2020年山东省济宁学院附属中学九年级二模数学试题

合集下载

备战2020中考【6套模拟】济宁市中考二模数学试题及答案

备战2020中考【6套模拟】济宁市中考二模数学试题及答案

备战2020中考【6套模拟】济宁市中考二模数学试题及答案中学数学二模模拟试卷一、选择题(本题共5小题,每题3分,共15分)1、把a 3-ab 2分解因式的正确结果是( )A (a+ab)(a -ab)B a (a 2-b 2)C a(a+b)(a -b)D a(a -b)22、在函数21-=x y 中,自变量x 的取值范围是( ) A x ≥2 B x>2 C x ≤2 D x<23、已知:如图1,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8m , OC=5m ,则DC 的长为( )(A )3cm (B )2.5cm (C )2cm (D )1cm4、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是( )A 正三角形B 正五边形C 等腰梯形D 菱形5、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,正面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是( )(A) (B) (C) (D) 二、填空题(本题共5小题,每小题4分,共20分) 6、函数12++=x x y 中自变量x 的取值范围为___ 7、求值:︒⨯︒45cos 2260sin 21= 8、已知点P (-2,3),则点P 关于x 轴对称的点坐标是 . 9、如果圆锥的底面圆的半径是8,母线的长是15,那么这个圆锥侧面展开图的扇形的圆心角的度数是 。

10、已知:如图2,⊙O 的半径为l ,C 为⊙O 上一点,以C 为圆心,以1为半径作弧与⊙O 相交于A 、B 两点,则图中阴影部分的面积是 . 三、解答题(本题共5小题,每小题6分,共30分) 11、先化简,再求值:图1图224422222-++-÷+-yxy x y x y x y x .其中c =2-2,y =22-1 12、制作铁皮桶,需在一块三角形余料上截取一个面积最大的圆,请画出该圆。

山东省济宁市2020版中考数学二模试卷B卷

山东省济宁市2020版中考数学二模试卷B卷

山东省济宁市2020版中考数学二模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·石家庄模拟) 在数轴上与原点的距离小于8的点对应的x满足()A . ﹣8<x<8B . x<﹣8或x>8C . x<8D . x>82. (2分)桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为()A . 0.278 09×105B . 27.809×103C . 2.780 9×103D . 2.780 9×1043. (2分)一个印有“嫦娥二号奔月”字样的立方体纸盒表面展开图如图所示,则与印有“娥”字面相对的表面上印有()字。

A . 二B . 号C . 奔D . 月4. (2分)下列运算正确的是()A . 5a-4a=aB .C .D .5. (2分)如图,点B是反比例函数上一点,矩形OABC的周长是20,正方形BCGH和正方形OCDF的面积之和为68,则反比例函数的解析式是()A .B .C .D .6. (2分) (2018七下·深圳期中) 如左下图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A . 150°B . 130°C . 100°D . 50°7. (2分)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A . 甲比乙的产量稳定B . 乙比甲的产量稳定C . 甲、乙的产量一样稳定D . 无法确定哪一品种的产量更稳定8. (2分)下列说法错误的是()A . 关于某直线对称的两个图形一定能完全重合B . 全等的两个三角形一定关于某直线对称C . 轴对称图形的对称轴至少有一条D . 线段是轴对称图形9. (2分)(2018·龙岗模拟) 在中,,如果,那么的值是 )A .B .C .D . 310. (2分)下列图形都是由边长为1厘米的小正方形连接组成的.按照图形的变化规律,第2009个图形的周长是()厘米.A . 4018B . 4020C . 8036D . 6027二、填空题 (共5题;共5分)11. (1分) (2016九上·永登期中) 方程(2x﹣1)(x+3)=0的根是________.12. (1分)(2017·台州) 三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________13. (1分)二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=________ .14. (1分) (2016九上·苏州期末) 一圆锥的侧面积为,底面半径为3,则该圆锥的母线长为________.15. (1分)如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=,则此三角形移动的距离PP′=________.三、解答题 (共8题;共97分)16. (5分)(2017·三门峡模拟) 先化简,再求值:()÷(﹣1),其中a是满足不等组的整数解.17. (25分)(2016·六盘水) 为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).18. (10分) (2017九上·下城期中) 如图,中,,,点是线段延长线上任意一点,以为直角边作等腰直角,且,连结.(1)求证:.(2)在点运动过程中,试问的度数是否会变化?若不变,请求出它的度数,若变化,请说明它的变化趋势.19. (2分)(2015·金华) 图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A、B、C 在同一直线上,且∠ACD=90°,图2是小床支撑脚CD折叠的示意图,在折叠过程中,△ACD变形为四边形ABC′D′,最后折叠形成一条线段BD″.(1)小床这样设计应用的数学原理是________.(2)若AB:BC=1:4,则tan∠CAD的值是________.20. (15分) (2017九上·巫溪期末) 如图所示,已知反比例函数y= 的图象与一次函数y=ax+b的图象交于两点M(4,m)和N(﹣2,﹣8),一次函数y=ax+b与x轴交于点A,与y轴交于点B.(1)求这两个函数的解析式;(2)求△MON的面积;(3)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.21. (10分) (2018·平房模拟) 平房区政府为了“安全,清激、美丽”河道,计划对何家沟平房区河段进行改造,现有甲乙两个工程队参加改造施工,受条件阻制,每天只能由一个工程队。

山东省济宁市2019-2020学年中考数学二模试卷含解析

山东省济宁市2019-2020学年中考数学二模试卷含解析

山东省济宁市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A.B.C.D.2.7的相反数是()A.7B.-7C.77D.-773.如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.33πB.32πC.πD.32π4.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π-B.2233π-C.433π-D.4233π-5.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.A .B .C .D .7.若A(﹣4,y 1),B(﹣3,y 2),C(1,y 3)为二次函数y =x 2﹣4x+m 的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 3<y 28.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点H ,连接DH ,下列结论正确的是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是25﹣2A .①②⑤B .①③④⑤C .①②④⑤D .①②③④9.二次函数2y ax bx c =++(a 、b 、c 是常数,且a≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b+c >3aD .a <b10.二次函数2y ax bx c =++的图象如图所示,则反比例函数ay x=与一次函数y bx c =+在同一坐标系中的大致图象是( )A.B.C.D.11.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.5B.25C.12D.212.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若a﹣3有平方根,则实数a的取值范围是_____.14.在Rt△ABC中,∠A是直角,AB=2,AC=3,则BC的长为_____.15.分解因式:a3-12a2+36a=______.16.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.17.若a2+3=2b,则a3﹣2ab+3a=_____.18.计算:cos245°-tan30°sin60°=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.20.(6分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.22.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.23.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.24.(10分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°12;(2)解方程:x(x﹣4)=2x﹣825.(10分)( 19﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化简,再求值:1﹣2222244x y x yx y x xy y--÷+++,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.26.(12分)如图,已知函数kyx=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=32OD,求a、b的值;若BC∥AE,求BC的长.27.(12分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:成绩x学生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲______ ______ ______ ______ ______ ______乙 1 1 4 2 1 1(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲______ 83.7 ______ 86 13.21乙24 83.7 82 ______ 46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据左视图是从物体的左面看得到的视图解答即可.【详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C.【点睛】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.2.B【解析】∵7+(﹣7)=0,∴7的相反数是﹣7.故选B.3.A【解析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=23,∠A=30°,∴OB=3,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧»BC长为6033ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.4.D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.5.D【解析】【详解】∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.6.D分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.7.B【解析】【分析】根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.【详解】抛物线y=x2﹣4x+m的对称轴为x=2,当x<2时,y随着x的增大而减小,因为-4<-3<1<2,所以y3<y2<y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键. 8.B【解析】【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小5.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.9.D【解析】【分析】根据二次函数的图象与性质逐一判断即可求出答案.由图象可知:△>0, ∴b 2﹣4ac >0, ∴b 2>4ac , 故A 正确; ∵抛物线开口向上, ∴a <0,∵抛物线与y 轴的负半轴, ∴c <0,∵抛物线对称轴为x=2ba<0, ∴b <0, ∴abc <0, 故B 正确;∵当x=1时,y=a+b+c >0, ∵4a <0, ∴a+b+c >4a , ∴b+c >3a , 故C 正确;∵当x=﹣1时,y=a ﹣b+c >0, ∴a ﹣b+c >c , ∴a ﹣b >0, ∴a >b , 故D 错误; 故选D .考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用. 10.D 【解析】 【分析】根据抛物线和直线的关系分析. 【详解】 由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.考核知识点:反比例函数图象.11.A【解析】【详解】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cosB=525BDAB==.故选A.12.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a≥1.【解析】【分析】根据题意,得30.a-≥解得: 3.a≥故答案为 3.a≥【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根. 14.13【解析】【分析】根据勾股定理解答即可.【详解】∵在Rt△ABC中,∠A是直角,AB=2,AC=3,∴BC=22AB AC+=2223+=13,故答案为:13【点睛】此题考查勾股定理,关键是根据勾股定理解答.15.a(a-6)2【解析】【分析】原式提取a,再利用完全平方公式分解即可.【详解】原式=a(a2-12a+36)=a(a-6)2,故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.16.14.【解析】试题分析:画树状图为:=14.故答案为14.考点:列表法与树状图法.17.1【解析】【分析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.18.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos45tan30sin60︒-︒︒=211222-=-=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.【解析】【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=2,最后用△ABD∽△DCP 得出比例式求解即可得出结论.【详解】(1)如图,连接OD,∵BC是⊙O的直径,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=2BC=2,∵△ABD∽△DCP,∴AB BDCD CP=,2CP=,【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.20.见解析【解析】【分析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.21.(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴MD AM CF DC=,设DC=x,∵∠ACB=45°,,∴AM=CM=1,MD=1-x,∴11xCF x -=,∴CF=-x2+x=-(x-12)2+14,∴当x=12时有最大值,CF最大值为14.点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.22.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;∴4b 2﹣4a 2+4c 2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形;(3)当△ABC 是等边三角形,∴(a+c )x 2+2bx+(a ﹣c )=0,可整理为:2ax 2+2ax=0,∴x 2+x=0,解得:x 1=0,x 2=﹣1.考点:一元二次方程的应用.23. (1) 60,90;(2)见解析;(3) 300人【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°; 故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】【解析】【分析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8×(12﹣18)﹣=8×38﹣=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0,(x ﹣4)(x ﹣1)=0,x ﹣4=0,x ﹣1=0,x 1=4,x 1=1.【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.25. (1)-7;(2)y x y -+ ,13-. 【解析】【分析】(1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】(1)原式=3−4×12+1−9=−7; (2)原式=1−2x y x y -+ ⋅()()()22x y x y x y ++-=1−2x y x y ++ =2x y x y x y +--+ =−y x y+; ∵|x−2|+(2x−y−3)2=1,∴2023x x y -=⎧⎨-=⎩,当x=2,y=1时,原式=−13. 故答案为(1)-7;(2)−y x y +;−13. 【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.26.(1)a=34,b=2;(2)【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k 的值,再得出A 、D 点坐标,进而求出a ,b 的值; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0),得出tan ∠ADF=42AF m DF m-=,tan ∠AEC=42AC m EC =,进而求出m 的值,即可得出答案.试题解析:(1)∵点B (2,2)在函数y=k x (x >0)的图象上, ∴k=4,则y=4x, ∵BD ⊥y 轴,∴D 点的坐标为:(0,2),OD=2,∵AC ⊥x 轴,AC=32OD ,∴AC=3,即A 点的纵坐标为:3, ∵点A 在y=4x 的图象上,∴A 点的坐标为:(43,3), ∵一次函数y=ax+b 的图象经过点A 、D , ∴43{32a b b +==, 解得:34a =,b=2; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0), ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形,∴CE=BD=2,∵BD ∥CE ,∴∠ADF=∠AEC ,∴在Rt △AFD 中,tan ∠ADF=42AF m DF m-=, 在Rt △ACE 中,tan ∠AEC=42AC m EC =, ∴42m m -=42m ,解得:m=1,∴C 点的坐标为:(1,0),则考点:反比例函数与一次函数的交点问题.27.(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】【分析】(1)根据折线统计图数字进行填表即可;(2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较.【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,∴70⩽x ⩽74无,共0个;75⩽x ⩽79之间有75,共1个;80⩽x ⩽84之间有84,82,1,83,共4个;85⩽x ⩽89之间有89,86,86,85,86,共5个;90⩽x ⩽94之间和95⩽x ⩽100无,共0个.故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为89−75=14分;∵甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89, ∴中位数为12(84+85)=84.5; ∵乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1.故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定.【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据.。

山东省济宁市中考数学二模考试试卷

山东省济宁市中考数学二模考试试卷

山东省济宁市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题有16个小题,共42分.1~10小题各3分,1 (共16题;共41分)1. (3分)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A . 0.8kgB . 0.6kgC . 0.5kgD . 0.4kg2. (3分)在(﹣1)5 ,(﹣1)10 ,﹣23 ,(﹣3)2这四个数中,最大的数比最小的数要大()A . 17B . 10C . 8D . 53. (2分)(2019·玉林模拟) “瓦当”是中国古建筑中覆盖檐头筒瓦前端的遮挡,主要有防水、排水、保护木制飞檐和美化屋面轮廓的作用.瓦当上的图案设计优美,字体行云流水,极富变化,是中国特有的文化艺术遗产.下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (3分)已知a=, b=, c=,则下列大小关系正确的是()A . a>b>cB . c>b>aC . b>a>cD . a>c>b5. (3分)(2012·鞍山) 如图,下面是由四个完全相同的正方体组成的几何体,这个几何体的主视图是()A .B .C .D .6. (3分)如图所示,在数轴上点A所表示的数x的范围是()A . sin30°<x<sin60°B . cos30°<x<cos45°C . tan30°<x<tan45D . cot45°<x<cot30°7. (3分)(2020·南充模拟) 如图,小王从A处出发沿北偏东方向行走至B处,又从B处沿南偏东方向行走至C处,则等于()A .B .C .D .8. (3分)若|x+y-5|+(x-y-3)2=0,则x2-y2的结果是()A . 2B . 8C . 15D . 无法确定9. (3分) -3.782()A . 是负数,不是分数B . 是负数,也是分数C . 不是分数,是有理数D . 是分数,不是有理数10. (3分)袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是()A .B .C .D .11. (2分) (2017七下·滦县期末) 如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,若∠BFC=116°,则∠A=()A . 51°B . 52°C . 53°D . 58°12. (2分) (2018九上·灌阳期中) 一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根13. (2分) (2018九上·宁县期中) 二次函数的图像如图所示,下列不符合题意的是()A .B .C . a<0,b2-4ac>0,c<0D .14. (2分) (2019九上·番禺期末) 在⊙O中,弦AB的长为,圆心O到AB的距离为1cm ,则⊙O 的半径是()A . 2B . 3C .D .15. (2分) (2019八下·防城期末) 如图,已知直线经过二,一,四象限,且与两坐标轴交于A,B两点,若,是该直线上不重合的两点.则下列结论:① ;② 的面积为;③当时,;④ .其中正确结论的序号是()A . ①②③B . ②③C . ②④D . ②③④16. (2分) (2020八上·北仑期末) 如图,△ABC≌△AED,点E在线段BC上,∠1=40°,则∠AED的度数是()A . 70°B . 68°C . 65°D . 60°二、填空题(本大题有3个小题,共10分.17~18小题各3分,1 (共3题;共10分)17. (3分)给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2 .其中,能够分解因式的是________ (填上序号).18. (3分) (2019七上·马山期中) 现定义某种运算“*”,对给定的两个有理数a、b(a≠0),有a*b=a﹣ab ,则(﹣3)*2=________.19. (4分) (2020九下·江阴期中) 如图,在平面直角坐标系中,点C是y轴正半轴上的一个动点,抛物线y=ax2-6ax+5a(a是常数,且a>0)过点C,与x轴交于点A、B,点A在点B的左边.连接AC,以AC为边作等边三角形ACD,点D与点O在直线AC两侧,连接BD,则BD的最小值是________.三、解答题(本大题有7个小题,共68分.) (共7题;共68分)20. (8分)综合题。

济宁市2020版数学中考模拟试卷(II)卷

济宁市2020版数学中考模拟试卷(II)卷

济宁市2020版数学中考模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共30分)1. (3分)下面的几个有理数中,最大的数是().A . 2B .C . -3D . -2. (3分) 2015年春运第一天,某市海陆空铁共发送旅客228100人次,迎来春运客流量的首次高峰,将这个数据精确到万位,用科学记数法表示为()A . 0.23×106B . 2.2×104C . 22.8×104D . 2.3×1053. (3分) (2017七上·十堰期末) 下列算式中,运算结果为负数的是()A .B .C .D .4. (3分)(2018·天河模拟) 祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A . =930B . =930C . x(x+1)=930D . x(x﹣1)=9305. (3分) (2019八下·北京期末) 在平面直角坐标系xOy中,点A(-1,-2)关于x轴对称的点的坐标是()A . (1,2)B . (1,-2)C . (-1,2)D . (-1,-2)6. (3分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A . 方差B . 平均数C . 中位数D . 众数7. (3分)(2018·湘西模拟) 对于反比例函数,下列说法正确的是()A . 图象经过点(2,﹣1)B . 图象位于第二、四象限C . 图象是中心对称图形D . 当x<0时,y随x的增大而增大8. (3分)(2018·哈尔滨模拟) 如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A .B .C .D .9. (3分)(2016·钦州) 如图,△ABC中,AB=6,BC=8,tan∠B= ,点D是边BC上的一个动点(点D与点B不重合),过点D作DE⊥AB,垂足为E,点F是AD的中点,连接EF,设△AEF的面积为y,点D从点B沿BC 运动到点C的过程中,D与B的距离为x,则能表示y与x的函数关系的图象大致是()A .B .C .D .10. (3分)如图是放在地面上的一个长方体盒子,其中AB=9cm,BC=6cm,BF=5cm,点M在棱AB上,且AM=3cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为()A . 10cmB .C .D . 9cm二、填空题 (共8题;共24分)11. (3分) (2018九上·新野期中) 已知一次函数y=kx+b的大致图象,则关于x的一元二次方程x2-2x+kb+1=0的根的情况是________.12. (3分)七(1)班学生42人去公园划船,共租用10艘船.大船每艘可坐5人,小船每艘可坐3人,每艘船都坐满.问大船、小船各租了多少艘?设坐大船的有x人,坐小船的有y人,由题意可得方程组为:________.13. (3分) (2017七上·马山期中) 若(a﹣2)2+|b﹣3|=0,则ab=________.14. (3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产________台机器.15. (3分)(2020·澄海模拟) 如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),M,N分别是BP,AB的中点.若AB=4,∠APB=30°,则MN长的最大值为________.16. (3分) (2018九上·宁都期中) 如图,四边形 ABCD 内接于⊙O,已知∠ADC=140°,则∠AOC=________°.17. (3分)如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得C′C∥AB,则∠B′AB等于________°.18. (3分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是________ .三、解答题 (共6题;共44分)19. (8分) (2020九上·长兴期末) 计算:20. (8分)(2017·冠县模拟) 为了方便居民低碳出行,2015年12月30日,湘潭市公共自行车租赁系统(一期)试运行以来,越来越多的居民选择公共自行车作为出行的交通工具,市区某中学课外兴趣小组为了了解某小区居民出行方式的变化情况,随机抽取了该小区部分居民进行调查,并绘制了如图的条形统计图和扇形统计图(部分信息未给出).请根据上面的统计图,解答下列问题:(1)被调查的总人数是________人;(2)公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了多少?(3)如果该小区共有居民2000人,公共自行车租赁系统运行后估计选择自行车作为出行方式的有多少人?21. (6分) (2017八下·延庆期末) 2020年冬奥会将在延庆召开,延庆区某中学响应区团委的号召,组织学生参加“我是奥运小志愿者”活动,志愿者可以到“八达岭长城”、“世葡园”、“龙庆峡”、“百里画廊”四个景区之一参加活动.晓明对“八达岭长城”和“百里画廊”最感兴趣,他将四个景区编号为A、B、C、D,并写在四张卡片上(除编号和内容不同之外,其余完全相同),他将卡片背面朝上,洗匀放好,从中随机抽取两张,请用列表或是画树状图的方法,求抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的概率.(说明:这四张卡片分别用它的编号A、B、C、D表示)22. (6分)化简求值:( + )÷ ,其中x= +2.23. (8分)(2016·随州) 某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.24. (8分)(2017·黑龙江模拟) 某文教店用1200元购进了甲、乙两种钢笔.已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.文教店在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.(1)求这个文教店购进甲、乙两种钢笔各多少支?(2)若该文教店以原进价再次购进甲、乙两种钢笔,且购进甲种钢笔的数量不变,而购进乙种钢笔的数量是第一次的2倍,乙种钢笔按原售价销售,而甲种钢笔降价销售.当两种钢笔销售完毕时,要使再次购进的钢笔获利不少于340元,甲种钢笔最低售价每支应为多少元?四、综合题 (共2题;共22分)25. (10分)如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.26. (12分)如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点E是BC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.(1)如图2,若点E为BC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EF与CA的延长线交于点Q.设BP为x,CQ为y,试求y与x的函数关系式,并写出自变量x的取值范围;(2)如图3,点E在边BC上沿B到C的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q 点.探究:在∠D EF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.参考答案一、选择题 (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共44分)19-1、20-1、20-2、20-3、21-1、22-1、23-1、24-1、24-2、四、综合题 (共2题;共22分)25-1、26-1、26-2、。

山东省济宁市2020年中考第二次模拟数学试题

山东省济宁市2020年中考第二次模拟数学试题

山东省济宁市2020年中考第二次模拟数学试题一、选择题1.如图,点A 在反比例函数k y x=(x <0)的图象上,过点A 的直线与x 轴、y 轴分别交于点B 、C ,且AB BC =,若BOC ∆的面积为1.5,则k 的值为( )A .3-B . 4.5-C .6D .6-2.关于x 的不等式组-0,10x a x >⎧⎨->⎩的整数解共有3个,则关于x 的一元二次方程-ax 2+2(a+1)x+1-a=0根的存在情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .无实数根D .无法确定 3.如图,△ABC 和△DCE 都是边长为8的等边三角形,点B ,C ,E 在同一条直线上接BD ,AE ,则四边形FGCH 的面积为( )A B C D .34.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A.40B.30C.28D.20 5.已知,则等于( ) A.1 B.3 C.-1 D.-36.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=-7.如图,嘉淇同学在6×6的网络纸上将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形顶点在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A .3个B .4个C .5个D .无数个 8.下列运算不正确的是( ) A.473a a a ÷=B.444()ab a b -=C.339()a a =D.56a a a ⋅= 9.转动A 、B 两个盘当指针分别指向红色和蓝色时称为配紫色成功。

如图转动A 、B 各一次配紫色成功的概率是( )A .14B .13C .15D .16 10.如图,一次函数y 1=k 1x+b 1与反比例函数22k y x =的图象交于点A (1,3),B (3,1)两点,若y 1<y 2,则x 的取值范围是( )A .x <1B .x <3C .0<x <3D .x >3或0<x <111.如图,矩形ABCD 的长AD =9cm ,宽AB =3cm ,将它折叠,使点D 与点B 重合,求折叠后DE 的长和EF 的长分别是( )A .5cm ,3cmB .5cm cmC .6cm cmD .5cm ,4cm12.如图,直线y=-x+2分别交x 轴、y 轴于点A ,B ,点D 在BA 的延长线上,OD 的垂直平分线交线段AB 于点C .若△OBC 和△OAD 的周长相等,则OD 的长是( )A.2 B.C.D.42二、填空题13.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,AE=8,则ED=_____.14.观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2019在第_____层.15.如图,在每个边长都为1的小正方形组成的网格中,为格点,,为小正方形的中点.(Ⅰ)线段的长为______;(Ⅱ)在线段上存在一个点,使得点满足,请你借助给定的网格,用无刻度...的直尺作出,并简要说明你是怎么找到点的______.16.在数学课上,老师提出如下问题:己知:直线l和直线外的一点P.于点Q.求作:过点P作直线PQ l小华的作法如下:如图,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;的平分线,交直线l于点Q.直线PQ即为所求作.第二步:连接PA、PB,作APB老师说:“小华的作法正确”.请回答:小华第二步作图的依据是__________.17.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.18.因式分解:x2﹣4=______.三、解答题19.某中学欲开设A实心球、B立定跳远、C跑步、D足球四种体育活动,为了了解学生们对这些项目的选择意向,随机抽取了部分学生,并将调查结果绘制成图1、图2,请结合图中的信,解答下列问题:(1)本次共调查了名学生;(2)将条形统计图圉补充完整;(3)求扇形C的圆心角的度数;(4)随机抽取了3名喜欢“跑步”的学生,其中有1名男生,2名女生,现从这3名学生中选取2名,请用画辩状图或列表的方法,求出刚好抽到一名男生一名女生的概率.20.已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE:AE:CE=13,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的边DF与边DM重合时(如图2),若OF=3,求DF和DN的长.21.如图,E点为DF上的点,B为AC上的点,∠1=∠2,DF∥AC,求证:∠C=∠D.22.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=2,求AC的长.23.如图,是由边长为1的小正方形构成的网格,点A,B是格点,根据要求,选择格点,画出符合要求的图形.(1)在图1、图2中分别找出符合要求的1个格点C,并画出相应的格点三角形,使得∠ACB=45°.(2)在图3中画出符合要求的1个格点D,并画出相应的格点三角形使得tan∠ADB=12,并求出△ABD的面积.24.某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处。

2020年山东省济宁市任城区中考数学二模试卷

2020年山东省济宁市任城区中考数学二模试卷

中考数学二模试卷题号 一一三四总分得分、选择题(本大题共 10小题,共30.0分)1 .在下列各数中,最大的数是( )A. -3B. 0C. :D. 32 .若代数式之有意义,则实数x 的取值范围是()A. x> 1B. x>lC. xwiD. xwo3 . 下列运算正确的是()A. m?m=2mB. (mn ) 3=mn 3C. (m 2)3=m 6D. m 6-^m 2=m 34.某校九年级(1)班在“迎中考百日誓师”活动中打算制做一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字. 如图是该班同学设计的正方体挂坠的平面展开图,那么“我”字对面的字是()数轴上的点A 表示的数是a,当点A 在数轴上向右平移了6个单位长度后得到点 B,若点A 和点B 表示的数恰好互为相反数,则数 2是()6.如果一个扇形的弧长等于它的半径, 那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()如图,平行于BC 的直线DE 把AABC 分成面积相等的 两部分,则黑的值为()A. 1B.C. 1D.同1小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘 中心方子的位置用(-1,0)表示,右下角方子的位置用 (0, 表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对 称图形.她放的位置是()A. (-2, 1)B. (-1,1)C. (1,-2)D. (-1,-2)C.其D.谁5. A. 6 B. -6 C. 3D. -3A. C. 50 D. 50 兀7. 8.A 上F9.如图,在RtAABC 中,/ACB=90°, "=56°.以BC 为直径的。

交AB于点D,E是。

上一点,且[=:,连接OE.过点E作EFXOE,交AC的延长线于点F,则ZF的度数为( )A. 92B.108°C.112。

2020-2021学年山东省济宁市中考数学二模试卷及答案解析

2020-2021学年山东省济宁市中考数学二模试卷及答案解析

山东省中考数学二模试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.在下列实数:﹣1.3,,0,2,﹣1中,绝对值最小的数是()A.﹣1.3 B.0 C.D.﹣1【分析】根据题目中的数据可以求出它们的绝对值,从而可以找出绝对值最小的数,本题得以解决.【解答】解:∵|﹣1.3|=1.3,||=,|0|=0,|2|=2,|﹣1|=1,∴绝对值最小的数是0,故选B.【点评】本题考查实数大小比较,解答本题的关键是求出题目中各个数据的绝对值.2.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4.62亿用科学记数法表示为:4.62×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.方程2x2=3x的解为()A.0 B.C.D.0,【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选D【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.4.如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40°B.50°C.150°D.140°【分析】作c∥a,由于a∥b,可得c∥b.然后根据平行线的性质解答.【解答】解:作c∥a,∵a∥b,∴c∥b.∴∠1=∠5=50°,∴∠4=90°﹣50°=40°,∴∠6=∠4=40°,∴∠3=180°﹣40°=140°.故选D.【点评】本题考查了平行线的性质,作出辅助线是解题的关键.5.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,∴<,故D正确;故选:C.【点评】本题主要考查平均数、众数、中位数及方差,熟练掌握这些统计量的意义及计算公式是解题的关键.6.如图为某几何体的三视图,则组成该几何体的小正方体的个数是()A.5 B.6 C.7 D.8【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故选A.【点评】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.8.若函数y=mx2+(m﹣1)x+(m﹣1)的图象与x轴只有一个交点,那么m的值是()A.0 B.0,﹣1或1 C.1或﹣1 D.0或1【分析】分类讨论:当m=0时,函数为y=﹣x,根据一次函数的性质易得一次函数与x轴只有一个交点;当m≠0,利用△=b2﹣4ac=0时,抛物线与x轴有1个交点得到△=(m﹣1)2﹣4m×(m ﹣1)=0,然后解关于m的一元二次方程.【解答】解:当m=0时,函数为y=﹣x,此一次函数与x轴只有一个交点;当m≠0,当△=(m﹣1)2﹣4m×(m﹣1)=0时,二次函数y=mx2+(m﹣1)x+(m﹣1)的图象与x轴只有一个交点,解得m=±1.故选B.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.解决本题的关键是讨论函数为一次函数或是二次函数.9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A.B.C.D.【分析】由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.【解答】解:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4﹣3=1,∴在直角△ECD中,sin∠CDE==,∴sin∠BFD=.故选:A.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5【分析】逐一分析5条结论是否正确:(1)由抛物线与x轴有两个不相同的交点结合根的判别式即可得出该结论正确;(2)根据抛物线的对称轴为x=﹣1,即可得出b=2a,即(2)正确;(3)根据抛物线的对称性找出点(﹣,y3)在抛物线上,再结合抛物线对称轴左边的单调性即可得出(3)错误;(4)由x=﹣3时,y<0,即可得出3a+c<0,结合b=2a即可得出(4)正确;(5)由方程at2+bt+a=0中△=b2﹣4a•a=0结合a<0,即可得出抛物线y=at2+bt+a中y≤0,由此即可得出(5)正确.综上即可得出结论.【解答】解:(1)由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴(1)正确;(2)∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴(2)正确;(3)∵抛物线的对称轴为x=﹣1,点(,y3)在抛物线上,∴(﹣,y3).∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴(3)错误;(4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴(4)正确;(5)∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与x轴只有一个交点,∵图中抛物线开口向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴(5)正确.故选C.【点评】本题考查了二次函数图象与系数的关系、二次函数与不等式以及抛物线与x轴的交点,解题的关键是逐一分析5条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,熟练掌握二次函数的图象是关键.二、填空题(本大题共5小题,每小题3分,共15分)11.在函数y=中,自变量x的取值范围是x≥4 .【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣4≥0且x﹣3≠0,解得x≥4且x≠3,所以,自变量x的取值范围是x≥4.故答案为:x≥4.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.直线y=x+2与双曲线y=在第一象限的交点为A(2,m),则k= 6 .【分析】先把A(2,m)代入直线y=x+2得出m的值,故可得出A点坐标,再代入双曲线y=,求出k的值即可.【解答】解:∵直线y=x+2与双曲线y=在第一象限的交点为A(2,m),∴m=×2+2=3,∴A(2,3),∴k=xy=2×3=6.故答案为:6.【点评】本题考查的是反比例函数与一次函数的交点问题,解答此类题目时要先求出已知点的坐标,再代入含有未知数的函数解析式.13.分解因式:ab4﹣4ab3+4ab2= ab2(b﹣2)2.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.故答案为:ab2(b﹣2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是(﹣10,3).【分析】根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E的坐标.【解答】解:设CE=a,则BE=8﹣a,由题意可得,EF=BE=8﹣a,∵∠ECF=90°,CF=4,∴a2+42=(8﹣a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(﹣10,3),故答案为(﹣10,3).【点评】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化﹣对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2017B2017C2017D2017的边长是.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:∵∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2016.故答案为:.【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.三、解答题(本大题共7小题,共55分)16.(5分)计算:(﹣1)2017+2•cos60°﹣+.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣1)2017+2•cos60°﹣+=﹣1+2×﹣4+1=﹣1+1﹣3=﹣3【点评】此题主要考查了实数的运算,零指数幂、负整数指数幂的运算方法以及特殊角的三角函数值的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.(7分)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为144 度;条形统计图中,喜欢“糖馅”粽子的人数为 3 人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【分析】(1)用周角乘以很喜欢所占的百分比即可求得其圆心角,直接从条形统计图中得到喜欢糖馅的人数即可;(2)利用总人数800乘以所对应的百分比即可;(3)利用列举法表示,然后利用概率公式即可求解【解答】解:(1)扇形统计图中,“很喜欢”所对应的圆心角为360°×40%=144度;条形统计图中,喜欢“糖馅”粽子的人数为3人;(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(7分)阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+…+22016+22017,等式两边同时乘2得:2S=2++22+23+24+25…+22017+22018将下式减去上式得:2S﹣S=22018﹣1S=22018﹣1即1+2+22+23+24+…+22017=22018﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【分析】(1)设原式=S,两边乘2变形后,相减求出S即可;(2)设原式=S,两边乘3变形后,相减求出S即可.【解答】解:(1)设S=1+2+22+ (210)两边乘2得:2S=2+22+ (211)两式相减得:2S﹣S=S=211﹣1,则原式=211﹣1;(2)设S=1+3+32+33+…+3n,两边乘3得:3S=3+32+33+…+3n+1,两式相减得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则原式=(3n+1﹣1).【点评】本题考查了规律型:数字的变化类,有理数的混合运算,读懂题目信息,理解运算方法是解题的关键.19.(7分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH 中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.【解答】解:由题意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,在RT△PCG中,∵tanβ=,∴CG=(5+6)•=5+2,∴CD=(6+2)米.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.20.(9分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W 与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以写出W与x的函数关系式;(3)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,哪种方案获利最大,最大利润是多少.【解答】解:(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,,解得,,即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)由题意可得,W=6x+,化简,得W=4x+100,即W与x之间的函数关系式是:W=4x+100;(3),解得,10≤x≤12.5,故有三种购买方案,由W=4x+100可知,W随x的增大而增大,故当x=12时,,即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断△DHF的形状,并说明理由;②求⊙O的半径.【分析】(1)由OD∥AC,推出∠CAD=∠ODA,由OA=OD,推出∠OAD=∠ODA,即可证明;(2)①结论:△DHF是等腰直角三角形.只要证明∠DHF=∠DFH,即可证明;②设DF=x,由①可知DH=DF=x,由△DFG∽△DAF,推出=,可得=,推出x=2,DF=2,AD=4,再根据勾股定理即可解决问题;【解答】(1)证明:连接OD.∵⊙O与BC相切于点D,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)解:①△DHF是等腰直角三角形.理由:∵FH平分∠AFE,∴∠AFH=∠EFH,∵∠DFG=∠EAD=∠HAF,∴∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH,∵AF是直径,∴∠ADF=90°,∴△DHF是等腰直角三角形.②设DF=x,由①可知DH=DF=x,∵OH⊥AD,∴AD=2DH=2x,∵∠DFG=∠DAF,∠FDG=∠FDG,∴△DFG∽△DAF,∴=,∴=,∴x=2,∵DF=2,AD=4,∵AF为直径,∴∠ADF=90°,∴AF===2,∴⊙O的半径为.【点评】本题考查圆综合题、勾股定理、相似三角形的判定和性质、等腰直角三角形的判定和性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考压轴题.22.(11分)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处是,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为x轴上方抛物线上的一动点,N为x轴上的一动点,点Q的坐标为(1,0),当点P、N、B、Q构成以BQ为一边的平行四边形时,请直接写出点P的坐标.【分析】(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,﹣x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)根据平行四边形的性质列方程即可得到结论.【解答】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)如图1,连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=,x4=,∴P3(,﹣4),P4(,﹣4).【点评】此题属于二次函数的综合题,考查了待定系数法求函数解析式的知识、平行四边形的性质以及三角形面积问题.掌握分类讨论思想的应用是解此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年山东省济宁学院附属中学九年级二模数学试

学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列各数中,负数是().
A.B.C.D.
2. 下图的四个古汉字中,不是轴对称图形的是()
A.B.C.D.
3. 实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()
A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<0
4. 正十边形的外角和为()
A.180°B.360°C.720°D.1440°
5. 下列事件属于随机事件的是()
A.明天的早晨,太阳从东方升起B.13人中至少有两人同生肖
C.抛出一枚骰子,点数为0 D.打开电视机,正在播放广告
6. 下图是由4个相同的小正方体组成的立体图形,这个立休图形的主视图是()
A.B.C.D.
7. 解分式方程时,去分母后变形正确的是()
A.B.
C.D.
8. 已知⊙O的直径CD=4,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=2,则∠ACD等于()
A.30°B.60°C.30°或60°D.45°或60°
9. 欧几里得在《几何原本》中,记载了用图解法解方程的方法,类似地我们可以用折纸的方法求方程的一个正根.如图,一张边长为1的正方形的纸片,先折出、的中点、,再折出线段,然后通过沿线段折叠使落在线段上,得到点的新位置,并连接、,此时,在下列四个选项中,有一条线段的长度恰好是方程
的一个正根,则这条线段是()
A.线段B.线段C.线段D.线段
10. 如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转
α(0<α<120°)得到,与BC,AC分别交于点D,
A.设,的面积为
,则与的函数图象大致为( )
B.C.D.E.
二、填空题
11. 华为的网络能达的理论下载速度为,几秒钟内就能下载好的较大的文件,将50300000用科学记数法表示为______.
12. 实数、满足,则的值为___________.
13. 一渔船在海岛南偏东方向的处遇险,测得海岛与的距离为
海里,渔船将险情报告给位于处的救援船后,沿北偏西方向向海岛
靠近,同时,从处出发的救援船沿南偏西方向匀速航行,小时后,
救援船在海岛处恰好追上渔船,那么救援船航行的速度为___________海里/
小时.
14. 如图,在平面直角坐标系中,四边形是矩形,四边形是正方形,点、在轴的正半轴上,点在轴的正半轴上,点在上,点
、在函数的图象上.若正方形的面积为4,且
,则的值为_______.
15. 观察等式:;;…,
若设,则用含的式子表示的结果是
________.
三、解答题
16. 先化简,再求值:,其中.
17. 某校七年级有学生400人,为了解这个年级普及安全教育的情况,随机抽取了20名学生,进行安全教育考试,测试成绩(百分制)如下:
71 94 87 92 55 94 98 78 86 94
62 99 94 51 88 97 94 98 85 91
(1)请补全七年级20名学生安全教育测试成绩频数分布直方图;
年级平均数中位数众数优秀率
七年级85.4
(3)估计七年级成绩优秀的学生人数约为_________人.
(4)学校有安全教育老师男女各2名,现从这4名老师中随机挑选2名参加“安全教育”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
18. 如图,在中,,
(1)作边的垂直平分线交于点,交于点(尺规作图,不写作法,保留作图痕迹).
(2)在(1)的条件下,连接,判断线段与的数量关系,并说明理由.
19. 某社会团体准备购进甲、乙两种防护服捐给一线抗疫人员,经了解,购进5件甲种防护服和4件乙种防护服需要2万元,购进10件甲种防护服和3件乙种防护服需要3万元.
(1)甲种防护服和乙种防护服每件各多少元?
(2)实际购买时,发现厂家有两种优惠方案,方案一:购买甲种防护服超过20件时,超过的部分按原价的8折付款,乙种防护服没有优惠;方案二:两种防护服都按原价的9折付款,该社会团体决定购买件甲种防护服和30件乙种防护服.
①求两种方案的费用与件数的函数解析式;
②请你帮该社会团体决定选择哪种方案更合算.
20. 如图,是的直径,为上一点,是半径上一动点(不与,重合),过点作射线,分别交弦,于,两点,过点的切线交射线于点.
(1)求证:.
(2)当是的中点时,
①若,试证明四边形为菱形;
②若,且,求的长度.
21. 我们规定,以二次函数的二次项系数的2倍为一次项系数,一次项系数为常数项构造的一次函数叫做二次函数
的“子函数”,反过来,二次函数叫做一次函数的“母函数”.
(1)若一次函数是二次函数的“子函数”,且二次函数经过点,求此二次函数的解析式.
(2)如图,已知二次函数的“子函数”图象直线与轴、轴交于、两点,点是直线上方的抛物线上任意一点,求的面积的最大值.
(3)已知二次函数与它的“子函数”的函数图象有两个交点,,且,求的值;
22. 在中,,,,动点从点开始沿边
向点以每秒1个单位长度的速度运动,动点从点开始沿边向点以每秒2个单位长度的速度运动,过点作,交于点,连接.点分别从点同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为秒.
(1)如图①,直接用含的代数式分别表示:,______,(2)如图②,
①当_____秒时,四边形为平行四边形.
②是否存在的值,使四边形为菱形?若存在,写出的值;若不存在,请求出当点的速度(匀速运动)变为每秒多少个单位长度时,才能使四边形在某一时刻成为菱形?
(3)设的外接圆面积为,求出与的函数关系式,并判断当最小时,的外接圆与直线的位置关系,并且说明理由.。

相关文档
最新文档