2013年审人教版八年级上册数学课本练习题答案汇总

合集下载

数学人教版八年级上册教材习题答案

数学人教版八年级上册教材习题答案

§11.1.1练习1、图中有五个三角形.△ABE ,△DEC ,△BEC ,△ABC ,△BDC解析:本题考察三角形的定义及表示方法. 注意不要丢掉“△”符号.2、(1)(2)不能,(3)可以解析:本题考察三角形的三边关系.两边之和大于第三边.§11.1.21、(1)中∠B 为锐角;(2)中∠B 为直角;(3)中∠B 为钝角,BC 边的高AD 分别在 △ABC 内部△ABC 的边AB 上,△ABC 的外部.解析:本题考察三角形的高的位置. 锐角三角形高在三角形内部,钝角三角形两条高在三角形外部,一条高在内部,直角三角形两条高为直角边,一条高在内部.2、(1)2AF 或 2FB ,DC ,AC(2)∠2,∠ABC ,∠4解析:本题考察中线、角平分线蕴含的数量关系,特别注意相等、倍分关系. §11.1.3(1) (4) (6)解析:本题考察三角形的稳定性,多边形的不稳定性.习题§11.11、图中有6个三角形. △ABD ,△ADE ,△AEC ,△ABE ,△ADC,,△ABC解析:本题考察三角形的定义及表示方法.2、有2种选法:10,7,5;7,5,3解析:本题考察,三角形的三边关系,注意舍去不满足三边关系的选法. 3、AD 为中线 AE 为角平分线 AF 为高线.解析:本题考察中线、角平分线的定义及位置,注意高与三角形之间的位置关系.4、(1)EC ,BC(2)∠CAD ,∠BAC(3)∠AFC(4)12B C ×AF 解析:本题考察中线、角平分、高线的数量关系,注意根据题意找相等及倍分关系.5、C解析:本题考察三角形的稳定性.6、(1)若6cm 为腰,则另一腰为6cm ,底边为8cm(2)若6cm 为底边,则两腰为7cm解析:本题考察等腰三角形中的分类思想.7、(1)16或17(2)22解析:本题考察等腰三角形的分类思想及三角形的三边关系,注意去掉4.4,9,因为不满足三边关系.AB D E FC A B CDE AF C B D E8、12 AD CE解析:有关高的计算。

2013年八年级上数学参考答案

2013年八年级上数学参考答案

2013年八年级上数学参考答案一. A C B C D C B D C A (共30分)二. )3,2(- ; 0<k ; 6- ; 040、0100或070、070 ; 符合题意即可 ; 7 ;4± ; 322b a - ; 符合题意即可 ;1)1()2(2-+=+n n n . (共30分)三.21. (1)331534-- (2)4249y x (共6分)22. 解:原式=ab b a b ab a 222222-=+---. 当21=a ,1-=b 时,上式=1)1(212=-⨯⨯- (共5分) 23.(1)解:4222-+-b ab a =)2)(2(4)(2--+-=--b a b a b a(2)方法①:22201220122013--=(2220122013-)-2012=20132012201220132012)20122013)(20122013(=-+=-+-方法②:22201220122013--=2013)20122013(2013201320122013)20121(2012201322=-=⨯-=+- 方法③:22201220122013--201320122012120122201220122012)12012(2222=--+⨯+=--+=以上每一种方法均可. (共8分)24. 解:由题意可知3=a ,3-=b ,31-=c , 则313133-=-+-=++c b a (共4分)25. 解:三个式子只要符合要求就可以.证明:设这个数为x ,则有[]x x x =÷++-56)32(2答所得的数是它本身. (共6分)26. 证明:在AC 上取一点E ,使得AE AB =∵AD 为BAC ∠的平分线 ∴EAD BAD ∠=∠∵AD =AD ∴ABD ∆≌AED ∆∴AED B ∠=∠、DE BD =又∵C ABC ∠=∠2 ∴C AED ∠=∠2∴C EDC ∠=∠ ∴CE DE =∴AC BD AB =+. (共7分)27.解:⑴会员卡的会员费是20元.⑵设x k y 11-,把)50,100(的坐标代入得501001=k ,解得5.01=k ,所以x y 5.0=;设b x k y +=22,把)20,0(,)50,100(的坐标代入得⎩⎨⎧=+=50100202b k b ,解得⎩⎨⎧==203.02b k ,所以203.02+=x y . ⑶租书卡:5.010050=(元);会员卡:3.01002050=-(天元). ⑷由图象可知,当120=x 时,21y y >,所以使用会员卡合算. (共12分)28. ⑴证明:∵⊿ABC 是正三角形,∴060=∠=∠ABC A ,BC AB =. 在ABN ∆和BCM ∆中,⎪⎩⎪⎨⎧=∠=∠=BM AN ABC A BC AB , ∴ABN ∆≌BCM ∆.∴BCM ABN ∠=∠,又∵060=∠+∠OBC ABN ,∴060=∠+∠OBC BCM∴060=∠NOC .(2)DM ,090 ;(3)EM , 0108; ⑷以上所连线段相等,所求的角恰好等于正n 边形的内角:nn 0180)2(-. (共12分)。

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案

人教版八年级数学上册同步练习题及答案+八年级数学下册同步练习题及答案人教八年级数学上册同步练习题及答案第十一章全等三角形11.1全等三角形1、已知⊿ABC≌⊿DEF,A与D,B与E分别是对应顶点,∠A=52°,∠B=67 °,BC =15cm,= ,FE = .则F2、∵△ABC≌△DEF∴AB= ,AC= BC= ,(全等三角形的对应边)∠A= ,∠B= ,∠C= ;(全等三角形的对应边)3、下列说法正确的是()A:全等三角形是指形状相同的两个三角形 B:全等三角形的周长和面积分别相等C:全等三角形是指面积相等的两个三角形 D:所有的等边三角形都是全等三角形4、如图1:ΔABE≌ΔACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=_____,∠C=____。

C课堂练习1、已知△ABC ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°; 那么DE= cm ,EC= cm ,∠C= 度.3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度;(第1小题) (第2小题) (第3小题) (第4小题)4、如图,若△ABC ≌△ADE ,则对应角有 ; 对应边有 (各写一对即可);11.2.1全等三角形的判定(sss )课前练习1、如图1:AB=AC ,BD=CD ,若∠B=28°则∠C= ;2、如图2:△EDF ≌△BAC ,EC=6㎝,则BF= ;3、如图,AB ∥EF ∥DC ,∠ABC =900,AB =DC ,那么图中有全等三角形 对。

第2题图EDCBA(第1小题) (第2小题) (第3小题)课堂练习4、如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。

2013年审人教版八年级上册数学课本练习题答案汇总

2013年审人教版八年级上册数学课本练习题答案汇总

第3页习题答案
1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.
2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置
第4页习题答案
1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.
2.解:(1)不能;(2)不能;(3)能.理由略
第5页习题答案:
1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD 在三角形内部,图(2)中AD为三角形的一条直角边,图(3)中AD在三角形的外部.
锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.
2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF
第7页习题答案:
解:(1)(4)(6)具有稳定性
第8页习题11.1答案
1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.
2.解:2种.
四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,
3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,
3.解:如图11-1-27所示,中线AD、高AE、角平分线
AF.
4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF
5.C。

人教版八年级上册数学书习题13.3答案

人教版八年级上册数学书习题13.3答案

Page 81 1(1)等腰三角形的一个角是110°,它的另外两个角是多少度?(2)等腰三角形的一个角是80°,它的另外两个角是多少度?Page82 2如图,AD ∥ BC ,BD 平分∠ABC ,求证:AD=AB 。

分析:题目要求我们证明AD=AB 。

观察图形,AB 与AD 位于△ABD 中。

由已知AD ∥BC , BD 平分∠ABC ,可考虑用等腰三角形的判定方法“等角对等边”来证明。

用已知的平行关系,可将∠ADB 与∠CBD 于关联起来,再有角平分线把∠ABD 与∠CBD 关联起来。

证明:∵AD ∥ BC ,∴∠ADB=∠CBD 。

又∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∴∠ADB=∠ABD ,∴AD=AB 。

Page82 3如图,五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,还需要知道∠AMBPage82 4如图,厂房屋顶钢架外框是等腰三角形,其中AB=AC ,立柱AD ⊥ BC ,且顶角∠BAC=120°∠B ,∠C ,∠BAD ,∠CAD 各是多少度?解:∵AB =AC ,∠BAC=120°∴∠B=∠C= 12×(180-120)°=30°。

又∵AD ⊥BC ,∴∠BAD ,∠CAD = 12 ∠BAC = 12×120°= 60°。

Page82 5如图,∠A=∠B ,CE ∥DA ,CE 交AB 于点E 。

求证:△CEB 是等腰三角形。

证明:∵CE//DA ,MA B C D E n m ∴∠A=∠CEB 。

∵∠A=∠B,∴∠CEB=∠B,∴CE=CB ,∴△CEB 是等腰三角形。

Page82 6如图,点D ,E 在△ABC 的边BC 上,AB=AC ,AD=AE 。

求证:BD=CE 。

证明:∵AB =AC ,∴∠B =∠C 。

又∵AD =AE ,∴∠ADE =∠AED 。

八年级上册数学课本答案人教版

八年级上册数学课本答案人教版

⼋年级上册数学课本答案⼈教版 认真做⼋年级数学课本习题,就⼀定能成功!⼩编整理了关于⼈教版⼋年级数学上册课本的答案,希望对⼤家有帮助! ⼋年级上册数学课本答案⼈教版(⼀) 第41页练习 1.证明:∵ AB⊥BC,AD⊥DC,垂⾜分为B,D, ∴∠B=∠D=90°. 在△ABC和△ADC中, ∴△ABC≌△ADC(AAS). ∴AB=AD. 2.解:∵AB⊥BF ,DE⊥BF, ∴∠B=∠EDC=90°. 在△ABC和△EDC,中, ∴△ABC≌△EDC(ASA). ∴AB= DE. ⼋年级上册数学课本答案⼈教版(⼆) 习题12.2 1.解:△ABC与△ADC全等.理由如下: 在△ABC与△ADC中, ∴△ABC≌△ADC(SSS). 2.证明:在△ABE和△ACD中, ∴△ABE≌△ACD(SAS). ∴∠B=∠C(全等三⾓形的对应⾓相等). 3.只要测量A'B'的长即可,因为△AOB≌△A′OB′. 4.证明:∵∠ABD+∠3=180°, ∠ABC+∠4=180°, ⼜∠3=∠4, ∴∠ABD=∠ABC(等⾓的补⾓相等). 在△ABD和△ABC中, ∴△ABD≌△ABC(ASA). ∴AC=AD. 5.证明:在△ABC和△CDA中, ∴△ABC≌△CDA(AAS). ∴AB=CD. 6.解:相等,理由:由题意知AC= BC,∠C=∠C,∠ADC=∠BEC=90°, 所以△ADC≌△BEC(AAS). 所以AD=BE. 7.证明:(1)在Rt△ABD和Rt△ACD中, ∴Rt△ABD≌Rt△ACD( HL). ∴BD=CD. (2)∵Rt△ABD≌ Rt△ACD, ∴∠BAD=∠CAD. 8.证明:∵AC⊥CB,DB⊥CB, ∴∠ACB=∠DBC=90°. ∴△ACB和△DBC是直⾓三⾓形. 在Rt△ACB和Rt△DBC中, ∴Rt△ACB≌Rt△DBC(HL). ∴∠ABC=∠DCB(全等三⾓形的对应⾓相等). ∴∠ABD=∠ACD(等⾓的余⾓相等). 9.证明:∵BE=CF, ∴BE+EC=CF+EC.∴BC=EF. 在△ABC和△DEF中, ∴△ABC≌△DEF(SSS). ∴∠A=∠D. 10.证明:在△AOD和△COB中. ∴△AOD≌△COB(SAS).(6分) ∴∠A=∠C.(7分) 11.证明:∵AB//ED,AC//FD, ∴∠B=∠E,∠ACB=∠DFE. ⼜∵FB=CE,∴FB+FC=CE+FC, ∴BC= EF. 在△ABC和△DEF中, ∴△ABC≌△DEF(ASA). ∴AB=DE,AC=DF(全等三⾓形的对应边相等). 12.解:AE=CE. 证明如下:∵FC//AB, ∴∠F=∠ADE,∠FCE=∠A. 在△CEF和△AED中, ∴△CEF≌△AED(AAS). ∴ AE=CE(全等三⾓形的对应边相等). 13.解:△ABD≌△ACD,△ABE≌△ACE,△EBD≌△ECD. 在△ABD和△ACD中, ∴△ABD≌△ACD(SSS). ∴∠BAE= ∠CAE. 在△ABE和△ACE中, ∴△ABE≌△ACE(SAS). ∴BD=CD, 在△EBD和△ECD中, :.△EBD≌△ECD(SSS). ⼋年级上册数学课本答案⼈教版(三) 习题12.3 1.解:∵PM⊥OA,PN⊥OB,∴∠OMP=∠ONP=90°.在Rt△OPM和Rt△ONP中,∴Rt△OMP≌Rt△ONP(HL). ∴PM=PN(全等三⾓形的对应边相等).∴OP是∠AOB的平分线. 2.证明:∵AD是∠BAC的平分线,且DE,DF分别垂直于AB ,AC,垂⾜分别为E,F,∴DE=DF.在Rt△BDE和Rt△CDF中,Rt△BDE≌Rt△CDF(HL). ∴EB=FC(全等三⾓形的对应边相等) 3.证明:∵CD⊥AB, BE⊥AC,∴∠BDO=∠CEO= 90°. ∵∠DOB=∠EOC,OB=OC, ∴△DOB≌△EOC ∴OD= OE. ∴AO是∠BAC的平分线. ∴∠1=∠2. 4.证明:如图12 -3-26所⽰,作DM⊥PE于M,DN⊥PF于N, ∵AD是∠BAC的平分线, ∴∠1=∠2. ⼜:PE//AB,PF∥AC, ∴∠1=∠3,∠2=∠4. ∴∠3 =∠4. ∴PD是∠EPF的平分线, ⼜∵DM⊥PE,DN⊥PF,∴DM=DN,即点D到PE和PF的距离相等. 5.证明:∵OC是∠ AOB的平分线,且PD⊥OA,PE⊥OB, ∴PD=PE,∠OPD=∠OPE. ∴∠DPF=∠EPF.在△DPF和△EPF中, ∴△DPF≌△EPF(SAS). ∴DF=EF(全等三⾓形的对应边相等). 6.解:AD与EF垂直. 证明:∵AD是△ABC的⾓平分线,DE⊥AB,DF⊥AC,∴DE=DF.在Rt△ADE和Rt△ADF中,∴Rt△ADE≌Rt△ADF(HL). ∴∠ADE=∠ADF.在△GDE和△GDF中, ∴△GDF≌△GDF(SAS). ∴∠DGE=∠DGF.⼜∵∠DGE+∠DGF=180°,∴∠DGE=∠DGF=90°,∴AD⊥EF. 7,证明:过点E作EF上AD于点F.如图12-3-27所⽰, ∵∠B=∠C= 90°, ∴EC⊥CD,EB⊥AB. ∵DE平分∠ADC, ∴EF=EC. ⼜∵E是BC的中点, ∴EC=EB. ∴EF=EB. ∵EF⊥AD,EB⊥AB, ∴AE是∠DAB的平分线,。

人教版 八年级数学上册 第14章 :幂运算与整式乘除练习题(含答案)

人教版 八年级数学上册 第14章 :幂运算与整式乘除练习题(含答案)

(2)
8
(3) 0.4
(4) 6
例题 7.
(1)若 3x 4 , 9y 7 ,则 3x2y 的值为( )
4
7
A. 7
B. 4
(2)已知: 22x 22x1 192 ,则 x 的值是
C. 3 .
2
D. 7
(3)已知10m 2 ,10n 3 ,求103m2n 的值.
(4)若 n 是正整数,且 x2n 5 ,则 2x3n 2 4x2n
例题 5. 计算:
(1) am1 an2 a
(2) a5 a3
; a b3 b a4 a b5

; 10a6 5a3

(3) a4 3
; xm2 2

(4) ab6
; 3a2b3 4
8x 84 y

23 x
23 4 y
2x 3 a3
22 6 y
b6 .
例题 9.
(1)已知 a 322 ,b,,414 c 910 d 810 ,则 a,b,c,d 的大小关系为

(2)已知 a 255 , b 344 , c 533 , d 622 ,比较 a 、b、、c d 的大小关系.
人教版 八年级数学上册 第 14 章 幂运算与整式乘除练习题
(含答案)
例题1. 将 4 m nn mm nn mn m写成幂的形式为:

5
【答案】 4 n m5 .
5 例题 2. 计算:① 34
4



3 4
4
34
③ 4

人教版八年级数学上册课后习题答案

人教版八年级数学上册课后习题答案

人教版八年级上册课后习题答案习题11.11、图中共有6个三角形分别是:ABC ADC ABE AEC ADE ABD ∆∆∆∆∆∆、、、、、2、2种,每三条一组可组成四组,分别为:10,7,5;10,7,3;10,5,3;7,5,3;满足两边之和大于第三边,两边之差小于第三边,只有第一组,第四组能构成三角形。

3、略4、(1)EC ;BC(2)∠DAC ;∠BAC(3)∠AFC(4)1/2BC ·AF5、C6、(1)当长为6 cm 的边为腰时,则另一腰长为6 cm ,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6cm ,8cm(2)当长为6 cm 的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm) 因为6+7>7,所以北时另两边的长分别为7cm ,7cm7、(1)当等腰三角形的腰长为5时,三角形的三边为5,5,6 因为5+5>6,所以三角形周长为5+5+6=16;当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6 所以三角形周长为6+6+5=17;所以这个等腰三角形的周长为16或17(2)228、1:29、解:∠1=∠2,理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC又DE//AC,所以∠DAC=∠1又DF//AB,所以∠DAB=∠2所以∠1=∠210、四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条习题11.21、(1)x=33(2)x=60(3)x=54(4)x=602、(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了3、∠A=50°,∠B=60°,∠C=70°4、70°5、解:∵AB//CD,∠A=40°,∴∠1=∠A=40°∵∠D=45°,∴∠2=∠1+∠D=40°+45°=85°6、解:∵AB//CD,∠A=45°,∴∠1=∠A=45°∵∠1=∠C+∠E,∴∠C+∠E=45°又∵∠C=∠E,∴∠C+∠C=45°∴∠C=22.5°7、解:因为∠ABC=80°-45°=35°又∠BAC= 45°+15°=60°,所以∠C =180°-35°-60°=85°8、解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°9、解:因为∠A+∠ABC+∠ACB=180°,∠A=100°所以∠ABC+∠ACB=180°-∠A=180°-100°=80°又因为∠1=∠2,∠3=∠4,所以∠2=1/2∠ABC,∠4=1/2∠ACB所以∠2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x=180°-(∠2+∠4) =180°-40°=140°,所以x=140°10、180°;90°;90°11、证明:因为∠BAC是△ACE的一个外角所以∠BAC=∠ACE+∠E又因为CE平分∠ACD,所以∠ACE= ∠DCE所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角所以∠DCE=∠B+∠E所以∠BAC=∠B+ ∠E+∠E=∠B+2∠E习题11.31、图略,共9条2、x=120;x=30;x=753、多边形的边数3456812内角和180°360°540°720°1080°1800°外角和360°360°360°360°360°360°4、108°;144°5、九边形6、(1)三角形(2)设这个多边形是n边形,(n-2)×180=2×360,解得n=6,所以这个多边形为六边形7、AB//CD,BC//AD8、(1)是,BC⊥CD,所以⊥BCD=90°,又因为⊥1=⊥2=⊥3,所以⊥1=⊥2=⊥3=45°,⊥CBD为等腰直角三角形,CO是⊥DCB的平分线,所以CO是⊥BCD的高(2)CO⊥BD,所以AO⊥BD,即⊥4+⊥5=90°,又因为⊥4=60°,所以⊥5=30°(3)已知⊥BCD= 90°,⊥CDA=⊥1+⊥4=45°+60°=105°,⊥DAB=⊥5+⊥6=2×30°=60°,又因为⊥BCD+⊥CDA+⊥CBA+⊥DAB=360°所以⊥CBA=105°9、解:因为五边形ABCDE的内角都相等,所以⊥E=((5-2)×180°)/5=108°,所以⊥1=⊥2=1/2(180°-108°)=36°,同理⊥3=⊥4=36°,所以x=108-(36+36)=3610、解:平行;BC与EF有这种关系因为六边形ABCDEF的内角都相等所以⊥B=((6-2)×180°)/6=120°因为⊥BAD=60°,所以⊥B+⊥BAD=180°,所以BC//AD因为⊥DAF=120°-60°=60°,所以⊥F +⊥DAF=180°所以EF//AD,所以BC//EF同理可证AB//DE复习题111、解:因为S⊥ABD=1/2BD,AE=5cm2,AE=2 cm,所以BD=5cm 又因为AD是BC边上的中线,所以DC=BD=5cm,BC=2BD=10cm2、x=40;x=70;x=60;x=100;x=1153、多边形的边数:17;25内角和:5×180°;18×180°外角和都是360°4、5条,6个,相等900°5、76、证明:由三角形内角和定理可得:⊥A+⊥1+42°=180°又因为⊥A+10°=⊥1,所以⊥A十⊥A+10°+42°=180°,则⊥A=64°因为⊥ACD=64°,所以⊥A=⊥ACD根据内错角相等,两直线平行,可得AB//CD7、解:⊥⊥C+⊥ABC+⊥A=180°,⊥⊥C+⊥C+1/2⊥C=180°,解得⊥C=72°又⊥BD是AC边上的高,⊥⊥BDC=90°⊥⊥DBC=90°-72°=18°8、解:⊥DAC=90°-⊥C= 20°⊥ABC=180°-⊥C-⊥BAC=60°又⊥AE,BF是角平分线⊥⊥ABF=1/2⊥ABC=30°,⊥BAE=1/2⊥BAC=25°⊥⊥AOB=180°-⊥ABF-⊥BAE=125°9、BD;PC;BD+PC;BP+CP10、解:因为五边形ABCDE的内角都相等所以⊥B=⊥C=((5-2)×180°)/5=108°又因为DF⊥AB,所以⊥BFD=90°在四边形BCDF中,⊥CDF+⊥BFD+⊥B+⊥C=360°所以⊥CDF=360°-⊥BFD-⊥B-⊥C=360°-90°-108°-108°=54°11、证明:(1)因为BE和CF是⊥ABC和⊥ACB的平分线所以⊥1=1/2⊥ABC,⊥2=1/2⊥ACB因为⊥BGC+⊥1+⊥2 =180°所以BGC=180°-(⊥1+⊥2)=180°-1/2(⊥ABC+⊥ACB)(2)因为⊥ABC+⊥ACB=180°-⊥A由(1)得,⊥BGC=180°-1/2(180°-⊥A)=90°+1/2⊥A12、证明:在四边形ABCD中⊥ABC+⊥ADC+⊥A+⊥C=360°因为⊥A=⊥C=90°所以⊥ABC+⊥ADC= 360°-90°-90°=180°又因为BE平分⊥ABC,DF平分⊥ADC所以⊥EBC=1/2⊥ABC, ⊥CDF=1/2⊥ADC所以⊥EBC+⊥CDF=1/2(⊥ABC+⊥ADC)=1/2×180°=90°又因为⊥C=90°,所以⊥DFC+⊥CDF =90°所以⊥EBC=⊥DFC,所以BE//DF习题12.11、对应边:AC和CA对应角:⊥B和⊥D,⊥ACB和⊥CAD,⊥CAB和⊥ACD2、对应边:AN和AM,BN和CM对应角:⊥ANB和⊥AMC,⊥BAN和⊥CAM3、66°4、(1)对应边FG和MH,EF和NM,EG和NH对应角⊥E和⊥N,⊥EGF和⊥NHM(2)由(1)得NM=EF=2.1cm,GE=HN=3.3 cm所以HG=GE-EH=3.3-1.1=2.2cm5、解:⊥ACD=⊥BCE,⊥⊥ABC⊥⊥DEC,⊥⊥ACB=⊥DCE(全等三角形的对应角相等)⊥⊥ACB-⊥ACE=⊥DCE-⊥ACE(等式的基本性质)6、(1)对应边:AB和AC,AD和AE,BD和CE对应角:⊥A和⊥A,⊥ABD和⊥ACE,⊥ADB和⊥AEC(2)因为⊥A=50°,⊥ABD=39°,⊥AEC⊥⊥ADB所以⊥ADB=180°- 50°- 39°=91°,⊥ACE=39°又因为⊥ADB=⊥1+⊥2+⊥ACE,⊥1=⊥2所以2⊥1+39°=91°,所以⊥1= 26°习题13.11、都是轴对称图形,图略2、略3、有阴影的三角形与1,3成轴对称;整个图形是轴对称图形;它共有2条对称轴4、⊥A'B'C'=90°,AB=6cm5、全等;不一定6、解:⊥DE是AC的垂直平分线,AE=3cm⊥AD=CD,CE=AE=3cm又⊥⊥ABD的周长为13cm⊥AB+BD+AD=13cm,AB+BD+CD=13cm,AB+BC=13cm⊥AB+BC+AC=AB+BC+AE+CE=13+3+3=19cm故⊥ABC的周长为19cm7、是,2条8、直线b,d,f9、证明:⊥OA=OC,⊥A =⊥C,⊥AOB=⊥COD⊥⊥AOB⊥⊥COD,⊥OB=OD⊥BE=DE,⊥OE垂直平分BD10、线段AB的垂直平分线与公路的交点是公共汽车站所建的位置11、AB和A'B'所在的直线相交,交点在L上;BC和B'C'所在的直线也相交,且交点在L上;AC和A'C'所在的直线不相交,它们所在的直线与对称轴L平行,成轴对称的两个图形中,如果对应线段所在的直线相交,交点一定在对称轴上,如果对应线段所在的直线不相交,则与对称轴平行12、发射塔应建在两条高速公路m和n形成的角和平分线与线段AB 的垂直平分线的交点位置上,图略13、证明:(1)∵点P在AB的垂直平分线上∴PA=PB,又∵点P在BC的垂直平分线上∴PB=PC,∴PA=PB=PC(2)点P在AC的垂直平分线上,三角形三边的垂直平分线相交于一点,这点到这个三角形三个顶点的距离相等习题13.21、略2、关于x轴对称的点的坐标依次为:(3,-6),(-7,-9),(6,-1),(-3,5),(0,-10)关于y轴对称点的坐标依次为:(-3,6),(7,9),(-6,-1),(3,-5),(0,-10)3、B(1,-1),C(-1,-1),D(-1,1)4、略5、关于x轴对称;向上平移5个单位长度关于y轴对称;先关于x轴作轴对称,再关于y轴作轴对称6、7、略习题13.31、(1)35°,35°(2)解:80°的角是底角时,那么另一个底角为80°,顶角为180°-80°-80°=20°80°的角是顶角时,两个底角相等,均为1/2(180°-80°)=50°所以另外两个角是20°,80°或50°,50°2、证明:⊥AD⊥BC,⊥⊥ADB=⊥DBC又⊥BD平分⊥ABC,⊥⊥ABD=⊥DBC⊥⊥ABD=⊥ADB,⊥AB=AD3、解:⊥五角星的五个角都是顶角为36°的等腰三角形⊥每个底角的度数是1/2×(180°- 36°)=72°⊥⊥AMB=180°-72°=108°4、解:⊥AB=AC,⊥BAC=100°⊥⊥B=⊥C=1/2(180°-⊥BAC)=1/2×(180°-100°)=40°又⊥AD⊥BC,⊥⊥BAD=⊥CAD=1/2⊥BAC=1/2×100°=50°5、证明:⊥CE//DA,⊥⊥A=⊥CEB又⊥⊥A=⊥B,⊥⊥CEB=⊥B⊥CE=CB,⊥⊥CEB是等腰三角形6、证明:⊥AB=AC⊥⊥B=⊥C,又⊥AD=AE⊥⊥ADE=⊥AED,⊥⊥ADB=⊥AEC在⊥ABD和⊥ACE中,有⊥B=⊥C,⊥ADB=⊥AEC,AB=AC⊥⊥ABD⊥⊥ACE(AAS),⊥BD=CE7、解:∵AB=AC,∠=40°∴∠ABC=∠C=1/2×(180°-40°)=70°又∵MN是AB的垂直平分线,∴DA=DB,∴∠A=∠ABD=40°∴∠DBC=∠ABC-∠ABD=70°-40°=30°8、略9、解:对的,因为等腰三角形底边上的中线和底边上的高重合10、证明:⊥BO平分⊥ABC,⊥⊥MBO=⊥CBO⊥MN⊥BC,⊥⊥BOM=⊥CBO,⊥⊥BOM=⊥MBO⊥BM=OM,同理CN=ON⊥AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC即⊥AMN的周长等于AB+AC11、解:⊥⊥NBC=84°,⊥NAC=42°,⊥MBC=⊥NAC+⊥C即84°=42°+⊥C,⊥⊥C=42°,⊥BC=BA又⊥BA=15×(10-8)=30(n mile)⊥BC=30n mile,即从海岛B到灯塔C的距离是30n mile12、13略14、解:∵PQ=AP=AQ,∴△APQ是等边三角形∴∠APQ=∠AQP=∠PAQ=60°又∵BP=AP,∴∠BAP=∠B又∵∠BAP+∠B=∠AOQ=60°,∴∠BAP=∠B=30°同理∠CAQ=30°所以∠BAC=∠BAP+∠PAQ+∠CAQ=30°+60°+30°=120°15、略复习题131、1,2,4,5,6是2、略3、证明:连接BC,⊥点D是AB的中点,CD⊥AB⊥AC= BC,同理,AB=BC⊥AC=AB4、点A与点B关于x轴对称;点B与点E关于y轴对称;点C与点E不关于x轴对称,因为它们的纵坐标分别是3,-2,不互为相反数5、⊥D=25°,⊥E=40°,⊥DAE=115°6、证明:⊥AD=BC,BD=AC,AB=AB⊥⊥ABD⊥⊥BAC,⊥⊥C=⊥D又⊥⊥DEA=⊥CEB,AD=BC⊥⊥ADE⊥⊥BCE,⊥AE=BE⊥⊥EAB是等腰三角形7、证明:⊥在⊥ABC中,⊥ACB=90°⊥⊥A+⊥B=90°⊥⊥A=30°,⊥⊥B=60°,BC=1/2AB⊥⊥B+⊥BCD=90°,⊥⊥BCD=30°⊥BD=1/2BC,⊥BD=1/2×1/2AB=1/4AB8、解:等边三角形有3条对称轴,正方形有4条对称轴,正五边形有5条对称轴,正六边形右6条对称轴,正八边形有8条对称轴,正n边形有n条对称轴9、(1)(4)是轴对称;(2)(3)是平移;(1)的对称轴是y轴;(4)的对称轴是x轴;(2)中图形I先向下平移3个单位长度,再向左平移5个单位长度得到图形⊥;(3)中图形I先向右平移5个单位长度,再向下平移3个单位长度得到图形⊥10、证明:因为AD是⊥ABC的角平分线,DE,DF分别垂直于AB,AC 于点E,F,所以DE= DF,⊥DEA= ⊥DFA= 90°又因为DA=DA,所以Rt⊥ADE⊥Rt⊥ADF所以AE=AF,所以AD垂直平分EF11、证明:⊥⊥ABC是等边三角形⊥AB=BC=AC,⊥A=⊥B=⊥C=60°又⊥AD= BE=CF,⊥BD=CE=AF⊥⊥ADF⊥⊥BED⊥⊥CFF,⊥DF=ED=FE所以⊥DEF是等边三角形12、略13、证明:⊥⊥ABC是等边三角形,D是AC的中点⊥⊥ABC=⊥ACB=60°,⊥ABD=⊥DBC=1/2⊥ABC=30°⊥⊥ACB=⊥CEB+⊥CDE ,⊥⊥CED=1/2⊥ACB=30°⊥⊥DBC=⊥CED ,⊥DB=DE14、15略习题14.126310108646543)2(11a b a a a x b )不对,()不对,()不对,()不对,(不对,)不对,、(248334616-22a b a q p x 、、、、- 8753231094.446-183⨯-、、、、y x b a y xaa a ab ab b a x x b ab 4618510228-42322233++-+--+、、、、33232222;842;5214;483;6161;1895y x x x x y y x x x x x x --+--+-++-++-、 2222343121;43;16;4;16b a ab x x p m x ab ++-+--;、 021,-272==+=时,原式当、原式x x x 82;15125-822-+-x x x 、B 30289⨯、6101.5810⨯、13、2323253103103)32()2()2()2(222b a n m n m n m n m =⋅=⋅=⋅=+ 14、938;1>=x x 习题14.2 999996;3999999;425;94;1;9412222222b b a y x y x ----、9604;3969;94249;144;92416;2520422222222b ab a m m y xy x b ab a +-+++-++、168;961244;12;2458532422222+-++-+--++--x x y x y xy x y xy x x x 、2121,31,101242=-==+=时,原式当、原式y x y xy 5、5cm6、224)2()2()2(222ab a b a b a πππππ=⨯=--+ 7、19 8、778<x 9、61,23-==y x习题14.3)2)(3();23(q p 2)4(3);23(512---+-+m a q p c a bc a a )(;、))((3);127.0)(127.0();2)(2(3);61)(61(2y x y x p p y x y x b b -+-+-+-+、222222)(;)85(;)()21(;)7(;)15(3c b a a m n y m t ++--+-+、 4、314;5105.08⨯ ))((3;)2();2)(2(;)(522y x y x a y x y p p b a -+---++、 6、2207、222cm 84.1754=-r R ππ8、)1(4)2()1(4222222-=---=-⨯x x x x x 或 9、12±=m10、略11、)35)(35();2)(2(-+-+x x x x复习题14 39204;96.3599;12444;55;344;4122242297+--++--+y x y xy x x x b ab a y x 、xz y x a a b ---87;232;94;322252、 22)233(;)2();(2);45)(45(3+----+y x b a b a x y x y x 、 )(t 101.248412⨯、)(28.622)1(275km R R ≈=-+πππ、3232;46;4;298622-+---+xy z yz y x x 、 222)2(;)3();12)(12)(14();3)(3(7b a y x y x x x x x x +---++-+、17;4822=+=y x xy 、9、370.32(t )10、(1)规律:3×9-2×10=7;14×8-7×15=7(2)是有同样规律(3)设左上角数字为n ,其后面数字为n+1,其下面数字为n+7,右下角数字为n+8,则(n+1)(n+7)-n(n+8)=n2+7n+n+7-n2-8n=711、证明:∵(2n+1)2-(2n -1)2=[(2n+1)+(2n -1)][(2n+1)-(2n -1)]=4n ×2=8n ,又∵n 是整数,∴8n 是8的倍数∴两个连续奇数的平方差是8的倍数12、略习题15.1分式万字;、;11;/2.0101201--+t h km x n m nm n m b b a b a c m a x x y x b x -++-+++-,2,,3,1512),(43,3,122分式:、整式: 3、x ≠0;x ≠3;x ≠-5/3;x ≠±44、(1)(2)都相等,利用分式的基本性质可求出5、yx n m b a x y 2;34;2;52-- 263;23;516-++x b a a c b x ;、)32)(32(9124,)32)(32(2;)(22,)(2;3,318;69,62722222222222-++--+++-m m m m m m mn y x xy y x y x b a ac b a bc y x y xy 、8、(1)x ≠0且x ≠1(2)x 取任意实数 min 10120-120009+ωω、 10、玉米的单位面积产量为n/m ,水稻的单位面积产量为(2n+q)/(m+p)11、解:大长方形的面积为222b ab a ++因为大长方形的长为2(a+b ) 则大长方形的宽为)(2)(2222m b a b a b ab a +=+++ 12、正确;不正确,正确答案为x y x-13、a b a b x -≠==且5;1习题15.2xy m n xz y c a 4;;21;412-、 xy x x x x x y x b a a -++---;6;)2(32;122、 abz y x b 45;;2;2534262-、 xa x x -13;11;1)1(314++-;、 yx y x y p mn n p m ab 81;)(27;20158;10752232++-、)(322;823;)(;622224333222b a ab b a y x y x y x y x a b a b -++++-+、n mb a yz x ab 12;27;2;673323--、-7-7-5-5103.01105.67102108⨯⨯⨯;;;、-8-510109;、)(10km mq nptt q p m n =⋅⋅、倍、3-m 10m11)(33122t a a m+、)/(2132h km t t n-、)(5.02)5.0(14h n n n --、))()(()()()(;15222222a c c b b a c b b a a c mnp n m p ----+-+-++、15、略习题15.31、x=3/4;x=7/6;无解;x=4;x=-3;x=1;x=-6/7;12、(1)方程两边同乘x -1,得1+a( x -1) =x -1去括号,得1+ax -a=x -1移项,合并同类项,得(a -1)x=a -2因为a≠1,所以a -1≠0方程两边同除以a-1,得x=(a-2)/(a-1)检验:当x=(a-2)/(a-1)时,x-1=(a-2)/(a-1)-1= (a-2-a+1)/(a-1)=(-1)/(a-1)≠0所以x=(a-2)/(a-1)是原方程的解(2)方程两边同乘x(x+1),得m(x+1) -x=0去括号,得mx+m-x=0移项,得(m-1)x=-m因为m≠1,所以m-1≠0方程两边同除以m-1,得x=(-m)/(m-1)检验:因为m≠0,m≠1,所以x(x+1)=-m/(m-1)×[-m/(m-1)+1]=m/[(m-1)2]≠0所以x=-m/(m-1)是原分式方程的解3、解:设甲、乙两人的速度分别是3x km/h,4x km/h列方程,得6/3x+1/3=10/4x解得x=3/2经检验知x=3/2是原分式方程的解则3x=9/2,4x=6答:甲、乙两人的速度分别是9/2 km/h,6 km/h4、A型机器人每小时搬运90kg,B型机器人每小时搬运60kg5、解:设李强单独清点完这批图书需要x h,张明3 h清点完这批图书的一半,则每小时清点这批图书的1/6,根据两人的工作量之和是总工作量的1/2,列方程得:1.2×(1/x+1/6)=1/2,解得x=4经检验知x=4是原分式方程的解答:如果李强单独清点这批图书需要4 h6、解:因为小水管的口径是大水管的1/2,那么小水管与大水管的横截面积比为S小/S大=πr2/[π(2r)2]=1/4.设小水管的注水速度为xm3/min,那么大水管的注水速度为4xm3/min由题意得(1/2 V)/X+(1/2 V)/4x=t,解得x=5V/8t经检验,x=5V/8t是方程的根,它符合题意所以4x=5V/2t答:小水管的注水速度为5V/8tm3/min,大水管的注水速度为5V/2tm3/min7、解:设原来玉米平均每公顷产量是xt,则现在平均每公顷产量是(x+a)t,根据增产前后土地面积不变列方程,得m/x=(m+20)/(x+a)解得x=ma/20检验:因为m,a都是正数,x=ma/20时,x(x+a)≠0所以x=ma/20是原分式方程的解答:原来和现在玉米平均每公顷的产量是ma/20t与(ma/20+a)t 8、解:设第二小组速度为x m/min,则第一小组速度为1. 2x m/min由题意,得450/x-(450 )/1.2x=15,解得x=5检验:当x=5时,1.2x≠0,所以x=5是原分式方程的解此时1.2x=1.2×5=6 (m/min)答:两小组的攀登速度分别为6 m/min,5 m/min设第二小组的攀登速度为x m/min,那么第一小组的攀登速度为ax m/min根据题意得h/x=h/ax+t方程丙边同乘ax,得ha=h+atx解得x=(ha-h)/at经检验x=(ha-h)/at是原分式方程的解,(ha-h)/at·a=(ha-h)/t答:第一小组的攀登速度是(ha-h)/tm/min第二小组的攀登速度是(ha-h)/atm/min9、解:一飞机在顺风飞行920 km和逆风飞行680 km共用去的时间,正好等于它在无风时飞行1600 km用去的时间.若风速为40 km/h,求飞机在无风时飞行的速度设飞机在无风时的飞行速度为xkm/h,则顺风速度为(x+ 40) km/h,逆风速度为(x-40) km/h根据题意列方程得:920/(x+40)+680/(x-40)=(1 600)/x解得x=800/3检验:x=800/3时,x(x+40) (x-40)≠0所以x=800/3是原分式方程的解答:飞机在无风时的飞行速度为800/3krn/h复习题152)(2;;51;115;312b a ab y x z a n b a x +++分式:、整式: 2629622222229;;42442;1;2422zy x y x v u uv v u yx t s st s ---+-+-、 2224222;;1;1;168;161642;163y x ba b b a x x qr r q p x x x b -+--++-+-;、 6354-=x 、无解; 5、232;212≠±≠-≠-≠x x x x 且且 6、的值的值;小于;大于2212- 7、当x=-7时,11)2(3)1(2---+x x 与的值相等8、设现在平均每天生产x 台机器,则原计划每天生产(x -50)台机器 根据题意600/x=450/(x -50),解得x= 200检验:当x=200时,x(x - 50)≠0所以x=200是原分式方程的解答:现在平均每天生产200台机器9、设一个农民人工收割小麦每小时收割xhm2,则收割机每小时收割小麦150xhm2.根据题意,得10/150x=10/100x -1,解得x=1/30.经检验知x=1/30是原分式方程的解,所以150x=150×1/30=5(hm2).答:这台收割机每小时收割5hm2小麦10、设前一小时的平均行驶速度为x km/h ,则一小时后的平均速度为1.5x km /h根据题意,得180/x=1+(180-x)/1.5x+40/60,解得x=60经检验知x=60是原分式方程的解答:前一小时的行驶速度为60 km /h-0.22.3,33121,1111=-=+===+--=时,原式当原式;时,原式当、原式x x x x x )(2,)()(2122222r R r R S a S r R r R a -+-==-+-πππ所以、13、不能为0,此时式子没有意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3页习题答案1. 2010年为+108.7mm; 2009年为-81.5 mm; 2008年为+53.5 mm.2.这个物体又移动了-1 m表示物体向左移动了1m这时物体又回到了原来的位置第4页习题答案1.解:有5个三角形,分别是△ABE,△ABC,△BEC,△BDC,△EDC.2.解:(1)不能;(2)不能;(3)能.理由略第5页习题答案:1.解:图(1)中∠B为锐角,图(2)中∠B为直角,图(3)中∠B为钝角,图(1)中AD 在三角形内部,图(2)中AD 为三角形的一条直角边,图(3)中AD在三角形的外部.锐角三角形的高在三角形内部,直角三角形的直角边上的高与另一条直角边重合,钝角三角形有两条高在三角形外部.2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF第7页习题答案:解:(1)(4)(6)具有稳定性第8页习题11.1答案1.解:图中共6个三角形,分别是△ABD,△ADE,△AEC,△ABE,AADC,△ABC.2.解:2种.四根木条每三条组成一组可组成四组,分别为10,7,5;10,7,3;10,5,3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二组、第三组不能构成三角形,只有第一组、第四组能构成三角形,3.解:如图11-1-27所示,中线AD、高AE、角平分线AF.4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF5.C6.解:(1)当长为6 cm的边为腰时,则另一腰长为6 cm,底边长为20-12=8(cm),因为6+6>8,所以此时另两边的长为6 cm,8 cm.(2)当长为6 cm的边为底边时,等腰三角形的腰长为(20-6)/2=7(cm),因为6+7>7,所以北时另两边的长分别为7 cm,7cm.7.(1) 解:当等腰三角形的腰长为5时,三角形的三边为5,5,6,因为5+5>6,所以三角形周长为5+5+6=16:当等腰三角形的腰长为6时,三角形的三边为6,6,5,因为6+5>6,所以三角形周长为6+6+5=17.所以这个等腰三角形的周长为16或17;(2)22.8.1:2 提示:用41/2BC.AD—丢AB.CE可得.9.解:∠1=∠2.理由如下:因为AD平分∠BAC,所以∠BAD=∠DAC.又DE//AC,所以∠DAC=∠1. 又DF//AB,所以∠DAB=∠2. 所以∠1=∠2.10.解:四边形木架钉1根木条;五边形木架钉2根木条;六边形木架钉3根木条人教版八年级上册数学第13页练习答案1.解:因为∠CBD=∠CAD+∠ACB,所以∠ACB=∠CBD-∠CAD=45°-30°=15°.2.解:在△ACD中,∠D+∠DAC+∠DCA=180°,在△ABC中,∠B+∠BAC+∠BCA=180°,所以∠D+∠DAC+∠DCA+∠B+∠BAC+∠BCA=∠D+∠B+∠BAD+∠BCD=180°+180°=360°.所以40°+40°+150°+∠BCD= 360°. 所以∠BCD=130°人教版八年级上册数学第14页练习答案1.解:∠ACD=∠B.理由:因为CD⊥AB,所以△BCD是直角三角形,∠BDC=90°,所以∠B+∠BCD=90°,又因为∠ACB= 90°,所以∠ACD+∠BCD=∠ACB=90°,所以∠ACD=∠B(同角的余角相等).2.解:△ADE是直角三角形,理由:因为∠C=90。

所以∠A+∠2=90。

.又因为∠1= ∠2,所以∠A+∠1=90°.所以△ADE是直角三角形(有两个角互余的三角形是直角三角形).人教版八年级上册数学第15页练习答案解:(1)∠1=40°,∠2=140°;(2)∠1=110°,∠2=70°;(3)∠1=50°,∠2=140°;(4)∠1=55°,∠2= 70°;(5)∠1=80°,∠2=40°;(6)∠1=60°,∠2=30°.人教版八年级上册数学习题11.2答案1.(1) x= 33; (2)z一60;(3)z一54;(4)x=60.2.解:(1)一个直角,因为如果有两个直角,三个内角的和就大于180°了;(2)一个钝角,如果有两个钝角,三个内角的和就大于180°了;(3)不可以,如果外角是锐角,则它的邻补角为钝角,就是钝角三角形,而不是直角三角形了.3.∠A=50°,∠B=60°,∠C=70°.4. 70°.5.解:∵AB//CD,∠A=40°,∴∠1=∠A=40°∵∠D=45°,∴∠2=∠1+∠D=40°+45°=85°.6.解:∵AB//CD,∠A=45°,∴∠1=∠A=45°.∵∠1=∠C+∠E,∴∠C+∠E=45°. 又∵∠C=∠E,∴∠C+∠C=45°,∴∠C=22.5°.7,解:依题意知∠ABC=80°-45°-35°,∠BAC= 45°+15°=60°,∠C =180°-35°-60°=85°,即∠ACB=85°.8.解:∠BDC=∠A+∠ACD=62°+35°=97°,∠BFD=180°-∠BDC-∠ABE=180°-97°-20°=63°.9.解:因为∠A+∠ABC+∠ACB=180°,∠A=100°,所以∠ABC+∠ACB=180°-∠A=180°-100°=80°.又因为∠1=∠2,∠3=∠4,所以∠2=1/2∠ABC,∠4=1/2∠ACB,所以么2 +∠4=1/2(∠ABC+∠ACB)=1/2×80°=40°所以x°=180°-(∠2+∠4) =180°-40°=140°.所以x=140.10.180°90°90°11.证明:因为∠BAC是△ACE的一个外角,所以∠BAC=∠ACE+∠E.又因为CE平分∠ACD,所以∠ACE= ∠DCE. 所以∠BAC=∠DCE+∠E又因为∠DCE是△BCE的一个外角,所以∠DCE=∠B+∠E.所以∠BAC=∠B+∠E+∠E=∠B+2∠E.人教版八年级上册数学第21页练习答案人教版八年级上册数学第24页练习答案1.(1)x=65;(2)x=60; (3)x=95.2.六边形3.四边形人教版八年级上册数学习题11.3答案1.解:如图11-3 -17所示,共9条.2.(1)x=120;(2)x=30;(3)x=75.3.解:如下表所示.4. 108°,144°5.答:这个多边形是九边形.6.(1)三角形;(2)解:设这个多边形是n边形.由题意得(n-2)×180=2×360.解这个方程得n=6.所以这个多边形为六边形.7.AB//CD,BC//AD,理由略.提示:由四边形的内角和可求得同旁内角互补.8.解:(1)是.理由:由已知BC⊥CD,可得∠BCD=90。

,又因为∠1=∠2=∠3,所以有∠1=∠2=∠3=45°,即△CBD为等腰直角三角形,且CO是∠DCB的平分线,所以CO 是△BCD的高.(2)由(1)知CO⊥BD,所以有AO⊥BD,即有∠4+∠5=90°.又因为∠4=60°,所以∠5=30°.(3)由已知易得∠BCD=90°,∠CDA=∠1+∠4=45°+60°=105°.∠DAB=∠5+∠6=2×30°=60°.又因为∠BCD+∠CDA+∠CBA+∠DAB=360°,所以∠CBA=105°.9.解:因为五边形ABCDE的内角都相等,所以∠E=((5-2)×180°)/5=108°.所以∠1=∠2=1/2(180°-108°)=36°.同理∠3=∠4=36°,所以x=108 - (36+36) =36.10.解:平行(证明略),BC与EF有这种关系.理由如下:因为六边形ABCDEF的内角都相等,所以∠B=((6-2)×180°)/6=120。

.因为∠BAD= 60°,所以∠B+∠BAD=180°.所以BC//AD.因为∠DAF=120°- 60°=60°,所以∠F +∠DAF=180°.所以EF//AD.所以BC//EF.同理可证AB//DE人教版八年级上册数学第28页复习题答案1?解:因为S△ABD=1/2BD.AE=5 cm2,AE=2 cm,所以BD=5cm.又因为AD是BC边上的中线,所以DC=BD=5 cm,BC=2BD=10 cm.2.(1)x=40;(2)x=70;(3)x=60;(4)x=100; (5)x=115.3.多边形的边数:17,25;内角和:5×180°,18×180°;外角和都是360°.4.5条,6个三角形,这些三角形内角和等于八边形的内角和.5.(900/7)°6.证明:由三角形内角和定理,可得∠A+∠1+42°=180°.又因为∠A+10°=∠1,所以∠A十∠A+10°+42°=180°. 则∠A=64°.因为∠ACD=64°,所以∠A= ∠ACD. 根据内错角相等,两直线平行,可得AB//CD.7.解:∵∠C+∠ABC+∠A=180°,∴∠C+∠C+1/2∠C=180°,解得∠C=72°.又∵BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°-72°=18°8.解:∠DAC=90°-∠C= 20°,∠ABC=180°-∠C-∠BAC=60°.又∵AE,BF是角平分线,∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°,∴∠AOB=180°-∠ABF-∠BAE=125°.9.BD PC BD+PC BP+CP10.解:因为五边形ABCDE的内角都相等,所以∠B=∠C=((5-2)×180°)/5=108°.又因为DF⊥AB,所以∠BFD=90°,在四边形BCDF中,∠CDF+∠BFD+∠B+∠C=360°,所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°.11.证明:(1)如图11-4-6所示,因为BE和CF是∠ABC和∠ACB的平分线,所以∠1=1/2∠ABC,∠2=1/2∠ACB.因为∠BGC+∠1+∠2 =180°,所以BGC=180°-(∠1+∠2)=180°-1/2(∠ABC+∠ACB).(2)因为∠ABC+∠ACB=180°-∠A,所以由(1)得,∠BGC=180°-1/2(180°-∠A)=90°+1/2∠A.12.证明:在四边形ABCD中,∠ABC+∠ADC+∠A+∠C=360°.因为∠A=∠C=90°,所以∠ABC+∠ADC= 360°-90°-90°=180°.又因为BE平分∠ABC,DF平分∠ADC,所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC,所以∠EBC+∠CDF=1/2(∠ABC+∠ADC)=1/2×180°=90°.又因为∠C=90°,所以∠DFC+∠CDF =90°.所以∠EBC=∠DFC. 所以BE//DF.第十二章习题答案人教版八年级上册数学第32页练习答案1.解:在图12.1-2(2)中,AB和DB,AC和DC,BC和BC是对应边;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是对应角.在图12. 1-2(3)中,AB和AD,AC和AE,BC和DE是对应边;∠B和∠D,∠C和∠E,∠BAC和∠DAE是对应角.2.解:相等的边有AC=DB,OC=OB,OA=OD;相等得角有∠A=∠D,∠C=∠B,∠AOC=∠DOB.人教版八年级上册数学习题12.1答案1.解:其他对应边是AC和CA;对应角是∠B和∠D,∠ACB和∠CAD,∠CAB和∠ACD.2.解:其他对应边是AN和AM,BN和CM;对应角是∠ANB和∠AMC,∠BAN和∠CAM.3. 66。

相关文档
最新文档