九年级数学上册二次函数(大题)
人教版 九年级上册数学 22.1 二次函数的图象和性质(含答案)

人教版九年级数学22.1 二次函数的图象和性质一、选择题(本大题共10道小题)1.已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是( )A.2>y1>y2B.2>y2>y1C.y1>y2>2 D.y2>y1>22.抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的解析式为()A.y=x2+2x+3 B.y=x2-2x-3C.y=x2-2x+3 D.y=x2+2x-33. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的( ) A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.24. 2019·丹东如图,二次函数y=ax2+bx+c的图象过点(-2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x 轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4-x)=-2的两根为x1,x2,且x1<x2,则-2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个5.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数解析式为y=x2,再次平移这张透明纸,使这个点与点C重合,则此时抛物线的函数解析式变为( )A.y=x2+8x+14 B.y=x2-8x+14C.y=x2+4x+3 D.y=x2-4x+36. 2019·资阳如图是函数y=x2-2x-3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1 B.m≤0C.0≤m≤1 D.m≥1或m≤07. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是( )8.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.有下列结论:①abc<0;②3a +c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中正确结论的个数为( )A.1 B.2 C.3 D.49. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<D.c<110.如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x ,两个三角形重合部分的面积为y,则y关于x的函数图象是( )二、填空题(本大题共8道小题)11.若物体运动的路程s(m)与时间t(s)之间的关系式为s=5t2+2t,则当物体运动时间为4 s时,该物体所经过的路程为________.12.【2018·淮安】将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数解析式是__________.13. (2019•武汉)抛物线经过点、两点,则关于的一元二次方程的解是__________.14.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a=______ __,c=________.如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)16. (2019•天水)二次函数的图象如图所示,若,.则、的大小关系为__________.(填“”、“”或“”)17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点为P(m,n).给出下列结论:①2a+c<0;②若(-32,y1),(-12,y2),(12,y3)在抛物线上,则y1>y2>y3;③若关于x的方程ax2+bx+k=0有实数解,则k>c-n;④当n=-1 a时,△ABP为等腰直角三角形.其中正确的结论是________.(填序号)18.如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB=________.三、解答题(本大题共4道小题)19. 已知抛物线的顶点坐标是(2,3),并且经过点(0,-1),求它的解析式.20.如图,抛物线y =ax 2+2ax +1与x 轴仅有一个公共点A ,经过点A 的直线交该抛物线于点B ,交y 轴于点C ,且点C 是线段AB 的中点. (1)求这条抛物线对应的函数解析式; (2)求直线AB 对应的函数解析式.21.二次函数y=ax2+bx+c的图象如图所示,若关于x的方程|ax2+bx+c|=k(k≠0)有两个不相等的实数根,求k的取值范围.22.如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0).(1)求此抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-b2a,4ac-b24a)人教版九年级数学22.1 二次函数的图象和性质-答案一、选择题(本大题共10道小题)1. 【答案】 A [解析] 根据题意,可得抛物线开口向下,对称轴为直线x=-1,∴在对称轴的右侧,y 随x的增大而减小.∵-1<1<2,∴2>y1>y2,故选A.2. 【答案】 B [解析] 由抛物线与x轴交于点(-1,0)和(3,0),设此抛物线的解析式为y=a(x+1)(x-3).又因为抛物线与y轴交于点(0,-3),把x=0,y=-3代入y=a(x+1)(x-3),得-3=a(0+1)(0-3),即-3a=-3,解得a=1,故此抛物线的解析式为y=(x+1)(x-3)=x2-2x-3.故选B.3. 【答案】 B [解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3. 4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.4. 【答案】A5. 【答案】 A [解析] 因为矩形ABCD的两条对称轴为坐标轴,所以矩形ABCD关于坐标原点成中心对称.因为A ,C是矩形对角线上的两个点,所以点A,C关于原点对称,所以点C的坐标为(-2,-1),所以抛物线向左平移了4个单位长度,向下平移了2个单位长度,所以平移后抛物线的函数解析式为y=(x+4)2-2=x2+8x+14.故选A.6. 【答案】C7. 【答案】 D [解析] 由一次函数y=ax+a可知,其图象与x轴交于点(-1,0),排除A,B;当a>0时,二次函数y=ax2的图象开口向上,一次函数y=ax+a的图象经过第一、二、三象限;当a<0时,二次函数y=ax2的图象开口向下,一次函数y=ax +a的图象经过第二、三、四象限.排除C.8. 【答案】C [解析] ①∵抛物线开口向上,∴a>0.∵抛物线的对称轴在y轴右侧,∴b<0.∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,所以①错误.②当x=-1时,y>0,∴a-b+c>0.∵-b2a=1,∴b=-2a.把b=-2a代入a-b+c>0中,得3a+c>0,所以②正确.③当x=1时,y<0,∴a+b+c<0.当x=-1时,y>0,∴a-b+c>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,所以③正确.④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+bm+c(m为实数),即a+b≤m(am+b),所以④正确.故选C.9. 【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则,解得c<-2,故选B.10. 【答案】B【解析】由题意知:在△A′B′C′移动的过程中,阴影部分总为等边三角形.当0<x≤1时,边长为x,此时y=12x×32x=34x2;当1<x≤2时,重合部分为边长为1的等边三角形,此时y=12×1×32=34;当2<x≤3时,边长为3-x,此时y=12(3-x)×32(3-x).综上,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线的一部分,右边为开口向上抛物线的一部分,且最高点为34.故选B.二、填空题(本大题共8道小题)11. 【答案】88 m [解析] 把t=4代入函数解析式,得s=5×16+2×4=88.故填88 m.12. 【答案】y=x2+2 [解析] 二次函数y=x2-1的图象向上平移3个单位长度,平移后的纵坐标增加3,即y=x2-1+3=x2+2.13. 【答案】,【解析】依题意,得:,解得:,所以,关于x的一元二次方程a(x-1)2+c=b-bx为:,即:,化为:,解得:,,故答案为:,.14. 【答案】3 215. 【答案】8a [解析] ∵抛物线y=ax2(a>0)与y=a(x-2)2交于点B,∴BD=BC=2,∴DC=4.∵y=a(x-2)2=ax2-4ax+4a,∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.16. 【答案】< 【解析】当时,,当时,, ,即,故答案为:.17. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b <a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误; (2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n(x -m)2+n =0. ∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.18. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)b b=3- 3.三、解答题(本大题共4道小题)19. 【答案】解:根据题意,设抛物线的解析式为y=a(x-2)2+3. ∵抛物线经过点(0,-1),∴-1=a(0-2)2+3,解得a=-1,∴y=-(x-2)2+3.20. 【答案】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个交点,∴b2-4ac=(2a)2-4a=0,解得a=1,a=0(舍去),∴抛物线的解析式:y=x2+2x+1.(3分)(2)设直线AB的解析式为y=kx+b,∵抛物线解析式y=x2+2x+1=(x+1)2,∴A(-1,0),(4分)过点B作BD⊥x轴于点D,如解图,∵OC⊥x轴,∴OC∥BD,∵C是AB中点,∴O是AD中点,∴AO=OD=1,(6分)∴点B的横坐标为1,把x=1代入抛物线中,得y=(x+1)2=(1+1)2=4,∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b ,得⎩⎪⎨⎪⎧0=-k +b 4=k +b , 解得⎩⎪⎨⎪⎧k =2b =2, ∴直线AB 的解析式为: y =2x +2.(8分)21. 【答案】[解析]先根据题意画出y =|ax 2+bx +c|的图象,即可得出|ax 2+bx +c|=k(k≠0)有两个不相等的实数根时k 的取值范围.解:根据题意,得y =|ax 2+bx +c|的图象如图所示.由图象易知,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k >3.22. 【答案】解:(1)由抛物线经过点A(-1,0),且对称轴为直线x =2,得⎩⎪⎨⎪⎧-b 2=21-b +c =0,(2分) 解得⎩⎪⎨⎪⎧b =-4c =-5,(3分)解图∴抛物线的解析式为y=x2-4x-5.(4分)(利用抛物线对称性先求出点B的坐标,再求出解析式也可)(2)B(5,0),C(0,-5).(6分)(3)如解图,连接BC,易知△OBC是直角三角形,∴过O,B,C三点的圆的直径是线段BC的长度,(8分)由勾股定理得BC=52+52=52,∴所以所求圆的面积是π×(522)2=252π.(10分)。
2024年九年级数学上册《二次函数》单元测试及答案解析

第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 23.一次函数y=ax+b和二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是()A. B.C. D.4.坐标平面上有两个二次函数的图像,其顶点M、N皆在x轴上,且有一水平线与两图像相交于A、B、C、D四点,各点位置如图所示,若AB=12,BC=4,CD=6,则MN的长度是()A.8B.9C.10D.115.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+c =n -1有两个不相等的实数根;⑤若方程ax 2+bx +c =0的两根分别为x 1,x 2,则x 1+x 2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.437.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界8.如图,抛物线G :y 1=a (x +1)2+2与抛物线H :y 2=-(x -2)2-1交于点B (1,-2),且分别与y 轴交于点D ,E .过点B 作x 轴的平行线,交抛物线于点A ,C .则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.49.设二次函数y=a x+mx+m-k(a<0,m,k是实数),则()A.当k=2时,函数y的最大值为-4aB.当k=2时,函数y的最大值为-2aC.当k=4时,函数y的最大值为-4aD.当k=4时,函数y的最大值为-2a10.如图,已知点A-1,0,点B2,3.若抛物线y=ax2-x+2(a为常数,a≠0)与线段AB有两个不同的公共点,则a的取值范围是()A.a≥3B.a≤-3或34≤a<1C.-3<a<1或a≥3D.34≤a<1二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm3与温度t°C之间的关系满足二次函数V=18t2+104t>0,则当温度为4°C时,水的体积为cm3.12.已知二次函数y=x2-2x+1的图象向左平移两个单位得到抛物线C,点P2,y1,Q3,y2在抛物线C 上,则y1y2(填“>”或“<”);13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y1=a1x2+b1x+c1,y2=a2x2+b2x+c2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y2与直线y=32x+7的交点坐标为.14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4.为顶点,且过点B2,-5(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.(1)求该函数的解析式;(2)请结合平面直角坐标系中给出的点,画出符合题意的函数图象,并写出飞机降落后滑行到停下来前进了多远?19.已知一次函数y=ax+b的图像上有两点A、B,它们的横坐标分别是2、-1,若二次函数y=x 2的图像经过A、B两点.(1)求一次函数解析式并在平面直角坐标系内画出两个函数的图像;(2)若P m,y1两点都在二次函数y=x 2的图像上,试比较y1与y2的大小. ,Q m+1,y220.在平面直角坐标系中,抛物线y=x2+bx+c交x轴于A-1,0两点,交y轴于点C,点P m,n,B3,0在抛物线上.(1)求抛物线的表达式及顶点坐标;(2)若此抛物线点P右侧的部分(不含点P)上恰好有三个点到x轴的距离均为2,请直接写出m的取值范围.四、(本大题共3小题,每小题8分,共24分)21.如图,在平面直角坐标系xOy中,已知抛物线的解析式是y1=x2,直线l的解析式是y2=-14,点F0,1 4,点P是在该抛物线上的动点,连接PF,过P作PN⊥l.(1)求证:PF=PN;(2)设点E-2,6,求PE+PF的最小值及此时点P的坐标.22.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出,如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车,另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数;②月利润=月租车费-月维护费;在两公司租出的汽车数量相等且都为x(单位:辆,0<x≤50)的条件下,甲的利润用y1表示(单位:元),乙的利润用y2(单位:元)表示,根据上述信息,解决下列问题:(1)分别表示出甲、乙的利润,什么情况下甲、乙的利润相同?(2)甲公司最多比乙公司利润多多少元?(3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且仅当两公司租出的汽车均为16辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.23.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD的读数为x,CD读数为y,抛物线的顶点为C.(1)(Ⅰ)列表:①②③④⑤⑥x023456y01 2.254 6.259(Ⅱ)描点:请将表格中的x,y描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y与x的关系式;(2)如图3所示,在平面直角坐标系中,抛物线y=a x-h2+k的顶点为C,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB,竖直跨度为CD,且AB=m,CD=n,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数y=a x-h2+k平移,使得顶点C与原点O重合,此时抛物线解析式为y=ax2.①此时点B 的坐标为;②将点B 坐标代入y=ax2中,解得a=;(用含m,n的式子表示)方案二:设C点坐标为h,k①此时点B的坐标为;②将点B坐标代入y=a x-h2+k中解得a=;(用含m,n的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy中有A,B两点,AB=4,且AB∥x轴,二次函数C1:y1=2x+h2+k和C2:y2=a x+h2+b都经过A,B两点,且C1和C2的顶点P,Q距线段AB的距离之和为10,求a的值.五、(本大题共2小题,每小题12分,共24分)24.中新社上海3月21日电(记者缪璐)21日在上海举行的2023年全国跳水冠军赛女子单人10米跳台决赛中,陈芋汐以416.25分的总分夺得冠军,全红婵位列第二,掌敏洁获得铜牌.在精彩的比赛过程中,全红婵选择了一个极具难度的270C(向后翻腾三周半抱膝).如图2所示,建立平面直角坐标系xOy.如果她从点A3,10起跳后的运动路线可以看作抛物线的一部分,从起跳到入水的过程中,她的竖直高度y(单位:米)与水平距离x(单位:米)近似满足函数关系式y=a x-h.2+k a<0(1)在平时训练完成一次跳水动作时,全红蝉的水平距离x与竖直高度y的几组数据如下:水平距离x/m03 3.54 4.5竖直高度y/m1010k10 6.25根据上述数据,直接写出k的值为,直接写出满足的函数关系式:;(2)比赛当天的某一次跳水中,全红婵的竖直高度y与水平距离x近似满足函数关系y=-5x2+40x-68,记她训练的入水点的水平距离为d1,比赛当天入水点的水平距离为d2,请通过计算比较d1与d2的大小;(3)在(2)的情况下,全红婵起跳后到达最高点B开始计时,若点B到水平面的距离为c,则她到水面的距离y与时间t之间近似满足y=-5t2+c,如果全红婵在达到最高点后需要1.6秒的时间才能完成极具难度的270C动作,请通过计算说明,她当天的比赛能否成功完成此动作?25.综合与实践问题提出某兴趣小组开展综合实践活动,如图1,在正方形ABCD中,E,F分别是AB,AD上一点,且AF=2AE.点M从点E出发,沿正方形ABCD的边顺时针运动;点N同时从点F出发,沿正方形ABCD的边逆时针运动.若两动点的运动速度相同,都为每秒1个单位长度,相遇时M,N两点都停止运动,设点M运动的时间为t秒,△AMN的面积为S,探究S与t的关系.初步感知根据运动的变化,绘制了如图2所示的图象,按不同的函数解析式,图象可分为四段,还有最后一段未画出.(1)AE的长为,AB的长为.(2)a的值为,S的最大值为.延伸探究(3)请求出图2中未画出的最后一段图象对应的函数解析式,并将图象补充完整.(4)求b的值,并求出当S>3时,t的取值范围.第二十二章二次函数(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x厘米:当x=3时,y=18,那么当成本为3.2×105元时,边长为()A.1.6×103厘米B.4×102厘米C.0.4×103厘米D.2×103厘米【答案】B【分析】本题考查了待定系数法求函数解析式的运用,求出函数的解析式是解答本题的关键.设y=kx2,由待定系数法就可以求出解析式,把y=3.2×105代入函数解析式就可以求出结论.【详解】解:设y=kx2,∵当x=3时,y=18,∴9k=18,k=2,∴y=2x2,当成本为3.2×105元时,有2x2=3.2×105,x2=1.6×105,x=4×102.故选:B.2.如表中列出的是一个二次函数的自变量x与函数y的几组对应值,则下列关于这个二次函数的结论中,正确的是()x....-1034....y....0-5-8-5....A.图象的开口向下B.有最小值-8C.图象与x轴的一个交点是5,0D.图象的对称轴是x=3 2【答案】C【分析】本题考查了待定系数法求二次函数解析式,二次函数的图象和性质等知识点,学会根据表格中的信息求得函数的解析式是解题的关键.由表格中的几组数求得二次函数的解析式,然后通过函数的性质即可得出结果.【详解】解:设二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),由题意可知a-b+c=0c=-59a+3b+c=-8 ,解得a=1b=-4 c=-5 ,∴二次函数的解析式为y=x2-4x-5 =x-5x+1=x -2 2-9,∴函数的图象开口向上,顶点为2,-9 ,图象与x 轴的交点分别为-1,0 和5,0 ,∴图象的对称轴是x =2,函数有最小值-9,∴选项A 、B 、D 不符合题意,选项C 符合题意.故选:C .3.一次函数y =ax +b 和二次函数y =ax 2+bx 在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】B 【分析】本题考查抛物线和直线的性质,本题可先由一次函数y =ax +b 图象得到字母系数的正负,再与二次函数y =ax 2+bx 的图象相比是否一致.【详解】解:A 、由抛物线可知,a <0,x =-b 2a<0,得b <0,由直线可知,a >0,b >0,故本选项不符合题意;B 、由抛物线可知,a >0,x =-b 2a <0,得b >0,由直线可知,a >0,b >0,故本选项符合题意;C 、由抛物线可知,a <0,x =-b 2a <0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意;D 、由抛物线可知,a >0,x =-b 2a>0,得b <0,由直线可知,a <0,b >0,故本选项不符合题意.故选:B4.坐标平面上有两个二次函数的图像,其顶点M 、N 皆在x 轴上,且有一水平线与两图像相交于A 、B 、C 、D 四点,各点位置如图所示,若AB =12,BC =4,CD =6,则MN 的长度是()A.8B.9C.10D.11【答案】B 【分析】本题考查了二次函数的图像与性质,线段长度的相关计算,熟练掌握以上知识点是解题的关键.由AB ,BC ,CD 的长度以及根据二次函数的对称性可以知道,M 和C ,N 和B ,C 和B 横坐标的差,从而推出M 和N 的横坐标之差,得到MN 的长度.【详解】由A、B、C、D四点在同一水平线,可以知道四点纵坐标相同∵AB=12,BC=4,CD=6,∴AC=AB+BC=16,BD=4+6=10∴x C-x M=AC2=8,x N-x B=BD2=5又∵x C-x B=BC=4∴MN=x N-x M=(x N-x B)+(x C-x M)-(x C-x B)=5+8-4=9.故选:B.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为1,n,且与x轴的一个交点在点3,0和4,0之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a c-n;④一元二次方程ax2+bx+ c=n-1有两个不相等的实数根;⑤若方程ax2+bx+c=0的两根分别为x1,x2,则x1+x2=2.其中正确结论的个数有()A.5个B.4个C.3个D.2个【答案】B【分析】本题主要考查了二次函数图象与其系数的关系,二次函数的性质等等,根据开口向下得到a<0,再根据顶点坐标结合对称轴公式得到b=-2a>0,即b+2a=0,则可判断②;由对称性可得当x=-1时,y=a-b+c>0,则可判断②;根据函数图象可知抛物线与直线y=n-1有两个交点,则可判断④;根据二次函数与一元二次方程之间的关系可判断④.【详解】解:∵抛物线开口向下,∴a<0,∵顶点坐标为1,n,∴抛物线对称轴为直线x=-b2a=1,∴b=-2a>0,即b+2a=0,∴3a+b=2a+b+a=a<0,②错误;∵当x=3时y>0,抛物线对称轴为直线x=1,∴当x=-1时,y=a-b+c>0,①正确;∵抛物线顶点纵坐标为n,∴4ac-b24a=n,∴b2=4ac-4an=4a c-n,③正确;由图象可得抛物线与直线y=n-1有两个交点,∴ax2+bx+c=n-1有两个不相等的实数根,④正确;∵抛物线对称轴为直线x=1,方程ax2+bx+c=0的两根分别为x1,x2,,∴x1+x22=1,∴x1+x2=2,⑤正确.故选:B .6.如图,在正方形ABCD 中,点B ,C 的坐标分别是(-2,1),(2,0),点D 在抛物线y =13x 2+bx 的图像上,则b 的值是()A.23B.13C.73D.43【答案】B【分析】本题考查二次函数与几何的综合应用,作BE ⊥x 轴,DF ⊥x 轴,证明△BEC ≌△CFD ,进而求出D 点坐标,代入解析式进行求解即可.【详解】解:如图所示,作BE ⊥x 轴,DF ⊥x 轴,则:∠BEO =∠CFD =90°,∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∴∠BCE =∠CDF =90°-∠DCF ,∴△BEC ≌△CFD ,∴CF =BE ,DF =CE ,∵点B ,C 的坐标分别是(-2,1),(2,0),∴BE =CF =1,OC =2,DF =CE =2+2=4,∴OF =3,∴D 3,4 ,∵点D 在抛物线y =13x 2+bx 的图像上,∴4=13×32+3b ,∴b =13;故选B .7.如图,排球运动员站在点O 处练习发球,球从点O 正上方2m 的A 处发出,其运行的高度y (m )与水平距离x (m )满足关系式y =-160x -6 2+2.6.已知球网与点O 的水平距离为9m ,高度为2.43m ,球场的边界距点O 的水平距离为18m .下列判断正确的是()A.球运行的最大高度是2.43mB.球不会过球网C.球会过球网且不会出界D.球会过球网且会出界【答案】D【分析】本题主要考查了二次函数的实际应用.根据顶点式的特点可知球运行的最大高度为2.6m,由此即可判断A;求出当x=9时,y的值,再与2.43m进行比较即可判断B;求出当x=18时,y的值,再与0比较即可判断C、D.【详解】解:∵抛物线解析式为y=-160x-62+2.6,∴球运行的最大高度为2.6m,故A说法错误,不符合题意;在y=-160x-62+2.6中,当x=9时,y=-1609-62+2.6=2.45>2.43,∴球会过球网,故B说法错误,不符合题意;在y=-160x-62+2.6中,当x=18时,则y=-16018-62+2.6=0.2>0,∴球会过球网且会出界,故C说法错误,不符合题意,D说法正确,符合题意;故选D.8.如图,抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B(1,-2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;②无论x取何值,y2总是负数;③当-3<x<1时,随着x的增大,y1-y2的值先增大后减小;④四边形AECD为正方形.其中正确的个数是()A.1B.2C.3D.4【答案】C【分析】①先求抛物线G的解析式,再根据抛物线G,H的顶点坐标,判断平移方向和平移距离即可判断②;②根据非负数的相反数或者直接由图像判断即可;③先根据题意得出-3<x<1时,观察图像可知y1 >y2,然后计算y1-y2,进而根据一次函数的性质即可判断;④分别计算出A,E,C,D的坐标,根据正方形的判定定理进行判断即可.【详解】①∵抛物线G:y1=a(x+1)2+2与抛物线H:y2=-(x-2)2-1交于点B1,-2,∴x=1,y=-2,即-2=a(1+1)2+2,解得a=-1,∴抛物线G:y1=-x+12+2,∴抛物线G的顶点(-1,2),抛物线H的顶点为(2,-1),将(-1,2)向右平移3个单位,再向下平移3个单位即为(2,-1),即抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到,故①正确;②∵(x-2)2≥0,∴-(x-2)2≤0,∴y2=-x-22-1≤-1,∴无论x取何值,y2总是负数,故②正确;③∵B1,-2,∵将y=-2代入抛物线G:y1=-x+12+2,解得x1=-3,x2=1,∴A(-3,-2),将y=-2代入抛物线H:y2=-x-22-1,解得x1=3,x2=1,∴C(3,-2),∵-3<x<1,从图像可知抛物线G的图像在抛物线H图像的上方,∴y1>y2∵y1-y2=-(x+1)2+2-[-(x-2)2-1]=-6x+6∴当-3<x<1,随着x的增大,y1-y2的值减小,故③不正确;④设AC与y轴交于点F,∵B1,-2,∴F(0,-2),由③可知∴A(-3,-2),C(3,-2),∴AF=CF,AC=6,当x=0时,y1=1,y2=-5,即D(0,1),E(0,-5),∴DE=6,DF=EF=3,∴四边形AECD是平行四边形,∵AC=DE,AC⊥DE,∴四边形AECD是正方形,故④正确,综上所述,正确的有①②④,故选:C .【点睛】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识.9.设二次函数y =a x +m x +m -k (a <0,m ,k 是实数),则()A.当k =2时,函数y 的最大值为-4aB.当k =2时,函数y 的最大值为-2aC.当k =4时,函数y 的最大值为-4aD.当k =4时,函数y 的最大值为-2a【答案】C【分析】此题考查了二次函数的图象和性质、求二次函数的最值,求出二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .得到二次函数的对称轴是直线x =-m -m +k 2=-2m +k 2.根据开口方向进一步求出最值即可.【详解】解:由题意,令y =0,∴a x +m (x +m -k )=0,∴x 1=-m ,x 2=-m +k .∴二次函数y =a x +m (x +m -k )与x 轴的交点坐标是-m ,0 ,-m +k ,0 .∴二次函数的对称轴是:直线x =-m -m +k 2=-2m +k 2.∵a <0,∴y 有最大值.当x =-2m +k 2,y 最大,即y =a -2m +k 2+m -2m +k 2+m -k =-k 24a 当k =4时,函数y 的最大值为-4a ;当k =2时,函数y 的最大值为-a .综上,C 选项正确.故选:C .10.如图,已知点A -1,0 ,点B 2,3 .若抛物线y =ax 2-x +2(a 为常数,a ≠0)与线段AB 有两个不同的公共点,则a 的取值范围是()A.a ≥3B.a ≤-3或34≤a <1C.-3<a <1或a ≥3D.34≤a <1【答案】B【分析】本题考查了二次函数和一次函数的综合问题,先求出直线AB 的解析式,令x +1=ax 2-x +2,根据有两个交点求出a 的取值范围,再分a >0和a <0两种情况讨论即可得到答案;【详解】解:设AB 所在直线为y =kx +b ,∵A -1,0 ,B 2,3 ,∴-k +b =02k +b =3,解得:k =1b =1 ,∴y =x +1,当x +1=ax 2-x +2时,∵二次函数与线段AB 有两个不同的公共点,∴(-2)2-4a ×1>0,解得:a <1,①当0<a <1时,此时函数的开口向上,∴a ×(-1)2-(-1)+2≥0,a ×22-2+2≥3,解得:34≤a <1,②当a <0时此时函数的开口向下,∴a ×(-1)2-(-1)+2≤0,a ×22-2+2≤3,解得:a ≤-3,综上所述得:34≤a <1,a ≤-3,故选:B .二、填空题(本大题共6小题,每小题3分,共18分)11.标准大气压下,质量一定的水的体积V cm 3 与温度t °C 之间的关系满足二次函数V =18t 2+104t >0 ,则当温度为4°C 时,水的体积为cm 3.【答案】106【分析】本题考查二次函数的应用,细心计算是解题的关键.将t =4代入解析式求值即可.【详解】解:∵V =18t 2+104t >0 ,当t =4°C 时,V =18×42+104=106cm 3 ,∴水的体积为106cm 3.故答案为:106.12.已知二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,点P 2,y 1 ,Q 3,y 2 在抛物线C 上,则y 1y 2(填“>”或“<”);【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为y =x +1 2,再利用二次函数图象的性质可得出答案.【详解】解:y =x 2-2x +1=x -1 2,∵二次函数y =x 2-2x +1的图象向左平移两个单位得到抛物线C ,∴抛物线C 的解析式为y =x +1 2,∴抛物线开口向上,对称轴为x =-1,∴当x >-1时,y 随x 的增大而增大,∵2<3,∴y 1<y 2,故答案为:<.13.在单位为1的正方形网格中,存在一平面直角坐标系.二次函数y 1=a 1x 2+b 1x +c 1,y 2=a 2x 2+b 2x +c 2的图象位于如图位置上,若它们的图象位置关系具有对称性,请描述它们的对称关系:,求出y 2与直线y =32x +7的交点坐标为.【答案】关于点-32,0 成中心对称-1,112 ,8,19 【分析】本题主要考查了二次函数的图像和性质,以及二次函数与一次函数的交点等知识.(1)根据抛物线图像可求出y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,根据点坐标与二次函数的图像可得出答案.(2)用待定系数法求出抛物线y 2的函数解析式,再令32x +7=12x -2 2+1,进一步求解即可求出y 2与直线y =32x +7的交点坐标.【详解】解:由图象可得抛物线y 1顶点坐标为-5,-1 ,开口向下;抛物线y 2顶点坐标为2,1 ,开口向上,∵点-5,-1 与点2,1 关于点-32,0对称,∴抛物线y 1与抛物线y 2关于点-32,0成中心对称.设抛物线y 2解析式为y 2=a x -2 2+1,由图象可得抛物线经过(4,3),将(4,3)代入y 2=a x -2 2+1得3=4a +1,解得a =12,∴y 2=12x -2 2+1,令32x +7=12x -2 2+1,解得x 1=-1,x 2=8,将x 1=-1代入y =32x +7得y =112,把x 2=8代入y =32x +7得y =19,∴y 2与直线y =32x +7的交点坐标为-1,112 ,8,19 ,故答案为:-1,112 ,8,19 .14.如图,将抛物线y =x 2-2x -3在x 轴下方部分沿x 轴翻折,其余部分保持不变,得到图像C 1,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是.【答案】b >134或-3<b <1【分析】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,也考查了抛物线与直线的交点问题.解决本题的关键是利用数形结合的思想的运用.通过解方程x 2-2x -3=0得到A 、B 的坐标,利用二次函数的性质得到顶点的坐标,可写出图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,然后求出直线y =x +b 与y =-x 2+2x +3-1<x <3 相切b 的值,直线y =x +b 过A 和过B 点所对应的b 的值,再利用图象可判断直线y =x +b 与此图象有且只有两个公共点时b 的取值范围.【详解】解:当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,则A -1,0 ,B 3,0 ,y =x 2-2x -3=x -1 2-4,则顶点坐标为1,-4 ,把图象y =x -1 2-4-1<x <3 沿x 轴翻折所得图象的解析式为y =-x -1 2+4=-x 2+2x +3-1<x <3 ,如图,当直线y =x +b 与y =-x 2+2x +3-1<x <3 相切时,直线与新函数图象有三个交点,此时x +b =-x 2+2x +3有两个相等的实数解,方程整理得x 2-x +b -3=0,Δ=(-1)2-4(b -3)=0,解得b =134,∴当b >134时,直线y =x +b 与图像C 1恰有两个公共点,当直线y =x +b 过A -1,0 时,-1+b =0,解得b =1,当直线y =x +b 过B 3,0 时,3+b =0,解得b =-3,所以,当-3<b <1时,直线y =x +b 与此图象有且只有两个公共点.综上可知,当直线y =x +b 与图像C 1恰有两个公共点时,b 的取值范围是b >134或-3<b <1.故答案为:b >134或-3<b <1.15.九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.16.如图,二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C .现有一长为3的线段DE 在直线y =32上移动,且在移动过程中,线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等.若线段DE 左端点D 的橫坐标为t ,则t 的取值范围是.【答案】-32≤t ≤2【分析】本题考查了二次函数的性质,两点距离公式,轴对称的性质,三角形三边关系,先求出点A ,点B ,点C 坐标,分三种情况讨论,由两点间距离公式和三角形三边关系可求解.【详解】解:∵二次函数y =33x 2-433x +3的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C 当x =0时,y =3,当y =0时,33x 2-433x +3=0,解得:x 1=1,x 2=3∴A 1,0 ,B 3,0 ,C 0,3 ,对称轴为直线x =2如图所示,∵线段DE 上始终存在点P ,使得三条线段P A ,PB ,PC 能与某个等腰三角形的三条边对应相等∴P A =PB 或PB =PC 或PC =P A ,∵段DE 在直线y =32上移动,∴点P 的纵坐标为32,设P x ,32①若PC =P A ,∴x 2+3-322=x -1 2+32 2解得:x =12∴P 12,32∴P A =PC =1,PC =7∵P A +PB =2<7∴不能构成三角形,舍去;②若PB =PC ,∴x 2+3-322=x -3 2+32 2解得:x =32∴P 32,32∵PB =PC =3,P A =1∴能构成三角形,③若P A =PB∴x-12+322=x-32+322解得:x=2∴P A=PB=72,PC=194∵P A+PB>PC,∴P A,PB,PC能组成三角形;∵点P在长为3的线段DE上,∴线段DE左端点D的横坐标为t的取值范围为32-3≤t≤2,即-32≤t≤2故答案为:-32≤t≤2.三、(本大题共4小题,每小题6分,共24分)17.已知二次函数的图像以A-1,4为顶点,且过点B2,-5.(1)求该函数图像与坐标轴的交点坐标;(2)将函数图像向左平移几个单位,该函数图像恰好经过原点.【答案】(1)与y轴的交点坐标为(0,3);与x轴的交点坐标为(-3,0),(1,0)(2)向左平移1个单位,该函数图象恰好经过原点【分析】本题考查了二次函数的图象和性质,待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.(1)设顶点式y=a(x+1)2+4,然后把(2,-5)代入求出a的值即可得出二次函数解析式;通过解方程-(x+1)2+4=0可得抛物线与x轴的交点坐标,通过计算自变量为0时的函数值可得到抛物线与y轴的交点坐标;(2)由于抛物线与x轴的交点坐标为(-3,0),(1,0),把点(1,0)向左平移1个单位到原点,所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.【详解】(1)解:设抛物线解析式为y=a(x+1)2+4,把(2,-5)代入得9a+4=-5,解得a=-1,所以抛物线解析式为y=-(x+1)2+4;当x=0时,y=-(x+1)2+4=-1+4=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,-(x+1)2+4=0,解得x1=1,x2=-3,则抛物线与x轴的交点坐标为(-3,0),(1,0);(2)解:因为抛物线与x轴的交点坐标为(-3,0),(1,0),所以把抛物线解析式y=-(x+1)2+4向左平移1个单位,该函数图象恰好经过原点.18.飞机降落后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是S=at²+bt,当t=5时,S=262.5;当t=10时,S=450.。
人教版数学九年级上册_22.1《二次函数的图像和性质》测试题(含答案及解析)

二次函数的图像和性质测试题时间:90分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.若二次函数y=x2−6x+9的图象经过A(−1,y1),B(1,y2),C(3+√3,y3)三点.则关于y1,y2,y3大小关系正确的是()A. y1>y2>y3B. y1>y3>y2C. y2>y1>y3D. y3>y1>y22.如图是二次函数y=ax2+bx+c的图象,有下面四个结论:①abc>0;②a−b+c>0;③2a+3b>0;④c−4b>0其中,正确的结论是()A. ①②B. ①②③C. ①②④D. ①③④3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a−b+c<0,其中正确的个数是()A. 4个B. 3个C. 2个D. 1个4.在同一平面直角坐标系中,函数y=ax+b与y=ax2−bx的图象可能是()A. B.C. D.5.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是()A. 先向左平移1个单位,再向上平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,下列结论:①b2−4ac<0;②abc>0;③a−b+c<0;④m>−2,其中,正确的个数有()A. 1B. 2C. 3D. 47.若抛物线y=x2−2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A. y=(x−2)2+3B. y=(x−2)2+5C. y=x2−1D. y=x2+48.二次函数y=2x2−3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点9.在二次函数y=−x2+2x+1的图象中,若y随x的增大而减少,则x的取值范围是()A. x<1B. x>1C. x<−1D. x>−110.直线y=52x−2与抛物线y=x2−12x的交点个数是()A. 0个B. 1个C. 2个D. 互相重合的两个二、填空题(本大题共10小题,共30.0分)11.已知抛物线y=x2−(k+2)x+9的顶点在坐标轴上,则k的值为______.12.二次函数y=−x2+2x+2图象的顶点坐标是______.13.函数y=x2+mx−4,当x<2时,y随x的增大而减小,则m的取值范围是______ .14.抛物线y=ax2+bx+c经过点A(−5,4),且对称轴是直线x=−2,则a+b+c=______ .15.二次函数y=−2(x−1)2+5的图象的对称轴为______ ,顶点坐标为______ .16.如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为______ .17.如图,抛物线C1:y=12x2经过平移得到抛物线C2:y=12x2+2x,抛物线C2的对称轴与两段抛物线所围成的阴影部分的面积是______ .18.已知(−3,y1),(4,y2),(−1,y3)是二次函数y=x2−4x上的点,则y1,y2,y3从小到大用“<”排列是______.19.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=−1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2−4ac>0;③ab<0;④a−b+c<0,其中正确的结论是______ (填写序号).20.如图,抛物线y=ax2+bx+c过点(−1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(−3,y2),则y1>y2;④无论a,b,c取,0);⑤am2+bm+何值,抛物线都经过同一个点(−caa≥0,其中所有正确的结论是______ .三、计算题(本大题共4小题,共24.0分)21.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.22.已知二次函数y=(m−2)x2+(m+3)x+m+2的图象过点(0,5).(1)求m的值,并写出二次函数的解析式;(2)求出二次函数图象的顶点坐标和对称轴.23.已知函数y=−x2+(m−1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是______.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当−2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.24.如图,已知二次函数y=ax2+bx+c的图象过点A(−1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,解答下列问题:①当−1<x<2时,求函数y的取值范围.②当y<3时,求x的取值范围.四、解答题(本大题共2小题,共16.0分)25.如图,已知抛物线y=−x2+bx+c与x轴交于点A(−1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−b2a ,4ac−b24a)(m2+1)=0有实数根.26.已知关于x的一元二次方程x2−(m+1)x+12(1)求m的值;(m2+1)的图象关于x轴的对称图形,然后将所作图(2)先作y=x2−(m+1)x+12形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2−4n的最大值和最小值.答案和解析【答案】 1. A 2. C 3. B 4. C 5. D6. B7. C8. D 9. B 10. C11. 4,−8,−2 12. (1,3) 13. m ≤−4 14. 415. x =1;(1,5) 16. (−2,0) 17. 418. y 2<y 3<y 1 19. ①②④ 20. ②④⑤21. 解:(1)设抛物线的解析式为y =a(x −3)2+5, 将A(1,3)代入上式得3=a(1−3)2+5,解得a =−12, ∴抛物线的解析式为y =−12(x −3)2+5, (2)∵A(1,3)抛物线对称轴为:直线x =3 ∴B(5,3),令x =0,y =−12(x −3)2+5=12,则C(0,12), △ABC 的面积=12×(5−1)×(3−12)=5.22. 解:(1)把(0,5)代入y =(m −2)x 2+(m +3)x +m +2得m +2=5, 解得m =3所以二次函数解析式为y =x 2+6x +5; (2)因为y =x 2+6x +5=(x +3)2−4,所以此二次函数图象的顶点坐标为(−3,−4),对称轴为直线x =−3. 23. D24. 解:(1)根据题意得{a −b +c =0c =3−b2a =1,解得{a =−1b =2c =3, 所以二次函数关系式为y =−x 2+2x +3,因为y =−(x −1)2+4,所以抛物线的顶点坐标为(1,4);(2)①当x =−1时,y =0;x =2时,y =3; 而抛物线的顶点坐标为(1,4),且开口向下, 所以当−1<x <2时,0<y ≤4;②当y =3时,−x 2+2x +3=3,解得x =0或2, 所以当y <3时,x <0或x >2.25. 解:(1)由点A(−1,0)和点B(3,0)得{−9+3b +c =0−1−b+c=0,解得:{b=2,(2)令x =0,则y =3, ∴C(0,3),∵y =−x 2+2x +3=−(x −1)2+4, ∴D(1,4);(3)设P(x,y)(x >0,y >0),S △COE =12×1×3=32,S △ABP =12×4y =2y ,∵S △ABP =4S △COE ,∴2y =4×32, ∴y =3,∴−x 2+2x +3=3,解得:x 1=0(不合题意,舍去),x 2=2, ∴P(2,3).26. 解:(1)对于一元二次方程x 2−(m +1)x +12(m 2+1)=0,△=(m +1)2−2(m 2+1)=−m 2+2m −1=−(m −1)2, ∵方程有实数根, ∴−(m −1)2≥0, ∴m =1.(2)由(1)可知y =x 2−2x +1=(x −1)2, 图象如图所示:平移后的解析式为y =−(x +2)2+2=−x 2−4x −2.(3)由{y =2x +n y =−x 2−4x −2消去y 得到x 2+6x +n +2=0, 由题意∆≥0,∴36−4n −8≥0, ∴n ≤7,∵n ≥m ,m =1, ∴1≤n ≤7, 令,∴n =2时,y′的值最小,最小值为−4, n =7时,y′的值最大,最大值为21, ∴n 2−4n 的最大值为21,最小值为−4.1. 解:二次函数对称轴为直线x=−−62×1=3,3−(−1)=4,3−1=2,3+√3−3=√3,∵4>2>√3,∴y1>y2>y3.故选A.先求出二次函数的对称轴,再求出点A、B、C到对称轴的距离,然后根据二次函数增减性判断即可.本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性以及增减性,确定出各点到对称轴的距离的大小是解题的关键.2. 解:∵抛物线开口向上,∴a>0;∵抛物线的对称轴在y轴的右侧,∴x=−b2a>0,∴b<0;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵x=−1时,y>0,∴a−b+c>0,所以②正确;∵x=−b2a =13,∴2a+3b=0,所以③错误;∵x=2时,y>0,∴4a+2b+c>0,把2a=−3b代入得−6b+2b+c>0,∴c−4b>0,所以④正确.故选:C.根据抛物线开口方向得到a>0;根据对称轴得到x=−b2a>0,则b<0;根据抛物线与y轴的交点在x轴下方得到c<0,则abc>0,可判断①正确;当自变量为−1时对应的函数图象在x轴上方,则a−b+c>0,可判断②正确;根据抛物线对称轴方程得到x=−b2a =13,则2a+3b=0,可判断③错误;当自变量为2时对应的函数图象在x轴上方,则4a+2b+c>0,把2a=−3b代入可对④进行判断.本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=--b2a;抛物线与y轴的交点坐标为(0,c).3. 解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;>0,即x1+x2>0,故③正确;由对称轴x>0,可知x1+x22由可知抛物线与x轴的左侧交点的横坐标的取值范围为:−1<x<0,∴当x=−1时,y=a−b+c<0,故④正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查二次函数图象与系数的关系,熟练掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、与x轴、y轴的交点是关键.4. 解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线>0,应在y轴的右侧,故不合题意,图形错误;y=ax2−bx来说,对称轴x=b2aB、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2−bx<0,应在y轴的左侧,故不合题意,图形错误;来说,对称轴x=b2aC、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx>0,应在y轴的右侧,故符合题意;来说,图象开口向上,对称轴x=b2aD、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx 来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.5. 解:∵y=−3x2的顶点坐标为(0,0),y=−3(x−1)2−2的顶点坐标为(1,−2),∴将抛物线y=−3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=−3(x−1)2−2.故选:D.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.6. 解:如图所示:图象与x轴有两个交点,则b2−4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=−1时,a−b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:−2,故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c−m与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,故④正确.故选:B.直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.此题主要考查了二次函数图象与系数的关系,正确把握二次函数与方程之间的关系是解题关键.7. 解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x−1)2+2,∴原抛物线图象的解析式应变为y=(x−1+1)2+2−3=x2−1,故答案为C.思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.8. 解:A、a=2,则抛物线y=2x2−3的开口向上,所以A选项错误;B、当x=2时,y=2×4−3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2−3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2−3=0解的情况对D进行判断.本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(−b2a ,4ac−b24a),对称轴为直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a时,y随x的增大而增大;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小.9. 解:y=−x2+2x+1=−(x−1)2+2,抛物线的对称轴为直线x=1,∵a=−1<0,∴当x>1时,y随x的增大而减少.故选B.先配方得到抛物线的对称轴为直线x=1,然后根据二次函数的性质求解.本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(−b2a ,4ac−b24a),对称轴直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a 时,y随x的增大而增大;x=−b2a时,y取得最小值4ac−b24a,对称即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小;x=−b2a时,y取得最大值4ac−b24a,即顶点是抛物线的最高点.10. 解:直线y=52x−2与抛物线y=x2−12x的交点求法是:令52x−2=x2−12x,∴x2−3x+2=0,∴x1=1,x2=2,∴直线y=52x−2与抛物线y=x2−12x的个数是2个.故选C.根据直线与二次函数交点的求法得出一元二次方程的解,即可得出交点个数.此题主要考查了一元二次方程的性质,根据题意得出一元二次方程的解的个数是解决问题的关键.11. 解:当抛物线y=x2−(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2−4×9=0,解得k=4或k=−8;当抛物线y=x2−(k+2)x+9的顶点在y轴上时,x=−b2a =k+22=0,解得k=−2.故答案为:4,−8,−2.由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.12. 解:∵y=−x2+2x+2=−(x2−2x+1)+3=−(x−1)2+3,故顶点的坐标是(1,3).故填空答案:(1,3).此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.求抛物线的顶点坐标、对称轴的方法.13. 解:∵x<2时,y随x的增大而减小,∴−m2×1≥2,∴m≤−4.故答案为:m≤−4.根据二次函数的性质,二次函数的顶点的横坐标不小于2列式计算即可得解.本题考查了二次函数的性质,熟记性质,根据顶点的横坐标列出不等式是解题的关键.14. 解:∵对称轴方程为x=−2,∴−b2a=−2,整理可得b=4a,∵抛物线y=ax2+bx+c经过点A(−5,4),∴4=25a−5b+c,把b=4a代入可得,4=25a−20a+c,解得c=4−5a,∴抛物线解析式为y=ax2+4ax+4−5a,当x=1时,则有a+b+c=a+4a+4−5a=4,故答案为:4.把A点坐标代入抛物线解析式结合对称轴方程可用a分别表示出b和c,则可用a表示出抛物线解析式,再令x=1代入可求得y的值,即a+b+c的值.本题主要考查二次函数的解析式,分别用a表示出b和c,得出抛物线解析式是解题的关键.15. 解:∵y=−2(x−1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1,故答案为:x=1,(1,5).由抛物线解析式可求得其顶点坐标及对称轴.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).16. 解:∵抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,∴P,Q两点到对称轴x=1的距离相等,∴Q点的坐标为:(−2,0).故答案为:(−2,0).直接利用二次函数的对称性得出Q点坐标即可.此题主要考查了二次函数的性质,正确利用函数对称性得出答案是解题关键.17. 解:抛物线C1:y=12x2的顶点坐标为(0,0),∵y=12x2+2x=12(x+2)2−2,∴平移后抛物线的顶点坐标为(−2,2),对称轴为直线x=−2,当x=−2时,y=12×(−2)2=2,∴平移后阴影部分的面积等于如图三角形的面积为:12×(2+2)×2=4,故答案为:4.确定出抛物线y=12x2+2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.18. 解:y1=(−3)2+4×3=21,y2=42−4×4=0,y3=(−1)2+4×1=5,∴y2<y3<y1,故答案为:y2<y3<y1,可分别求出y1、y2、y3的值后,再进行比较大小.本题考查二次函数图象上的点的特征,解题的关键是求出各点的函数值,本题属于基础题型.19. 解:∵抛物线对称轴是直线x=−1,点B的坐标为(1,0),∴A(−3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴b2−4ac>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=−1时,y=a−b+c此时最小,为负数,故选项④正确;故答案为:①②④.利用二次函数对称性以及结合b2−4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断a−b+c的符号是解题关键.20. 解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(−1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=c2−bc+aca=c(a−b+c)a,∵当x=−1时,y=a−b+c=0,∴当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(−ca,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=−2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=c(a−b+c)a且a−b+c=0可判断④;由x=1时函数y取得最小值及b=−2a可判断⑤.本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.21. (1)设顶点式y=a(x−3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.22. (1)把已知点的坐标代入y =(m −2)x 2+(m +3)x +m +2可求出m 的值,从而得到抛物线解析式;(2)把(1)中的解析式配成顶点式,从而得到二次函数图象的顶点坐标和对称轴.本题考查了在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.23. 解:(1)∵函数y =−x 2+(m −1)x +m(m 为常数),∴△=(m −1)2+4m =(m +1)2≥0,则该函数图象与x 轴的公共点的个数是1或2,故选D ;(2)y =−x 2+(m −1)x +m =−(x −m−12)2+(m+1)24, 把x =m−12代入y =(x +1)2得:y =(m−12+1)2=(m+1)24, 则不论m 为何值,该函数的图象的顶点都在函数y =(x +1)2的图象上;(3)设函数z =(m+1)24,当m =−1时,z 有最小值为0;当m <−1时,z 随m 的增大而减小;当m >−1时,z 随m 的增大而增大,当m =−2时,z =14;当m =3时,z =4,则当−2≤m ≤3时,该函数图象的顶点坐标的取值范围是0≤z ≤4.(1)表示出根的判别式,判断其正负即可得到结果;(2)将二次函数解析式配方变形后,判断其顶点坐标是否在已知函数图象即可;(3)根据m 的范围确定出顶点纵坐标范围即可.此题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的图象与性质是解本题的关键.24. (1)把A 点和C 点坐标代入y =ax 2+bx +c 得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出a 、b 、c 即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;(2)①先分别计算出x 为−1和2时的函数值,然后根据二次函数的性质写出对应的函数值的范围;②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y <3时,x 的取值范围.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.25. (1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数b 、c 的值,进而可得到抛物线的对称轴方程;(2)令x =0,可得C 点坐标,将函数解析式配方即得抛物线的顶点C 的坐标;(3)设P(x,y)(x >0,y >0),根据题意列出方程即可求得y ,即得D 点坐标.此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S△ABP=4S△COE列出方程是解决问题的关键.26. (1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;本题考查抛物线与x轴的交点、待定系数法、翻折变换、平移变换、二次函数的最值问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.。
九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。
九年级数学上册第二十二章二次函数高频考点知识梳理(带答案)

九年级数学上册第二十二章二次函数高频考点知识梳理单选题1、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.2、函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()A.B.C.D.答案:D分析:先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.解:函数y=ax与y=ax2+a(a≠0)A. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数y=ax图形可得a>0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数y=ax图形可得a<0,则y=ax2+a(a≠0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D.小提示:本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.3、在平面直角坐标系中,若抛物线y=2(x+5)(x−3)经一次变换后得到抛物线y=2(x+3)(x−5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向上平移8个单位D.向下平移8个单位答案:B分析:先将两解析式化成顶点式,然后根据平移前后的两抛物线的顶点坐标即可解答.解:y=2(x+5)(x-3)=2x2+4x-30=2(x+1)2-32,顶点坐标是(-1,-32).y=2(x+3)(x-5)=2x2-4x-30=2(x-1)2-32,顶点坐标是(1,-32).所以将抛物线y=2(x+5)(x-3)向右平移2个单位长度得到抛物线y=2(x+3)(x-5).故选:B.小提示:本题主要考查了二次函数图像与平移变换,掌握平移的规律“左加右减,上加下减”是解答本题的关键.4、若y=(a﹣2)x2﹣3x+2是二次函数,则a的取值范围是()A.a≠2B.a>0C.a>2D.a≠0答案:A分析:根据二次函数的二次项系数不为0可得关于a的不等式,解不等式即得答案.解:由题意得:a−2≠0,则a≠2.故选:A.小提示:本题考查了二次函数的定义,属于基础题型,掌握二次函数的概念是关键.5、某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价x(元)之间的关系是y=-2x2+60x+800,则利润获得最多为()A.15元B.400元C.800元D.1250元答案:D分析:将函数关系式转化为顶点式,然后利用开口方向和顶点坐标即可求出最多的利润.解:y=-2x2+60x+800=-2(x-15)2+1250∵-2<0故当x=15时,y有最大值,最大值为1250即利润获得最多为1250元故选:D.小提示:此题考查的是利用二次函数求最值,掌握将二次函数的一般式转化为顶点式求最值是解决此题的关键.6、从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.则下列结论不正确的是()A.小球在空中经过的路程是40mB.小球运动的时间为6sC.小球抛出3s时,速度为0D.当t=1.5s时,小球的高度ℎ=30m答案:A分析:选项A、B、C可直接由函数图象中的信息分析得出答案;选项D可由待定系数法求得函数解析式,再将t=1.5s代入计算,即可作出判断.解:A、由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故选项A 错误;B、由图象可知,小球6s时落地,故小球运动的时间为6s,故选项B正确;C、小球抛出3秒时达到最高点,即速度为0,故选项C正确;D、设函数解析式为ℎ=a(t−3)2+40,将(0,0)代入得:0=a(0−3)2+40,解得a=−40,9∴函数解析式为ℎ=−40(t−3)2+40,9∴当t=1.5s时,ℎ=−40(1.5−3)2+40=30,9∴选项D正确.故选:A.小提示:本题考查了二次函数在物体运动中的应用,会用待定系数法求函数解析式并数形结合进行分析是解题的关键.7、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:设每月总利润为w,依题意得:w=y(x−50)=(−5x+550)(x−50)=−5x2+800x−27500=−5(x−80)2+4500∵−5<0,此图象开口向下,又x≥50,∴当x=80时,w有最大值,最大值为4500元.故选:B.小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.8、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当x>1时,y的值随x值的增大而增大答案:C分析:利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.解:设二次函数的解析式为y=ax2+bx+c,依题意得:{4a −2b +c =6c =−4a +b +c =−6 ,解得:{a =1b =−3c =−4, ∴二次函数的解析式为y =x 2−3x −4=(x −32)2−254,∵a =1>0,∴这个函数的图象开口向上,故A 选项不符合题意;∵△=b 2−4ac =(−3)2−4×1×(−4)=25>0,∴这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;∵a =1>0,∴当x =32时,这个函数有最小值−254<−6,故C 选项符合题意;∵这个函数的图象的顶点坐标为(32,−254),∴当x >32时,y 的值随x 值的增大而增大,故D 选项不符合题意;故选:C .小提示:本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.9、抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .−14B .14C .−4D .4答案:B分析:根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.解:∵y =x 2+x +c 与x 轴只有一个公共点,∴x 2+x +c =0有两个相等的实数根, ∴△=1-4c =0,解得:c =14.故选:B .小提示:此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.10、小嘉说:将二次函数y =x 2的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A.1个B.2个C.3个D.4个答案:D分析:根据二次函数图象的平移可依此进行求解问题.解:①将二次函数y=x2向右平移2个单位长度得到:y=(x−2)2,把点(2,0)代入得:y=(2−2)2=0,所以该平移方式符合题意;②将二次函数y=x2向右平移1个单位长度,再向下平移1个单位长度得到:y=(x−1)2−1,把点(2,0)代入得:y=(2−1)2−1=0,所以该平移方式符合题意;③将二次函数y=x2向下平移4个单位长度得到:y=x2−4,把点(2,0)代入得:y=22−4=0,所以该平移方式符合题意;④将二次函数y=x2沿x轴翻折,再向上平移4个单位长度得到:y=−x2+4,把点(2,0)代入得:y=−22+4=0,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D.小提示:本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.填空题11、某游乐场的圆形喷水池中心O有一雕塑OA,从点A向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=−1(x﹣5)2+66(1)雕塑高OA的值是____m;(2)落水点C,D之间的距离是____m.答案: 116##156 22 分析:(1)利用二次函数图象上点的坐标特征可求出点A 的坐标,进而可得出雕塑高OA 的值;(2)利用二次函数图象上点的坐标特征可求出点D 的坐标,进而可得出OD 的长度,由喷出的水柱为抛物线且形状相同,可得出OC 的长,结合CD =OC +OD 即可求出落水点C ,D 之间的距离;解:(1)当x =0时,y =−16×(0﹣5)2+6=116,∴点A 的坐标为(0,116),∴雕塑高116m . 所以答案是:116. (2)当y =0时,−16(x ﹣5)2+6=0,解得:x 1=﹣1(舍去),x 2=11,∴点D 的坐标为(11,0),∴OD =11m .∵从A 点向四周喷水,喷出的水柱为抛物线,且形状相同,∴OC =OD =11m ,∴CD =OC +OD =22m .所以答案是:22.小提示:本题考查了二次函数的应用,解题的关键是:(1)利用二次函数图象上点的坐标特征,求出点A 的坐标;(2)利用二次函数图象上点的坐标特征,求出点D 的坐标;.12、已知抛物线y =(x −1)(x −5)与x 轴的公共点坐标是A(x 1,0),B(x 2,0),则x 1+x 2=_______.答案:6分析:令y=0,可得(x−1)(x−5)=0,解出即可求解.解:∵抛物线y=(x−1)(x−5)与x轴的公共点坐标是A(x1,0),B(x2,0),令y=0,则(x−1)(x−5)=0,解得:x1=1,x2=5,∴x1+x2=1+5=6.所以答案是:6.小提示:本题主要考查了二次函数的图象与x轴的交点问题,熟练掌握二次函数的图象和性质是解题的关键.13、如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB间间隔0.2米的7根立柱)进行加固,若立柱EF的长为0.28米,则拱高OC为_____米答案:0.64分析:根据抛物线,建立直角坐标系,求出抛物线解析式,即可求得OC的长.解:如图,以点C为坐标系原点,OC所在直线为y轴,建立直角坐标系.设抛物线的解析式为y=ax2(a≠0),由题意可知:点A的横坐标为-0.8,点F的横坐标为-0.6,代入y=ax2(a≠0),有y F=(−0.6)2a=0.36a,y A=(−0.8)2a=0.64a,点A 的纵坐标即为OC 的长,∴0.36a +0.28=0.64a ,解得a =1,∴抛物线解析式为y =x 2,y A =(−0.8)2=0.64,故OC 的长为:0.64m .小提示:本题考查根据抛物线构建直角坐标系,解决实际问题,熟练掌握二次函数相关知识点是解题的关键.14、已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:答案:y =2x 2+2x −74 分析:将点(−1,−74),(0,−74),(1,94)代入y =ax 2+bx +c 中,进行计算即可得.解:将点(−1,−74),(0,−74),(1,94)代入y =ax 2+bx +c 中,得{ a −b +c =−74c =−74a +b +c =94解得,{a =2b =2c =−74,则二次函数的解析式为:y =2x 2+2x −74, 所以答案是:y =2x 2+2x −74. 小提示:本题考查了二次函数的性质,解题的关键是掌握待定系数法.15、如图,已知抛物线y =−2x 2+4x +6与x 轴相交于于点A ,B ,与y 轴的交于点C .点P(m ,n)在平面直角坐标系第一象限内的抛物线上运动,设ΔPBC 的面积为S .下列结论:①AB =4;②OC =6;③S 最大值=274,其中,正确结论的序号是________.(所有正确的序号都填上)答案:①②③分析:y=−2x2+4x+6中令y=0得:−2x2+4x+6=0,得A(-1,0),B(3,0),从而判断①;y=−2x2+4x+6中令x=0得:y=6,得C(0,6),从而判断②;过点P作PF//y轴,交BC于点F,求出BC的函数关系式,得出点P的坐标为(m,−2m2+4m+6),点F的坐标为(m,−2m+6),再列出S关于m的函数关系式,最后求出其最大值,从而判断③.∵抛物线y=−2x2+4x+6与x轴相交于于点A,B,∴令y=0得:−2x2+4x+6=0,解得:x1=−1,x2=3,∴A(-1,0),B(3,0),∴AB=4故①正确;∵抛物线y=−2x2+4x+6与y轴相交于于点C,∴令x=0得:y=6,∴C(0,6),∴OC=6,故②正确;过点P作PF//y轴,交BC于点F,如图1所示.设直线BC 的解析式为y =kx +c ,将B(3,0)、C(0,6)代入y =kx +c ,得{3k +c =0c =6 ,解得{k =−2c =6, ∴直线BC 的解析式为y =−2x +6.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴点P 的坐标为(m,−2m 2+4m +6),则点F 的坐标为(m,−2m +6),∴PF =−2m 2+4m +6−(−2m +6)=−2m 2+6m ,∴S =12PF ⋅OB =−3m 2+9m =−3(m −32)2+274, ∴当m =32时,ΔPBC 面积取最大值,最大值为274.故③正确,所以答案是:①②③.小提示:本题是二次函数综合题,考查了待定系数法求函数解析式,三角形的面积,二次函数的性质,坐标与图形的性质等知识,熟练运用方程思想及分类讨论思想是解题的关键.解答题16、跳绳是一项很好的健身活动,如图是小明跳绳运动时的示意图,建立平面直角坐标系如图所示,甩绳近似抛物线形状,脚底B 、C 相距20cm ,头顶A 离地175cm ,相距60cm 的双手D 、E 离地均为80cm .点A 、B 、C 、D 、E 在同一平面内,脚离地面的高度忽略不计.小明调节绳子,使跳动时绳子刚好经过脚底B 、C 两点,且甩绳形状始终保持不变.(1)求经过脚底B、C时绳子所在抛物线的解析式.(2)判断小明此次跳绳能否成功,并说明理由.答案:(1)y=110x2−90.(2)不成功,理由见解析分析:(1)建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),由双手D、E离地均为80cm,可得C 点坐标为:(10,−80),再利用待定系数法求解解析式即可;(2)由175−80=95>80,可得跳绳不过头顶A,从而可得答案.(1)解:建立如图所示的坐标系:结合题意可得:D(−30,0),E(30,0),∵双手D、E离地均为80cm.∴C点坐标为:(10,−80),设抛物线为:y=ax2−80,{0=900a+b−80=100a+b,解得:{a=110b=−90,所以抛物线为y=110x2−90.(2)解:∵y=0.1x²-90,∴顶点为(0,-90).即跳绳顶点到手的距离是90cm,∵175−90=85>80,∴跳绳不过头顶A,∴小明此次跳绳能不成功.小提示:本题考查的是二次函数的实际应用,理解题意,建立合适的坐标系是解本题的关键.17、如图,抛物线的顶点为A(h,-1),与y轴交于点B(0,−12),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.答案:(1)y=18(x−2)2−1;(2)见解析;(3)2√2+6,(4,−12)分析:(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可.(2)由题意P(m,18m2−12m−12),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值=√22+22=2√2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.解:(1)设抛物线的函数解析式为y=a(x−ℎ)2+k,由题意,抛物线的顶点为A(2,−1),∴y=a(x−2)2−1.又∵抛物线与y轴交于点B(0,−12)∴−12=a(0−2)2−1∴a=18∴抛物线的函数解析式为y=18(x−2)2−1(2)证明:∵P(m,n),∴n=18(m−2)2−1=18m2−12m−12,∴P(m,18m2−12m−12),∴d=18m2−12m−12−(−3)=18m2−12m+52,∵F(2,1),∴PF=√(m−2)2+(18m2−12m−12−1)2=√164m4−18m3+78m2−52m+254,∵d2=164m4−18m3+78m2−52m+254,PF2=164m4−18m3+78m2−52m+254,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值=√22+22=2√2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为6,∴△DFQ的周长的最小值为2√2+6,此时Q(4,-1).2小提示:本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题.18、某宾馆有240间标准房,当标准房价格150元时,每天都客满,市场调查表明,当房价在150~225元之间(含150元,225元)浮动时,每提高25元,日均入住客房数减少20间.如果不考虑其它因素,宾馆将标准房价格提高到多少元时,客房的日营业收入最大?答案:每间租金225元时,客房租金总收入最高,日租金40500元分析:首先设宾馆客房租金每间日租金提高x个25元,以及客房租金总收入为y,建立y与x的关系式,并通过二次函数求解最大值.解:设宾馆客房租金每间日租金提高x个25元,将有20x间客房空出,客房租金总收入为y.由题意可得:y=(150+25x)(240−20x)=−500x2+3000x+36000=−500(x−3)2+40500当x=3时,y最大值=40500.因此每间租金150+25×3=225元时,客房租金总收入最高,日租金40500元.小提示:本题考查根据实际问题选择函数类型,通过实际问题,抽象出函数模型,并通二次函数计算最大值,考查对知识的综合运用能力,属于中档题.。
人教版九年级数学上册第22章二次函数 单元综合测试题(含解析)

2022-2023学年人教版九年级数学上册《第22章二次函数》单元综合测试题(附答案)一、选择题(本大题共12小题,共36分)1.下列函数中不属于二次函数的是()A.y=(x+1)(x﹣2)B.y=(x+1)2C.y=2(x+2)2﹣2x2D.y=1﹣x22.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+2 3.已知抛物线y=x2﹣x+1,与x轴的一个交点为(m,0),则代数式m2﹣m+2022的值为()A.2020B.2021C.2022D.20234.将抛物线y=2(x﹣4)2﹣1先向右平移4个单位长度,再向下平移2个单位长度,平移后所得抛物线解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣35.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A.x=1B.x=﹣1C.x=﹣3D.x=36.二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)7.已知抛物线y=a(x﹣2)2+k(a>0,a,k为常数),A(﹣3,y1)B(3,y2)C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依序排列为()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.9.抛物线y=﹣x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.x<﹣4或x>1B.x<﹣3或x>1C.﹣4<x<1D.﹣3<x<1 10.已知二次函数y=ax2+bx+c的图象如图所示,则下列说法正确的是()A.ac<0B.b<0C.b2﹣4ac<0D.a+b+c<0 11.若二次函数y=ax2+bx+c(a<0)图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值612.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0二、填空题(本大题共6小题,共24分)13.顶点为(﹣2,﹣5)且过点(1,﹣14)的抛物线的解析式为.14.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.15.把二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,则y=ax2+bx+c图象顶点坐标是.16.如图,一为运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+x+,此运动员将铅球推出m.17.是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图建立平面直角坐标系,则抛物线的关系式是.18.如图,线段AB=8,点C是AB上一点,点D、E是线段AC的三等分点,分别以AD、DE、EC、CB为边作正方形,则AC=时,四个正方形的面积之和最小.三、解答题(本大题共7小题,共60分)19.如图,二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象写出A、B、C三点的坐标,并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴.20.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出方程ax2+bx+c<0时x的取值范围;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△P AB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.22.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?23.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?24.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,﹣m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是直线x=﹣)25.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案一、选择题(本大题共12小题,共36分)1.解:A、y=(x+1)(x﹣2)是二次函数,故此选项不合题意;B、y=(x+1)2是二次函数,故此选项不合题意;C、y=2(x+2)2﹣2x2=8x+8不是二次函数,故此选项符合题意;D、y=1﹣x2是二次函数,故此选项不合题意;故选:C.2.解:y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2.故选:D.3.解:∵抛物线y=x2﹣x+1与x轴的一个交点为(m,0),∴m2﹣m+1=0,∴m2﹣m+2022=m2﹣m+1+2021=2021.故选:B.4.解:抛物线y=2(x﹣4)2﹣1的顶点坐标为(4,﹣1),∵向右平移4个单位长度,再向下平移2个单位长度,∴平移后的函数图象的顶点坐标为(8,﹣3),∴平移后所得抛物线解析式为y=2(x﹣8)2﹣3,故选:D.5.解:∵﹣1,3是方程a(x+1)(x﹣3)=0的两根,∴抛物线y=a(x+1)(x﹣3)与x轴交点横坐标是﹣1,3,∵这两个点关于对称轴对称,∴对称轴是直线x==1.故选:A.6.解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.7.解:抛物线y=a(x﹣2)2+k(a>0,a,k为常数)的对称轴为直线x=2,所以A(﹣3,y1)到直线x=2的距离为5,B(3,y2)到直线x=2的距离为1,C(4,y3)到直线的距离为2,所以y2<y3<y1.故选:C.8.解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a>0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选:B.9.解:函数的对称轴为:x=﹣1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(﹣3,0),故:y<0时,x<﹣3或x>1,故选:B.10.解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴c>0,∴ac>0,A错误;∵﹣>0,a>0,∴b<0,∴B正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,C错误;当x=1时,y>0,∴a+b+c>0,D错误;故选:B.11.解:由二次函数的图象可知,∵﹣5≤x≤0,∴当x=﹣2时函数有最大值,y最大=6;当x=﹣5时函数值最小,y最小=﹣3.故选:B.12.解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选:B.二、填空题(本大题共6小题,共24分)13.解:设顶点式y=a(x+2)2﹣5,将点(1,﹣14)代入,得a(1+2)2﹣5=﹣14,解得a=﹣1,∴y=﹣(x+2)2﹣5,即y=﹣x2﹣4x﹣9.14.解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.15.解:y=2(x﹣1)2的顶点坐标为(1,0),∵二次函数y=ax2+bx+c的图象向右平移2个单位后,再向上平移3个单位后得到y=2(x﹣1)2,∴二次函数y=ax2+bx+c的解析式为:y=2(x+1)2﹣3,∴二次函数y=ax2+bx+c的顶点坐标为(﹣1,﹣3),故答案为:(﹣1,﹣3).16.解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.故答案为:10.17.解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(﹣2,﹣2)点,故﹣2=4a,a=﹣,故y=﹣.18.解:设AC为x,四个正方形的面积和为y.则BC=8﹣x,AD=DE=EC=,∴y=3×()2+(8﹣x)2=x2﹣16x+64=,∴x=﹣=6时,四个正方形的面积之和最小.故答案为6.三、解答题(本大题共7小题,共60分)19.解:(1)根据二次函数的图象可知:A(﹣1,0),B(0,﹣3),C(4,5),把A(﹣1,0),B(0,﹣3),C(4,5)代入y=ax2+bx+c可得,解得.即二次函数的解析式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=y=(x﹣1)2﹣4,∴此抛物线的顶点坐标(1,﹣4),和对称轴x=1.20.解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为x=2,开口向下,即当x>2时,y随x的增大而减小;(4)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.21.解:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴y=(x﹣1)2﹣4令y=0得(x﹣1)2﹣4=0令y=0得(x﹣1)2﹣4=0解得x1=3,x2=﹣1∴A(﹣1,0),B(3,0)(2)∵△P AB与△MAB同底,且S△P AB=S△MAB,∴|y P|=×4=5,即y P=±5又∵点P在y=(x﹣1)2﹣4的图象上∴y P≥﹣4∴y P=5,则(x﹣1)2﹣4=5,解得x1=4,x2=﹣2∴存在合适的点P,坐标为(4,5)或(﹣2,5).22.解:(1)∵矩形的一边为x米,周长为16米,∴另一边长为(8﹣x)米,∴S=x(8﹣x)=﹣x2+8x,其中0<x<8;(2)能,∵设计费能达到24000元,∴当设计费为24000元时,面积为24000÷2000=12(平方米),即﹣x2+8x=12,解得:x=2或x=6,∴设计费能达到24000元.(3)∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S最大值=16,∴当x=4米时,矩形的最大面积为16平方米,设计费最多,最多是32000元.23.解:(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.24.解:(1)设二次函数的解析式为y=a(x﹣2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=﹣.所以二次函数的解析式为y=﹣(x﹣2)2+1;(2)∵抛物线y=﹣(x﹣2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴△AOB的面积=×4×1=2;(3)∵点P(m,﹣m)(m≠0)为抛物线y=﹣(x﹣2)2+1上一点,∴﹣m=﹣(m﹣2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,﹣8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(﹣4,﹣8).25.解:(1)∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).(2)当x=0时,y=﹣x2+x+4=4,∴点C的坐标为(0,4).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,4)代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为(x,﹣x2+x+4)(0<x<8),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),如图所示.∴PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,∴S△PBC=PD•OB=×8•(﹣x2+2x)=﹣x2+8x=﹣(x﹣4)2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.(3)设点M的坐标为(m,﹣m2+m+4),则点N的坐标为(m,﹣m+4),∴MN=|﹣m2+m+4﹣(﹣m+4)|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点M的坐标为(2,6)或(6,4);当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).综上所述:M点的坐标为(4﹣2,﹣1)、(2,6)、(6,4)或(4+2,﹣﹣1).。
九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
人教版 九年级数学(上)二次函数 专项练习1 【含答案】

人教版 九年级数学(上)二次函数 专项练习1一、选择题(本大题共10道小题)1. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是()A.没有交点B.只有一个交点C.有且只有两个交点D.有且只有三个交点2. 关于抛物线y =x 2﹣(a+1)x+a﹣2,下列说法错误的是( )A .开口向上B .当a =2时,经过坐标原点OC .不论a 为何值,都过定点(1,﹣2)D .a >0时,对称轴在y 轴的左侧3. 二次函数y =x 2-2x +4化为y =a(x -h)2+k 的形式,下列正确的是( )A. y =(x -1)2+2B. y =(x -1)2+3C. y =(x -2)2+2D. y =(x -2)2+44. 对称轴是直线的抛物线是( )2-=x A. B. C. D. 22+-=x y 22+=x y 2)2(21+=x y 2)2(3-=x y 5.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b ;④b 2-4ac>0,其中正确的个数是( )A. 1 B. 2 C. 3 D. 46.函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根7. 若二次函数y =ax 2-2ax +c 的图象经过点(-1,0),则方程ax 2-2ax +c =0的解为( )A. x 1=-3,x 2=-1B. x 1=1,x 2=3C. x 1=-1,x 2=3D. x 1=-3,x 2=18.已知二次函数y =ax 2﹣2ax+3(a >0),当0≤x≤m时,3﹣a≤y≤3,则m 的取值范围为( )A .0≤m≤1B .0≤m≤2C .1≤m≤2D .m≥29.已知二次函数y =(x -h)2+1(h 为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或310. 如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为t(s),△OEF的面积S(cm 2),则S(cm 2)与t(s)的函数关系可用图象表示为( )二、填空题(本大题共10道小题)11. 二次函数的图象关于原点O (0,322--=x x y 0)对称的图象的解析式是_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学课题二次函数综合问题方法与解析
教学过程题型一:二次函数中的最值问题(重点掌握)
例1:如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
方法提炼:已知一条直线上一动点M和直线同侧两个固定点A、B,求AM+BM最小值的问题,我们只需做出点A关于这条直线的对称点A’,将点B与A’连接起来交直线与点M,那么A’B就是AM+BM的最小值。
同理,我们也可以做出点B关于这条直线的对称点B’,将点A与B’连接起来交直线与点M,那么AB’就是AM+BM的最小值。
应用的定理是:两点之间线段最短。
A A
B B
M 或者M
A’B’
练习:如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.
(1)求抛物线的解析式.
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
提示:因为△BNC的面积不好直接求,将△BNC的面积分解为△MNC和△MNB的面积和。
然后将△BNC的面积表示出来,得到一个关于m的二次函数。
此题利用的就是二次函数求最值的思想,当二次函数的开口向下时,在顶点处取得最大值;当二次函数的开口向上时,在顶点处取得最小值。
题型二:二次函数与三角形的综合问题
例2:如图,已知:直线3+
y交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c
-
=x
经过A、B、C(1,0)三点.
(1)求抛物线的解析式;
(2)若点D的坐标为(-1,0),在直线3+
=x
y上有一点P,使ΔABO与ΔADP
-
相似,求出点P的坐标;
方法提炼:求一点使两个三角形相似的问题,我们可以先找出可能相似的三角形,一般是有几种情况,需要分类讨论,然后根据两个三角形相似的边长相似比来求点的坐标。
练习:如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过点A.O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
方法提炼:求一动点使三角形成为等腰三角形成立的条件,这种题型要用分类讨论的思想。
因为要使一个三角形成为等腰三角形,只要三角形的任意两个边相等就可以,所以应该分三种情况来讨论。
题型三:二次函数与四边形的综合问题
例6:综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A.B 两点,与y轴交于点C,点D是该抛物线的顶点.
(1)求直线AC的解析式及B,D两点的坐标;
(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A.P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.
(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.
方法提炼:求一动点使四边形成为平行四边形成立的条件,这种题型要用分类讨论的思想,一般需要分三种情况来讨论。
题型四:二次函数与圆的综合问题
例7:如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线233
y x bx c =-
++过A 、B 两点. (1)求抛物线的解析式;
(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;。