中考数学冲刺难点突破 图形折叠问题 专题四 图形折叠中的直角三角形存在性问题(含答案及解析)

合集下载

2021年中考数学压轴题:折叠产生的矩形存在性问题

2021年中考数学压轴题:折叠产生的矩形存在性问题

中考数学压轴题分析:折叠产生的矩形存在性问题
【分析】
题(1)求解析式代入点坐标即可。

题(2)是30°角的问题,本题比较特殊,求坐标可以发现OB=AB=OA,说明三角形ABO是等边三角形。

因为本题的解析式种包含√3,所以需要注意到这个特殊性。

说明点D在∠AOB的平分线上,设点D的坐标,然后作x轴的垂线,根据tan∠AOD=√3/3即可求出坐标(注意,需要舍去上方的一种情况)。

题(3)本质是折叠产生的直角三角形存在性问题,只需令三角形GEF为直角三角形即可。

因为三角形EFG是重叠部分,说明了点G只能在三角形BOE的边上运动。

那么只有∠EGF与∠EFG为90度这两种情况,当然,点G还可能在OE上,所以需要分3种情况讨论。

确定了这三点之后,利用平行四边形的性质即可得到点H的坐标。

中考数学专题复习图形的折叠型题PPT课件

中考数学专题复习图形的折叠型题PPT课件

(2)请你通过操作和猜想,将第3、第4和第n次裁剪后
所得扇形的总个数(S)填入下表.
等分圆及扇形面的次数(n) 1 2 3 4 **** n
所得扇形的总个数(S)
47
***
(3)请你推断,能不能按上述操作过程,将本来的圆形 纸板剪成33个扇形?为什么?
例26、如图,若把边长为1的正方形ABCD的四个
例25、如图,⊙O表示一圆形纸板,根
O
据要求,需通过多次剪裁,把它剪成若 干个扇形面,操作过程如下:第1次剪,
第25题图
将圆形纸板等分为4个扇形;第2次剪裁,将上次得的
扇形面中的一个再等分成4个扇形;以后按第2次剪裁
的作法进行下去.(1)请你在⊙O中,用尺规作出第2次
剪裁后得到的7个扇形(保留痕迹不写作法).
角(阴影部分)剪掉,得一四边形A1B1C1D1.试问怎 样剪,才能使剩下的图形仍为正方形,且剩下图
形的面积为原正方形面积的 5 ,请说明理由(写
出证明及计算过程).
9
E
A M DA M
例22、电脑CPU蕊片由一种叫“单晶硅”的材料制
成,未切割前的单晶硅材料是一种薄型圆片,叫 “晶圆片”。现为了生产某种CPU蕊片,需要长、 宽都是1cm 的正方形小硅片若干。如果晶圆片的直 径为10.05cm。问一张这种晶圆片能否切割出所需尺 寸的小硅片66张?请说明你的方法和理由。(不计 切割损耗)
典例精析
一.折叠后求度数 例1、将一张长方形纸片按如图所示的方式折 叠,BC、BD为折痕,则∠CBD的度数为( ) A.600 B.750 C.900 D.950
例2、如图,把一个长方形纸片沿EF折叠后,点D、C
分别落在D′、C′的位置,若∠EFB=65°,则 ∠AED′等于( ) A.50° B.55° C.60° D.65°

中考数学几何折叠问题

中考数学几何折叠问题

中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt △AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。

初中数学——折叠中几何图形的存在性问题》

初中数学——折叠中几何图形的存在性问题》

(变式1)如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为_________.(变式2)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .EF CDB A B ′(变式3)如图,点E是矩形ABCD的边AB上一点,将△BEC沿CE折叠,使点B落在AD边上的点F处.若△AEF∽△FEC∽△DFC,则ABBC的值是.(变式4)如图,四边形ABCD是菱形,AB=2,∠ABC=30°,点E是线段DA上一动点,把△CDE沿CE折叠,其中点D的对应点为F,连接FB,若使△FBC为等边三角形,则DE=题根根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,∵DE⊥BC,∴∠FED=90°-∠EFD=60°,∠BEF=2∠FED=120°,∴∠AEF=180°-∠BEF=60°,∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,∴AC=BC•tan∠B=333⨯=3如图①若∠AFE=90°,∵在Rt△ABC中,∠ACB=90°,∴∠EFD+∠AFC=∠FAC+∠AFC=90°,∴∠FAC=∠EFD=30°,∴CF=AC•tan∠FAC=33=13⨯∴BD=DF=31=122BC CF--=如图②若∠EAF=90°,则∠FAC=90°-∠BAC=30°,∴CF=AC •tan ∠FAC=33=13⨯∴BD=DF=31=222BC CF ++=∴△AEF 为直角三角形时,BD 的长为:1或2.(变式1)当△CEB ′为直角三角形时,有两种情况:①当点B ′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=3,BC=4,∴AC=5∵∠B 沿AE 折叠,使点B 落在点B ′处,∴∠AB ′E=∠B=90°, 当△CEB ′为直角三角形时,只能得到∠EB ′C=90°,∴点A 、B ′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B ′处, ∴EB=EB ′,AB=AB ′=3,∴CB ′=5-3=2,设BE=x ,则EB ′=x ,CE=4-x ,在Rt △CEB ′中,∵EB ′2+CB ′2=CE 2,∴x 2+22=(4-x )2,解得x=32∴BE=32;②当点B ′落在AD 边上时,如答图2所示.此时ABEB ′为正方形,∴BE=AB=3.综上所述,BE 的长为32或3.(变式2) 试题分析:(1)当B′D=B′C 时,过B′点作GH ∥AD ,则∠B′GE=90°,当B′C=B′D 时,AG=DH=12DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13,∴EG=AG ﹣AE=8﹣3=5,∴B′G=22'B E EG -=22135-=12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′=22'B H DH +=2248+=45;(2)当DB′=CD 时,则DB′=16(易知点F 在BC 上且不与点C 、B 重合);(3)当CB′=CD 时,∵EB=EB′,CB=CB′,∴点E 、C 在BB′的垂直平分线上,∴EC 垂直平分BB′,由折叠可知点F 与点C 重合,不符合题意,舍去. 综上所述,DB′的长为16或45.故答案为:16或45.(变式3)解:由折叠的性质得:△FEC≌△BEC,∴BC=FC,∠BEC=∠FEC,∵四边形ABCD是矩形,∴DC=AB,∵△AEF∽△FEC∽△DFC,∴∠AEF=∠DFC=∠FEC,∴∠AEF=∠FEC=∠BEC,∴∠DFC=60°,在Rt△CDF中,sin∠DFC=32DC ABFC BC==;故答案为:32.(变式4)解:∵四边形ABCD是菱形,AB=2,∠ABC=30°,∴CD=AB=2,∠D=∠B=30°,∠BCD=150°∵△FBC为等边三角形,∴∠BCF=60°,∴∠DCF=90°,∵△CDE沿CE折叠,得到△CFE,∴△CDE≌△CFE,∴∠DCE=12∠DCF=45°,过点E作EH⊥CD,垂足为H,则∠CHE=90°,∴∠CEH=∠DCE=45°,∴CH=EH,在Rt△DEH中,∠D=30°,∴EH=12DE设EH=x,则DE=2x,CH=x,由勾股定理得:HD=3x,∵CH+HD=CD=2,∴32x x+=,31x=-,∴DE=2x=232-。

专题29 图形折叠中的直角三角形存在性问题(解析版)

专题29 图形折叠中的直角三角形存在性问题(解析版)

专题29 图形折叠中的直角三角形存在性问题
【精典讲解】
1、如图例3-1,在Rt△ABC中,△ACB=90°,△B=30°,BC=3,点D是BC边上一动点(不与点B、C重合),过点D作DE△BC交AB边于点E,将△B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为
图例3-1 图例3-2图例3-3
【答案】2或1.
【解析】从题目所给的“当△AEF为直角三角形时”条件出发,以直角顶点所在位置进行分类讨论. 通过观察及分析可知△BED=△DEF=60°,所以△AEF=180-120°=60°. 即点E不可能为直角顶点.
分两种情况考虑:
△当△EAF=90°时,如图例3-2所示.
△△B=30°,BC=3
△30
AC tan BC
=︒⨯=2
AB AC
=
△△EAF=90°
△△AFC=60°,△CAF=30°
在Rt△ACF中,有:cos
AF AC CAF
=÷∠÷,24
BF AF
==
由折叠性质可得:△B=△DFE=30°,
1
2
2
BD DF BF
===。

「初中几何」折叠问题中的思路解析

「初中几何」折叠问题中的思路解析

「初中几何」折叠问题中的思路解析
1、
解决折叠问题,两点:
1、直角三角形在哪里?他们之前有何种关系?
在本图中直角三角形非常多,有7个直角三角形,准确说有8个直角三角形,连接FC之后.
在这些直角三角形中,有全等的直角三角形,也有知道三边关系的直角三角形,我们可以通过条件的标示来更加清楚的认识到这个图形。

2、解题中,需要具备方程的意识,也就是所用方程的思想去解决问题。

这里关注到的直角三角形为直角三角形ABC和直角三角形ABE,设BE=x,则EC=8-x,
由折叠的性质可知,AE=EC=8-x,
在Rt△ABE中,AE的平方=AB的平方+BE的平方,
则(8-x)2=42+x2,
解得,x=3,
则BE的长为3.
在本题中,所有的线段长度都是可以求出的。

总结:折叠问题,做题前思考两点:直角三角形在哪里!!他们之间存在何种关系?
接着是有方程的意识,用哪个直角三角形三边的关系来解决问题!。

中考数学压轴题:三角形折叠问题,翻折变换的性质

中考数学压轴题:三角形折叠问题,翻折变换的性质

中考数学压轴题:三角形折叠问题,翻折变换的性质三角形折叠问题【解析】利用对称的性质得到AE'=AB=10,∠E'AB=90°,∠AE'N=90°,再根据勾股定理的逆定理得到△ACB为直角三角形,利用射影定理计算出MC=9/2,接着证明Rt△ACM~Rt△AE'N,则利用相似比可计算出E'N=15/2,然后就利用四边形CME'N的面积=S△AE'N-S△ACM.进行计算.【点评】本题考查了作图--对称性变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了射影定理和正方形的性质.连接BB',根据旋转的性质可得AB=AB',判断出△ABB'是等边三角形,根据等边三角形的三条边都相等可得AB=BB',然后利用“边边边”证明△ABC'和△B'BC'全等,根据全等三角形对应角相等可得∠ABC'=∠B'BC',延长BC'交AB'于D,根据等边三角形的性质可得BD⊥AB',利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C'D,然后根据BC'=BD-C'D计算即可得解.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC在等边三角形的高上是解题的关键,也是本题的难点.【点评】本题考查了翻折变换的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握翻折变换的性质,证明∠ADE=90°是解题的关键.【解析】分两种情况讨论:∠BEC'=90°,∠BC'E=90°;分别依据含30°角的直角三角形的性质,即可得到BC'的长.【点评】本题主要考查了折叠问题以及含30°角的直角三角形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.【解析】首先由在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,即可求得AC的长、∠AEF与∠BAC的度数,然后分别从从∠AFE=90°与∠EAF=90°去分析求解,又由折叠的性质与三角函数的知识,即可求得CF的长,继而求得答案.【点评】此题考查了直角三角形的性质、折叠的性质以及特殊角的三角函数问题.此题难度适中,注意数形结合思想与分类讨论思想的应用.。

中考复习折叠问题(全国通用)(解析版)

中考复习折叠问题(全国通用)(解析版)

专题08 折叠问题平面直角坐标系中的折叠问题,蕴含了丰富的数形结合思想和转化思想.解决这类问题的关键,是利用对称性将问题转化到直角三角形中,然后用勾股定理或相似三角形的知识求解.平面直角坐标系中的折叠问题是正在悄然兴起的一个中考热点,因为在平面直角坐标系中,几何图形的位置和大小都可以用"数"来表示,折叠问题又涉及全等变换和轴对称问题.而对于折叠问题,学生并不陌生,但在直角坐标系中,必然涉及直线的解析式和点的坐标,难度加大了,综合性增强了,数形结合思想更加显现,因而更加受到中考出题者的青睐。

本专题主要从折叠入手,经过学生的强化训练受到更多的启发。

一、单选题1.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则B’点的坐标为().A.(2,)B.(,)C.(2,)D.(,)【答案】C【解析】试题分析:过点B′作B′D⊥OC,由折叠可得CB′=OC=OA=4,⊥⊥CPB=60°,⊥⊥B′CD=30°,B′D=2根据勾股定理得DC=2⊥OD=4-2,即B′点的坐标为(2,4-2)故选C.考点:1.正方形的性质;2.图形折叠的性质;3.点的坐标.2.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点处,则点的坐标为()A.(2,2)B.(,3)C.(2,)D.(,)【答案】C【解析】过B′作BD⊥y轴于D,由折叠的性质可得∠B′CP=∠BCP=30°,CB′=BC=4,根据正方形的性质可求出∠OCB′=30°,根据含30°角的直角三角形的性质可得BD′的长,利用勾股定理可求出CD的长,即可求出OD的长,即可得点B′的坐标.【详解】过B′作B′D⊥y轴于D,∵四边形OABC是正方形,∠CPB=60°,∴∠BCP=30°,∵沿CP折叠正方形,折叠后,点B落在平面内点处,∴∠B′CP=∠BCP=30°,B′C=BC =4,∴∠OCB′=30°,∵B′D⊥y轴,∴B′D=B′C=2,∴CD==,∴OD=OC-CD=4-,∴点B′的坐标为(2,4-).故选C.【点拨】本题考查了折叠的性质、正方形的性质及含30°角的直角三角形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;30°角所对的直角边,等于斜边的一半;熟练掌握折叠的性质是解题关键.3.在平面直角坐标系中,将点P(-2,0)沿直线折叠得到点Q,则点Q的坐标为( ) A.(2,0)B.(0,2)C.(-2,-2)D.(0,-2)【答案】D【解析】设点P(3,2)关于直线y=x的对称点Q(m,n),由P Q的中点在直线y=x上且直线P Q与直线y=x垂直得到关于m、n的方程组,解之可得答案.详解:设点P(-2,0)关于直线y=x的对称点Q(m,n),∴PQ的中点坐标为(, ),则中点(,)在直线y=x上,∴=①,由直线PQ与直线y=x垂直,得②,联立①②,得:,则点P(-2,0)关于直线y=x的对称点P′坐标为(0,-2),故选:D.点拨:本题考查了坐标与图形变化-平移.4.如图,把长方形纸片放入平面直角坐标系中,使,分别落在轴、轴上,连接,将纸片沿折叠,使点落在点的位置,与轴交于点,若,则的长为()A.B.C.D.【答案】B【解析】由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt△AEO中,利用勾股定理求得AE,OE的长.【详解】∵四边形OABC是矩形,∴OC∥AB,∴∠ECA=∠CAB,根据题意得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA,∵B(1,2),∴AD=AB=2,设OE=x,则AE=EC=OC-OE=2-x,在Rt△AOE中,AE2=OE2+OA2,即(2-x)2=x2+1,解得:x= ,∴OE= ,故选:B.【点拨】此题考查了折叠的性质,矩形的性质,解题的关键是方程思想与数形结合思想的应用.二、填空题5.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.【答案】(10,3)【解析】根据折叠的性质得到AF=AD,所以在直角⊥AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【详解】∵四边形AOCD为矩形,D的坐标为(10,8), ∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt⊥AOF中,OF==6,∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt⊥CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3. ∴点E的坐标为(10,3).6.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,已知AD=3,当点F为线段OC的三等分点时,点E的坐标为_____.【答案】(3,)或(3,).【解析】本题首先设点E的坐标为(3,m),然后根据△AOF和△EFC相似求出m的值,本题中还需要分OF=OC,OF=OC两种情况来进行讨论,分别求出m的值.7.如图,在平面直角坐标系中,长方形各顶点的坐标分别为,,.将长方形沿折叠,使点落在轴上处,则点的坐标为__________.【答案】【解析】在中,根据勾股定理得出OB',进而得出B'A,再利用翻折的性质和勾股定理解答即可.【详解】∵长方形各顶点的坐标分别为,,,∴,,∴将长方形沿折叠,使点落在轴上处,∴,在中,,∴,设为,则,在中,,即,解得:,所以点的坐标为.故答案为:.【点拨】本题主要考查了图形翻折的性质,结合勾股定理解答问题.8.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E 的坐标是_____.【答案】(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE,设CE=x,则BE=8-x,然后根据折叠的性质,可得EF=8-x,根据勾股定理可得,解得x=3,则OF=6,所以OC=10,由此可得点E的坐标为(-10,3).故答案为:(-10,3)9.如图,在平面直角坐标系中,矩形的边、分别在轴、轴上,点在边上,将该矩形沿折叠,点恰好落在边上的处.若,,则点的坐标是__________.【答案】【解析】由勾股定理可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.【详解】设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,设OF=b,则OC=b+4,由题意可得,AF=AB=OC= b+4,∵∠AOF=90°,OA=8,∴b2+82=(b+4)2,解得,b=6,∴CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).【点拨】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x、y轴上,连接AC,将纸片OABC沿AC折叠,使点B落在点D的位置.若点B的坐标为(2,4),则点D的横坐标是___________.【答案】【解析】首先过点D作DF⊥OA于F,过D作DG⊥y轴于G.由四边形OABC是矩形与折叠的性质,易证得△AEC是等腰三角形,然后在Rt⊥AEO中,利用勾股定理求得AE,OE 的长,从而得到DE、EC的长.在Rt⊥EDC中,利用三角形面积公式求得DG的长,即可得点D的横坐标.【详解】过点D作DF⊥OA于F,过D作DG⊥y轴于G.∵四边形OABC是矩形,⊥OC⊥AB,⊥⊥ECA=⊥CAB,根据题意得:⊥CAB=⊥CAD,⊥CDA =⊥B=90°,⊥⊥ECA=⊥EAC,⊥EC=EA.⊥B(2,4),⊥AD=AB=4,DC=CB=2.设OE=x,则AE=EC=OC﹣OE=4﹣x.在Rt⊥AOE 中,AE2=OE2+OA2,即(4﹣x)2=x2+4,解得:x,⊥OE,EC=AE,⊥DE=DA-AE=4-=.在Rt⊥EDC中,∵DE•DC=DG•EC,⊥DG===,∴点D的横坐标为:.【点拨】本题考查了折叠的性质,矩形的性质,等腰三角形的判定与性质等知识.此题综合性较强,解题的关键是方程思想与数形结合思想的应用.11.如图平面直角坐标系中,O(0,0),A(4,4),B(8,0).将⊥OAB沿直线CD 折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE:DE的值是.【答案】.【解析】如图,过A作AF⊥OB于F,∵A(4,4),B(8,0),∴AF=4,OF=4,OB=8,∴BF=8﹣4=4,∴OF=BF,∴AO=AB,∵tan∠AOB==,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴,设CE=a,则CA=a,CO=8﹣a,ED=b,则AD=b,DB=8﹣b,∴,∴32b=88a﹣11ab ①,,∴56a=88b﹣11ab ②,②﹣①得:56a﹣32b=88b﹣88a,∴,即CE:DE=.故答案为:.12.把一张两边长分别为、的矩形纸片放入平面直角坐标系中,使、分别落在轴、轴正半轴上,将纸片沿对角线折叠,使点落在的位置上,则点的坐标为_______.【答案】或【解析】分两种情况讨论:当时,如图1,设交OC于点M,作于,由折叠的性质、平行线的性质和等腰三角形的判定可得MB=MO,设,则在中,根据勾股定理即可构建方程求出x,然后根据三角形的面积和勾股定理即可求出和OP的长,从而可得点的坐标;第二种情况:当时,如图2,同情况1的方法解答即可.【详解】分两种情况讨论:当时,如图1,设交OC于点M,作于,由题意得,,,,∵OC⊥AB,⊥,∴,∴MB=MO,设,则,则在中,根据勾股定理得,即,解得,∴,,根据三角形的面积可得,即,∴,所以的坐标为;第二种情况:当时,如图2,设交BC于点M,作于,由题意得,,,,∵BC⊥AO,⊥,∴,∴MB=MO,设,则,则在中,根据勾股定理得,即,解得,∴,,根据三角形的面积可得,即,∴,∴,所以的坐标为;故答案为:或.【点拨】本题考查了矩形的性质、折叠的性质、平行线的性质、等腰三角形的判定、勾股定理以及三角形的面积等知识,属于常考题型,熟练掌握上述知识、灵活应用方程思想是解题的关键.13.如图,将矩形纸片ABCD放入以BC所在直线为x轴,BC边上一点O为坐标原点的直角坐标系中,连结OD,将纸片ABCD沿OD折叠,使得点C落在AB边上点处,若,,则点C的坐标为______.【答案】【解析】依据折叠的性质以及勾股定理,即可得出的长,进而得到,再根据勾股定理可得,中,列方程求解即可得到,进而得出点C的坐标.【详解】矩形纸片ABCD中,,,,中,设,则中,,解得,,又点C在x轴上,点C的坐标为,故答案为.【点拨】本题主要考查了矩形的性质,折叠的性质以及勾股定理的运用;解决问题的关键是运用勾股定理计算有关线段的长解题时注意方程思想的运用.14.如图,有一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC =10,如图,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,则点E的坐标为_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学冲刺难点突破 图形折叠问题专题四 图形折叠中的直角三角形存在性问题(原卷)【精典讲解】1、如图例3-1,在Rt △ABC 中,△ACB =90°,△B =30°,BC =3,点D 是BC 边上一动点(不与点B 、C 重合),过点D 作DE △BC 交AB 边于点E ,将△B 沿直线DE 翻折,点B 落在射线BC 上的点F 处,当△AEF 为直角三角形时,BD 的长为图例3-1图例3-2图例3-32、如图例4-1,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把△B 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 .图例4-1 图例4-2图例4-33、如图例5-1,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .图例5-1图例5-2图例5-34、如图例6-1,在△MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A’BC与△ABC关于BC所在直线对称. D、E分别为AC、BC的中点,连接DE并延长交A’B所在直线于点F,连接A’E. 当△A’EF为直角三角形时,AB的长为.图例6-1图例6-2图例6-3【针对训练】1、矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把△B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )A.3B.32C.2或3D.3或322、如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则ADDF的值为A.1113B.1315C.1517D.17193、如图,已知正方形ABCD的边长为3,E是BC上一点,Q是CD上一动点,将△CEQ沿直线EQ折叠后,点C落在点P处,连接PA.点Q从点C出发,沿线段CD向点D运动,当PA的长度最小时,CQ的长为()A.3B.3C.32D.34、如图,矩形ABCD中,3AB=,4BC=,点E是BC边上一点,连接AE,把矩形沿AE折叠,使点B落在点B'处.当CEB'∆为直角三角形时,BE的长为____________.5、如图,在矩形ABCD中,AB=6,AD=E是AB边上一点,AE=2,F是直线CD 上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为_____.6、如图,在菱形ABCD中,△DAB=45°,AB=4,点P为线段AB上一动点,过点P作PE△AB 交直线AD于点E,将△A沿PE折叠,点A落在F处,连接DF,CF,当△CDF为直角三角形时,线段AP的长为__________.中考数学冲刺难点突破图形折叠问题专题四图形折叠中的直角三角形存在性问题(答案及解析)【精典讲解】1、如图例3-1,在Rt△ABC中,△ACB=90°,△B=30°,BC=3,点D是BC边上一动点(不与点B、C重合),过点D作DE△BC交AB边于点E,将△B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,BD的长为图例3-1 图例3-2图例3-32、如图例4-1,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把△B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.图例4-1 图例4-2 图例4-33、如图例5-1,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为 .图例5-1图例5-2图例5-34、如图例6-1,在△MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A’BC与△ABC关于BC所在直线对称. D、E分别为AC、BC的中点,连接DE并延长交A’B所在直线于点F,连接A’E. 当△A’EF为直角三角形时,AB的长为.图例6-1图例6-2图例6-3【针对训练】1、矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把△B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )A.3B.32C.2或3D.3或32当△CEB′为直角三角形时,有两种情况:△当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得△AB′E=△B=90°,而当△CEB′为直角三角形时,只能得到△EB′C=90°,所以点A、B′、C共线,即△B沿AE折叠,使点B 落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.△当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:△当点B′落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,△AC=22=5,43△△B沿AE折叠,使点B落在点B′处,△△AB′E=△B=90°,当△CEB′为直角三角形时,只能得到△EB′C=90°,△点A、B′、C共线,即△B沿AE折叠,使点B落在对角线AC上的点B′处,△EB=EB′,AB=AB′=3,△CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,△EB′2+CB′2=CE2,△x2+22=(4-x)2,解得x=32,△BE=32;△当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,△BE=AB=3.综上所述,BE的长为32或3.故选D.【点睛】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.2、如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则ADDF的值为A.1113B.1315C.1517D.1719故选C.【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.3、如图,已知正方形ABCD的边长为3,E是BC上一点,Q是CD上一动点,将△CEQ沿直线EQ折叠后,点C落在点P处,连接PA.点Q从点C出发,沿线段CD向点D运动,当PA的长度最小时,CQ的长为()A.3B.3C.32D.3A【解析】试题解析:如图所示:在Rt△ABE中,AE=.△BC=3,BE=,△EC=3-.由翻折的性质可知:PE=CE=3-.△AP+PE≥AE,△AP≥AE-PE.△当点A、P、E一条直线上时,AP有最小值.△AP=AE-PE=2-(3-)=3-3.故选A.考点:翻折变换(折叠问题).BC=,点E是BC边上一点,连接AE,把矩形沿4、如图,矩形ABCD中,3AB=,4∆为直角三角形时,BE的长为____________.AE折叠,使点B落在点B'处.当CEB'△BE B E '=,90B AB E ︒'∠=∠=,△四边形ABEB '是正方形,△3BE AB ==.综上所述,当CEB '∆为直角三角形时,BE 的长为32或3.故答案是:32或3. 【点睛】考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.5、如图,在矩形ABCD 中,AB =6,AD =E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E ,A ′,C 三点在一条直线上时,DF 的长为_____.【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE的等腰三角形,属于中考常考题型.6、如图,在菱形ABCD中,△DAB=45°,AB=4,点P为线段AB上一动点,过点P作PE△AB 交直线AD于点E,将△A沿PE折叠,点A落在F处,连接DF,CF,当△CDF为直角三角形时,线段AP的长为__________.2或22+【解析】【分析】分两种情形讨论:△如图1,当DF△AB时,△CDF是直角三角形;△如图2,当CF△AB时,△DCF是直角三角形,分别求出即可.【详解】分两种情况讨论:△如图1,当DF△AB时,△CDF是直角三角形.△在菱形ABCD中,AB=4,△CD=AD=AB=4.在Rt△ADF中,△AD=4,△DAB=45,DF=AF=22,△AP12=AF2=.△如图2,当CF△AB时,△DCF是直角三角形.在Rt△CBF中,△△CFB=90°,△CBF=△A=45°,BC=4,△BF=CF=22,△AF=4+22,△AP。

相关文档
最新文档