(完整版)三角函数诱导公式大全

合集下载

三角函数的8个诱导公式三角诱导公式顺口溜

三角函数的8个诱导公式三角诱导公式顺口溜

三⾓函数的8个诱导公式三⾓诱导公式顺⼝溜三⾓函数在各象限的符号⼝诀是⼀全正,⼆正弦,三正切,四余弦。

三⾓函数诱导公式⼝诀函数名不变,符号看象限;奇变偶不变,符号看象限。

下⾯是具体的函数公式以及推导公式,⼤家要牢记。

三⾓函数的诱导公式三⾓函数的基本公式公式⼀:任意⾓α与-α的三⾓函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式⼆:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式四:利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式五:π/2±α与α的三⾓函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα推算公式:3π/2±α与α的三⾓函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα三⾓函数的常见公式(1)(sinα)2+(cosα)2=1(2)1+(tanα)2=(secα)2(3)1+(cotα)2=(cscα)2正弦sin2a=2sina·cosa两⾓和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαcos(π+α)=-cosαtana=sina/cosatan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα三⾓函数诱导公式公式⼀设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式⼆设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三任意⾓α与-α的三⾓函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五利⽤公式-和公式三可以得到2π-α与α的三⾓函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα​公式六?3?±α及±α与α的三⾓函数值之间的关系:22?sin(+α)=cosα2?cos(+α)=-sinα2?tan(+α)=-cotα2?cot(+α)=-tanα2?sin(-α)=cosα2?cos(-α)=sinα2?tan(-α)=cotα2?cot(-α)=tanα23?sin(+α)=-cosα23?cos(+α)=sinα23? tan(+α)=-cotα23?cot(+α)=-tanα23?sin(-α)=-cosα23?cos(-α)=-sinα23?tan(-α)=cotα23?cot(-α)=tanα2(以上k∈z)。

三角函数诱导公式大全

三角函数诱导公式大全

三角函数诱导公式大全1.正弦函数诱导公式:正弦函数的诱导公式是通过余弦函数定义和平方性质得到的。

sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:sin(-A) = -sinAsin(A ± B) = sinA cosB ± cosA sinBsin2A = 2sinAcosAsin3A = 3sinA - 4sin^3A2.余弦函数诱导公式:余弦函数的诱导公式是通过正弦函数定义和平方性质得到的。

sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:cos(-A) = cosAcos(A ± B) = cosA cosB - sinA sinBcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Acos3A = 4cos^3A - 3cosA3.正切函数诱导公式:正切函数的诱导公式是通过正弦函数和余弦函数诱导公式得到的。

tanA = sinA / cosA根据正弦函数和余弦函数诱导公式,我们可以得到以下诱导公式:tan(-A) = -tanAta n(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)tan2A = 2tanA / (1 - tan^2A)tan3A = (3tanA - tan^3A) / (1 - 3tan^2A)4.余切函数诱导公式:余切函数的诱导公式是通过正切函数的诱导公式得到的。

cotA = 1 / tanA根据正切函数的诱导公式,我们可以得到以下诱导公式:cot(-A) = -cotAcot(A ± B) = (cotA cotB ∓ 1) / (cotB ± cotA)cot2A = (1 - tan^2A) / 2tanAcot3A = (3cotA - cot^3A) / (cot^2A - 3)5.正割函数诱导公式:正割函数的诱导公式是通过余弦函数的诱导公式得到的。

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结

完整版)三角函数诱导公式总结三角函数诱导公式与同角的三角函数知识点1】诱导公式及其应用诱导公式是指通过一些特定的公式,将三角函数中的某些角度转化为其他角度,从而简化计算。

以下是常用的诱导公式:公式一:sin(-α) = -sinα;cos(-α) = cosα;tan(-α) = -tanα公式二:sin(π+α) = -sinα;cos(π+α) = -cosα;tan(π+α) =tanα公式三:sin(π-α) = sinα;cos(π-α) = -cosα;tan(π-α) = -tanα公式四:sin(2π-α) = -sinα;cos(2π-α) = cosα;tan(2π-α) = -tanα公式五:sin(π/2-α) = cosα;cos(π/2-α) = sinα公式六:sin(π/2+α) = cosα;cos(π/2+α) = -sinα公式七:sin(-π/2-α) = -cosα;cos(-π/2-α) = -sinα公式八:sin(-π/2+α) = -cosα;cos(-π/2+α) = sinα公式九:sin(α+2kπ) = sinα;cos(α+2kπ) = cosα;tan(α+2kπ) = tanα(其中k∈Z)。

以上公式可以总结为两条规律:1.前四组诱导公式可以概括为:函数名不变,符号看象限。

2.公式五到公式八总结为一句话:函数名改变,符号看象限(原函数所在象限)。

另外,还有一个规律是:奇变偶不变,符号看象限。

也就是说,将三角函数的角度全部化成kπ/2+α或是kπ/2-α的形式,如果k是奇数,那么符号要改变;如果k是偶数,符号不变。

例1、求值:(1)cos(2916π)= ________;(2)tan(-855)= ________;(3)sin(-π)= ________。

例2、已知tan(π+α)=3,求:(2cos(-α)-3sin(π+α))/(4cos(-α)+sin(2π-α))的值。

三角函数诱导公式全集

三角函数诱导公式全集

三角函数诱导公式全集三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。

三角函数的诱导公式【六公式】

三角函数的诱导公式【六公式】

)/ )
九倍角
sin9A=(sinA*(-3+4*sinA^2 )* ( 64*sinA^6-96*sinA^4+36*sinA^2-3 ))
cos9A=(cosA*(-3+4*cosA^2 )* ( 64*cosA^6-96*cosA^4+36*cosA^2-3 ))
tan9A=tanA* ( 9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8 ) / (1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8 )
例. c^3=c*c^2=c* (1-s^2 ), c^5=c*(c^2 ) ^2=c* ( 1-s^2 ) ^2 )
特殊公式
(sina+sin θ) * ( sina- sin θ) =sin (a+θ) *sin ( a- θ)
证明:(sina+sin θ) *( sina- sin θ) =2 sin[ (θ +a)/2] cos[(a - θ)/2] *2 cos[ (θ +a)/2] sin[(a- θ) /2]
tan (α +β+γ) =(tan α+tan β+tan γ - tan α· tan β· tan γ) / (1- tan α· tan β - tan β· tan γ - tan α· tan γ)
(α +β+γ≠π /2+2k π,α、β、γ≠π /2+2k π)
积化和差的四个公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2

(完整版)诱导公式总结大全

(完整版)诱导公式总结大全

e an dAl l t h i ng si nt he i r诱导公式1 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan αe an dAl l t 同角三角函数的基本关系式 倒数关系  tan α ·cot α=1 sin α ·csc α=1 cos α ·sec α=1 商的关系 sin α/cos α=tan α=sec α/csc α cos α/sin α=cot α=csc α/sec α 平方关系 sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导

三角函数诱导公式万能公式和差化积公式倍角公式等公式总结及其推导一、三角函数诱导公式1、万能公式a sin(A+B) = a sinAcosB + a cosAsinBa cos(A+B) = a cosAcosB - a sinAsinB2、差化积公式sinAcosB - cosAsinB = sin(A-B)cosAcosB + sinAsinB = cos(A-B)3、倍角公式sin2A = 2sinAcosAcos2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2sin2A4、和差公式sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB∓sinAsinB二、推导1、万能公式推导过程设定A+B=C,则有:a sin(A + B)= a sinC左右两侧同时乘以cosB:a sin(A + B)cosB = a sinCcosB左右两侧同时乘以sinB:a sin(A + B)sinB = a sinCsinB将上式整合即可得:a sin(A + B)= a sinAcosB + a cosAsinB同理,可推导出:a cos(A + B) = a cosAcosB - a sinAsinB2、差化积公式推导过程设定A=B,则有:sinAcosB - cosAsinB = sinAcosA - cosAcosA 经过整合可得:sinAcosB - cosAsinB = sinA -cosA将A=B替换为A-B,即可得sinAcosB - cosAsinB = sin(A-B)同理:cosAcosB + sinAsinB = cosAcosA + sinAsinA 经过整合可得:cosAcosB +sinAsinB = cosA +sinA将A=B替换为A-B,即可得cosAcosB +sinAsinB = cos(A-B)3、倍角公式的推导过程由于A为任意角度,对其两侧两边可以分别进行乘以cosA及sinA,得到:sinAcosA + sinAcosA = cosA*sinA + cosA*sinA经过整合可得:sin2A = 2sinAcosAcos2A = cosAcosA - sinAcosA经过整合可得:cos2A = 2cos2A - 1再把上式中的cos2A代入:2cos2A - 1 = 1 - 2sin2A4、和差公式推导过程设定A+B=C,则有:sin(A + B)= sinC将左右两侧分别乘以cosB及sinB:。

三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)三角函数的8个诱导公式1. 正弦函数的诱导公式sin(-x) = -sin(x)这个公式表明,正弦函数的值在x轴上是关于原点对称的。

也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。

这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。

2. 余弦函数的诱导公式cos(-x) = cos(x)这个公式表明,余弦函数的值在y轴上是关于原点对称的。

也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。

这个公式同样也可以帮助我们计算负角的余弦值。

3. 正切函数的诱导公式tan(-x) = -tan(x)这个公式表明,正切函数的值在原点上是关于y轴对称的。

也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。

这个公式在计算负角的正切值时非常有用。

4. 余切函数的诱导公式cot(-x) = -cot(x)这个公式表明,余切函数的值在原点上是关于x轴对称的。

也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。

这个公式同样也可以帮助我们计算负角的余切值。

5. 正弦函数的平方的诱导公式sin^2(x) + cos^2(x) = 1这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。

这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。

6. 正切函数的平方的诱导公式tan^2(x) + 1 = sec^2(x)这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。

这个公式在计算三角形中的未知边长时非常有用。

7. 余切函数的平方的诱导公式cot^2(x) + 1 = csc^2(x)这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。

这个公式同样也可以帮助我们计算三角形中的未知边长。

8. 正弦函数和余弦函数的诱导公式sin(x + π/2) = cos(x)cos(x + π/2) = -sin(x)这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的图形
各三角函数值在各象限的符号
sinα
cosα
tanα
三角函数的性质
函数y=sinx y=cosx y=tanx
定义域R R {x|x∈R且
x≠kπ+,k∈Z}
2
π
值域[-1,1]x=2kπ+时
2
π
y max=1
x=2kπ-时y min=-1
2
π
[-1,1]
x=2kπ时y max=1
x=2kπ+π时
y min=-1
R
无最大值
无最小值
周期性周期为2π周期为2π周期为π奇偶性奇函数偶函数奇函数
单调性在[2kπ-,2kπ+]
2
π
2
π
上都是增函数;
在[2kπ+
2
π
,2kπ+π]上都是减函
3
2
数(k∈Z)
在[2kπ-
π,2kπ]上都是
增函数;在
[2kπ,2kπ+π
]上都是减函数
(k∈Z)
在(kπ-,kπ+)
2
π
2
π
内都是增函数(k∈Z)
特殊角的三角函数值表
诱导公式一
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三
任意角α与-α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα cot (π-α)= -cotα
公式五
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα cot (2π-α)= -cotα
公式六
±α及
±α与α的三角函数值之间的关系: 2
π
2

sin (+α)= cosα 2
π
cos (+α)= -sinα 2
π
tan (+α)= -cotα 2
π
cot (+α)= -tanα 2
π
sin (-α)= cosα
2
π
cos (-α)= sinα 2
π
tan (-α)= cotα 2
π
cot (
-α)= tanα

sin (+α)= -cosα
23πcos (+α)= sinα
23πtan (+α)= -cotα
2


cot(+α)= -tanα
2

sin(-α)= -cosα
2

cos(-α)= -sinα
2

tan(-α)= cotα
2

cot(-α)= tanα
2
(以上k∈Z)。

相关文档
最新文档