有限元软件,可以在需要使用的时候迅速上手。在英语水平方面可以一提的是曾经为了准备GRE考试我背完了一本包含约两万单词的字典,现在拥有词汇量15000~20000,在英文阅读与写作中不会遇到任何障碍。个人自我鉴定篇2

光学教学大纲

《光学》课程教学大纲(54学时) (理论课程) 一课程说明 (一)课程概况 课程中文名称:《光学》 课程英文名称:Optics 课程编码:3910252108 开课学院:理学院 适用专业/开课学期:物理学/第三学期 学分/周学时:3/3 《光学》是物理学本科专业的一门重要的专业必修基础课程,是普通物理学的一个重要组成部分,是研究光的本性、光的传播及光和物质的相互作用的基础学科,它和《原子物理学》、《电动力学》和《量子物理学》等后继课程有着密切联系。激光的出现和发展使光学的研究进入了一个崭新的阶段,更加扩大了光学在高科技领域、生产和国防上的应用。 先修课程:高等数学、电磁学 (二)课程目标 1. 牢固掌握有关光的传播及其本性,包括干涉、衍射、偏振等基本现象、原理和规律,为后继课程奠定必要的基础。并了解它们在科研、生产和实践上的应用。 2. 牢固掌握几何光学的基本概念、成像规律和作图方法。熟悉典型助视光学仪器的基本结构及原理。 3. 了解现代光学的发展概况以及现代光学的基本概念、原理,研究的方法、手段,培养学生学习的兴趣。 4. 培养学生的学习能力、科学探究能力和分析解决问题的能力,培养学生实事求是、勇于探究的科学精神和辩证唯物主义世界观。 (三)学时分配

二教学方法和手段 以启发式教学为主,利用多媒体辅助教学,同时开展课堂讨论、课外自学、学生课外查阅文献了解学科前沿,结合课程内容完成课程论文等多种形式教学。 三教学内容 第一章(含绪论)光的干涉(10学时) 一、教学目标 1.了解光学研究的内容和研究方法;知道光学发展历程; 2.理解相干叠加和非相干叠加的区别联系; 3.理解光的相干条件和光的干涉定义; 4.了解干涉条纹的可见度以及空间相干性和时间相干性对可见度的影响; 5.掌握光程差和相位差之间的关系; 6.掌握分波面干涉装置的干涉强度分布的基本规律,即干涉条纹的间距和干涉条纹 的形状; 7.掌握分振幅法等倾干涉条纹的条纹特征和光强分布及其应用; 8.掌握分振幅等厚干涉的条纹特征和光强分布及其应用; 9.掌握迈克尔孙干涉仪和法布里干涉仪的基本原理及其应用。 二、教学重、难点 重点:相干条件,以及分振幅和分波面干涉装置及干涉光强分布。 难点:薄膜干涉和多光束干涉。 三、主要内容 1.光学的研究内容和方法,光学发展史; 2.波动的独立性、叠加性和相干性; 3.光程和光程差,实现相干光束的方法; 4.半波损失; 5.等倾干涉和等厚干涉; 6.迈克耳孙干涉仪; 7.多光束干涉,法布里-珀罗干涉仪。 第二章光的衍射(8学时) 一、教学目标 1.了解光的衍射现象,并注意区分菲涅尔衍射和夫琅和费衍射; 2.理解衍射现象的理论基础-----惠更斯-菲涅尔原理;

电动力学期末考试试卷及答案五

判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分) 1. 库仑力3 04r r Q Q F πε '=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。 ( ) 2. 电磁场有能量、动量,在真空中它的传播速度是光速。 ( ) 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: t j ??=??/ρ 。 ( ) 4. 在介质的界面两侧,电场强度E 切向分量连续,而磁感应强度B 法向分 量连续。 ( ) 5.在相对论中,粒子能量,动量以及静止质量的关系为: 4 2022c m c P W += 。 ( ) 一. 简答题(每题5分,共15分)。 1.如果0>??E ,请画出电力线方向图,并标明源电荷符号。 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3.以真空中平面波为例,说明动量密度g ,能流密度s 之间的关系。

二. 证明题(共15分)。 多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率 ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -= ,其中 122)/1(--=c v γ;v 为光源运动速度。(15分) 四. 综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体内、外空间的B 、H ; (2)体内磁化电流密度M j ;(15分)。 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔内的电势和电场(分离变量法)。(15分) 3.两频率和振幅均相等的单色平面电磁波沿z 轴方向传播,一个沿x 方向偏振,另一个沿y 方向偏振,且其相位比前者超前2π。求合成波的偏振。若 合成波代表电场矢量,求磁场矢量B 以及能流密度平均值S 。(15分) 4.在接地的导体平面有一半径为a 的半球凸部,半球的球心在导体平面上,如图所示。点电荷Q 位于系统的对称轴上,并与平面相距为b (a b >)。试用电像法求空间电势。(10分)

电动力学知识点总结及试题

洛仑兹力密度< f=/?+^x§ 三.内容提要: 1. 电磁场的基本实捡定律, (1)库仑定律* 二、知识体躺 库仑定理'脸订警壬 电童■应定体毎事孑―半丄@?抜/尸n 涡険电场假设 介质的极化焕律,0=#“ V*fi = p ▽4遁 at 仪鲁电涛fit 设 比真#伐尔定律,s= 介 M?4tM 律: ft^~a Co n Vxff = J + — a 能童守恒定律 缢性介JR 能*??> 能淹密度: S^ExH

対可个点电荷e 空间块点的场强爭丁各点电佔单越力在时徃该点场强的伕城和, (2)毕臭一萨伐尔定律(电沱决崔感场的实於疋律) (3)电耐应定律 £& -

其中: 几 1址介质中普适的41底场钛木方用.适用于任盘介丿鼠 2当14=0=0.过渡到真 空怙况: -aff at +?e —J dt v 7 5=0 2o£o 3当N N 时.回到挣场惜况: 扭方=0 £b ?恣=J 妙 F 护云=0 I 有12个未知塑.6个独立方秤,求解时必须给出二与M, 2与?的关系。 介时: 3、介贯中的电恿性廣方程 若为却铁雄介质 I 、电哦场较弱时"与丘&与臣 b 与2万与"均呈线性关系. 向同性均匀介质, P= Q=岭耳 9 9 2、导体中的欧姆定律 在存电源时?电源内部亠八海?)?直?为怖电力的等效场, 4. 洛伦兹力公式 II 7xfl = O 7xH=/ Q ?D 0p 7ft =

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

电动力学期末试卷

电动力学期末试卷 浙江大学2009–2010学年秋冬学期 《电动力学》课程期末考试试卷课程号:_06120310,开课学院:_物理系 考试试卷:A卷、B卷考试形式:闭、开卷,允许带_1张A4纸入场 考试日期: 2010 年 1 月 19 日, 考试时间: 120 分钟 诚信考试,沉着应考,杜绝违纪。 考生姓名: 学号: 所属院系: _ 题序一二三四五六总分 得分 评卷人 一、简答题 :5 (每小题分) 1) Explain the transverse Doppler shift and the starlight aberration. 2) What is anomalous dispersion? 3) Derive Snell’s law. 4) Compare Bremsstrahlung and Synchrotron radiation? 5) What is TEM waves? Can they exist in a rectangular wave guide? (以下每题15分) 二、Two infinitely long grounded metal plates, at yandya,,0, ,are connected at by metal strips at a constant potential. xb,,0 (a thin layer of insulation prevents them from shorting out). Find the potential inside the resulting rectangular pipe. 三、 A pion at rest decays into a muon and a massless neutrino. Find the energy

电动力学教学大纲

电动力学教学大纲 课程编号: 060093 适用专业:物理学 学时数: 72 学分数: 4 1.课程类别:本课程是物理学专业的专业基础课程。 2.教学目的:通过电磁现象的普遍规律——麦克斯韦方程组及洛伦兹力公式的学习,掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解。通过应用麦克斯韦方程组研究静电场和静磁场的主要特征及电磁波的传播和辐射的基本性质,进一步掌握电磁学的基本理论,同时学习理论物理学处理问题解决问题的一些基本方法。获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础。通过狭义相对论及电磁场与带电粒子相互作用的学习,建立新的时空观念,并了解近代物理对高速和微观现象的一些处理方法。 3.学时分配:见下表 学时分配表

绪论和相关数学知识回顾 教学时数:8学时 重点难点:重点:梯度、散度、旋度,高斯定理、斯托克斯定理。难点:?算符的运算、?算符等微分算符在不同坐标系(柱坐标系、球坐标系)中的表示。教学要求:了解本课程的研究对象、学习目的、学习方法、学习要求;掌握数学基础:梯度、散度、旋度;高斯定理、斯托克斯定理。 教学内容: (1)电动力学课程的研究对象与主要内容 (2)矢量代数 (3)场的概念和标量场的梯度 (4)高斯定理与矢量场的散度 (5)斯托克斯公式与矢量场的旋度 (6)常用的运算公式 (7)有关矢量场的一些定理 (8)“三度”在各种坐标系中的表示式 第一章电磁现象的普遍规律 教学时数:12学时 重点难点:重点:麦克斯韦方程组,电磁场的能量和边值关系。难点:麦克斯韦方程组及其边值关系。 教学要求:掌握高斯定理和电场的散度及旋度。掌握毕奥--萨伐尔定律及磁场的环量和旋度、磁场的散度。了解磁场的旋度和散度公式的证明。理解位移电流。掌握麦克斯韦方程组,电磁场的能量和边值关系。

电动力学教学大纲(科学教育专业)

《电动力学》教学大纲 课程名称:电动力学 课程编号:073132003 总学时:54学时 适应对象:科学教育(本科)专业 一、教学目的与任务 教学目的:电动力学是物理学本科专业开设的一门理论课程,是物理学理论的一个重要组成部分。通过对本课程的学习,(1)使学生掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解;(2)获得本课程领域内分析和处理一些基本问题的能力,为解决实际问题打下基础;(3)通过对电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性。 教学任务:本课程主要阐述宏观电磁场理论。第一章主要分析各个实验规律,从其中总结出电磁场的普遍规律,建立麦克斯韦方程组和洛仑兹力公式。第二、三章讨论恒定电磁场问题,着重讲解恒定场的基本性质和求解电场和磁场问题的基本方法。第四章讨论电磁波的传播,包括无界空间中电磁波的性质、界面上的反射、折射和有界空间中电磁波问题。第五章讨论电磁波的辐射,介绍一般情况下势的概念和辐射电磁场的计算方法。第六章狭义相对论,首先引入相对论时空观,由协变性要求把电动力学基本方程表示为四维形式,并得出电磁场量在不同参考系间的变换。 二、教学基本要求 通过本课程的教学,使学生了解电磁场的基本性质、运动规律以及与物质的相互作用。掌握求解恒定电磁场的基本方法;掌握电磁波在无界和有界空间的传播规律;掌握 一般情况下势的概念和求解电偶极辐射,理解相对论的时空理论;掌握电磁场量的四维 形式和电动力学规律的四维形式,加深对电动力学规律的认识。 三、教学内容及要求 绪论矢量场分析初步 第一章电磁现象的普遍规律 第一节引言及数学准备 第二节电荷和电场 第三节电流和磁场 第四节麦克斯韦方程 第五节介质的电磁性质 第六节电磁场的边值关系 第七节电磁场能量和能流 教学重点:电磁场的普遍规律,麦克斯韦方程组,电磁场的边值关系。 教学难点:位移电流概念,能量守恒定律的普遍式。

电动力学复习总结第四章 电磁波的传播2012答案

第四章 电磁波的传播 一、 填空题 1、 色散现象是指介质的( )是频率的函数. 答案:,εμ 2、 平面电磁波能流密度s 和能量密度w 的关系为( )。答案:S wv = 3、 平面电磁波在导体中传播时,其振幅为( )。答案:0x E e α-? 4、 电磁波只所以能够在空间传播,依靠的是( )。 答案:变化的电场和磁场相互激发 5、 满足条件( )导体可看作良导体,此时其内部体电荷密度等于( ) 答案: 1>>ωε σ , 0, 6、 波导管尺寸为0.7cm ×0.4cm ,频率为30×109HZ 的微波在该波导中能以 ( )波模传播。答案: 10TE 波 7、 线性介质中平面电磁波的电磁场的能量密度(用电场E 表示)为 ( ),它对时间的平均值为( )。答案:2E ε, 202 1E ε 8、 平面电磁波的磁场与电场振幅关系为( )。它们的相位( )。 答案:E vB =,相等 9、 在研究导体中的电磁波传播时,引入复介电常数='ε( ),其中虚部 是( )的贡献。导体中平面电磁波的解析表达式为( )。 答案: ω σεεi +=',传导电流,)(0),(t x i x e e E t x E ωβα-??-= , 10、 矩形波导中,能够传播的电磁波的截止频率= n m c ,,ω( ),当电磁 波的频率ω满足( )时,该波不能在其中传播。若b >a ,则最低截止频率为( ),该波的模式为( )。 答案: 22,,)()(b n a m n m c += μεπω,ω<n m c ,,ω,με πb ,01TE

11、 全反射现象发生时,折射波沿( )方向传播.答案:平行于界面 12、 自然光从介质1(11με,)入射至介质2(22με,),当入射角等于( ) 时,反射波是完全偏振波.答案:2 01 n i arctg n = 13、 迅变电磁场中导体中的体电荷密度的变化规律是( ). 答案:0t e σε ρρ-= 二、 选择题 1、 电磁波波动方程22222222110,0E B E B c t c t ???-=?-=?? ,只有在下列那种情况下 成立( ) A .均匀介质 B.真空中 C.导体内 D. 等离子体中 答案: A 2、 电磁波在金属中的穿透深度( ) A .电磁波频率越高,穿透深度越深 B.导体导电性能越好, 穿透深度越深 C. 电磁波频率越高,穿透深度越浅 D. 穿透深度与频率无关 答案: C 3、 能够在理想波导中传播的电磁波具有下列特征( ) A .有一个由波导尺寸决定的最低频率,且频率具有不连续性 B. 频率是连续的 C. 最终会衰减为零 D. 低于截至频率的波才能通过. 答案:A 4、 绝缘介质中,平面电磁波电场与磁场的位相差为( ) A .4π B.π C.0 D. 2π 答案:C 5、 下列那种波不能在矩形波导中存在( ) A . 10TE B. 11TM C. mn TEM D. 01TE 答案:C 6、 平面电磁波E 、B 、k 三个矢量的方向关系是( ) A . B E ?沿矢量k 方向 B. E B ?沿矢量k 方向 C.B E ?的方向垂直于k D. k E ?的方向沿矢量B 的方向 答案:A 7、 矩形波导管尺寸为b a ? ,若b a >,则最低截止频率为( )

电动力学自学考试大纲

电动力学自学考试大纲 课程名称:电动力学课程代码:02034(理论) 第一部分课程性质与目标 一、电动力学是研究电磁场的基本属性,运动规律以及它和带电物质之间的相互作用。它是电磁场的产生和传播的理论基础,是光信息科学与技术专业的一门必修专业课。 设置本课程的目的在于使高等光信息科学与技术专业的考生掌握电磁场的基本规律,加深对电磁场的性质和空间概念的的理解;获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打好基础;通过电磁场运动规律和狭义相对论的学习,更深刻领会电磁场的物质性,帮助考生加深辨证唯物主义的世界观。 二、本课程的基本要求: 1、全面的科学的掌握麦克斯韦方程及其应用,掌握电磁场的边界条件。 2、正确理解各种条件电磁场的求解方法,主要是求解思想和思路。 三、本课程与相关课程的联系 1、电动力学是在大学物理电磁学的基础上的扩展和提高,考生在学习本课程时应具备大学物理的电磁学的知 识基础。 2、学习本课程应具备高等数学和数学物理方程的基本知识,包括向量运算、微积分及微分方程、特殊函数, 建议考生在学本课程之前先学完高等数学、大学物理、数学物理方程。 第二部分本课程的基本内容与考核目标 第一章电磁现象的普遍规律 一、学习目标与要求 理解电荷密度,电流密度向量,位移电流,极化强度,磁化强度,电荷受力,场的能量密度,能流密度等基本概念。 掌握电荷守恒定律, 高斯定理, 电场的散度, 电场的旋度, 毕奥—萨伐尔定律,电磁感应定律。 对麦克斯韦方定程的积分形式,微分形式要有正确的认识和较为深入的理解。 正确运用电场高斯定理,毕奥—萨伐尔定律,磁场的环量定律,叠加原理,电磁场的边值关系分析和解决静电场,静磁场问题。 正确运用电磁感应定律分析和解决位移电流问题。 正确运用韦方定程的微分形式解决电磁感应问题 本章重点:麦克斯韦方程积分形式和微分形式,电磁场的边值关系。 二、课程内容及考核知识点 1、电荷和电场 1.1 库仑定律。 1.2 高斯定理和电场的散度。 1.3 静电场的旋度。 2、电流和磁场 2.1 电荷守恒定律 2.2 毕奥—萨伐尔定律 2.3 磁场的环量和旋度 2.4 磁场的散度 3、麦克斯韦方程组 3.1 电磁感应定律 3.2 位移电流 3.3 麦克斯韦方组 3.4 洛仑兹力公式

相关文档
最新文档