北京市西城区2019—2020学年度第二学期期末试卷答版
北京市西城区 2019—2020 学年度第二学期期末试卷

北京市西城区2019—2020学年度第二学期期末试卷 高二化学参考答案 第1页(共2页)北京市西城区2019 — 2020学年度第二学期期末试卷高二化学参考答案 2020.7第一部分 选择题(每题2分,共50分)1 2 3 4 5 6 7 8 9 10 11 12 13 A A A C D A C D D D B B A 14 15 16 17 18 19 20 21 22 23 24 25 BDCBDBBDCDAB第二部分 非选择题(共50分)26.(8分)(1)①;③;②;④ ;⑦;⑨(每空1分) (2)②与③;(1分)⑧与⑨ (1分) 27.(6分)(1)2CH 3CH 2CH 2OH + O 2 2CH 3CH 2CHO + 2H 2O(2)氧化反应(3)CH 3CH 2CO 18OCH 2CH 2CH 3 28. (6分)(1)NaOH 乙醇溶液,加热 (2)Br 2(其他答案合理给分) (3)29. (6分)(1)C 10H 8O 3 (2)酯基 (3)3 30.(8分)(1)D (或四氯化碳) (2)有浅黄色沉淀(3)① 除去未反应的Br 2 ; ③蒸馏Cu △北京市西城区2019—2020学年度第二学期期末试卷 高二化学参考答案 第2页(共2页)31. (6分)(1)CH 3CHO + 2Ag(NH 3)2OHCH 3COONH 4 + 2Ag↓ + 3NH 3 + H 2O (2)C 2H 2 + CH 3COOHCH 3COOCH =CH 2(3)32.(10分)(1)CH 2=CHCH 2OH(2) CHOH |CH 2OH |CH 2OH +CH 2=CHCOOH+H 2O或CHOH |CH 2OH |CH 2OH +CH 2=CHCOOH+H 2O(3)(其他答案合理给分)催化剂浓H 2SO 4△ 浓H 2SO 4 △。
北京市西城区2019—2020学年度高一第二学期期末试卷及答案

北京市西城区2019—2020学年度第二学期期末试卷高一数学 2020.7本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共50分)一、选择题共10小题,每小题5分,共50分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)下列各角中,与27︒角终边相同的是 (A )63︒ (B )153︒ (C )207︒(D )387︒(2)圆柱的母线长为5cm ,底面半径为2cm ,则圆柱的侧面积为 (A )220cm π (B )210cm π (C )228cm π (D )214cm π(3)sin()2απ+= (A )sin α (B )cos α (C )sin α-(D )cos α-(4)设(,)α∈-ππ,且1cos 2α=-,则α=(A )2π3-或2π3 (B )π3-或π3(C )π3-或2π3(D )2π3-或π3(5)设a ,b 均为单位向量,且14⋅=a b ,则2+=|a b |(A )3 (B (C )6(D )9(6)下列四个函数中,以π为最小正周期,且在区间(0,)2π上为增函数的是(A )sin 2y x = (B )cos2y x = (C )tan y x =(D )sin 2xy =(7)向量a ,b 在正方形网格中的位置如图所示,则,〈〉=a b(A )45︒ (B )60︒ (C )120︒ (D )135︒(8)设(0,)αβ,∈π,且αβ>,则下列不等关系中一定成立的是 (A )sin sin αβ< (B )sin sin αβ> (C )cos cos αβ<(D )cos cos αβ>(9) 将函数()sin 2f x x =的图像向右平移π(0)2ϕϕ<≤个单位,得到函数()g x 的图像.在同一坐标系中,这两个函数的部分图像如图所示,则ϕ=(A )π6 (B )π4(C )π3(D )π2(10)棱锥被平行于底面的平面所截,得到一个小棱锥和一个棱台.小棱锥的体积记为y , 棱台的体积记为x ,则y 与x 的函数图像为(A ) (B ) (C ) (D )第二部分(非选择题 共100分)二、填空题共6小题,每小题4分,共24分。
北京市西城区2019—2020学年度第二学期期末试卷高二数学答案

北京市西城区2019—2020学年度第二学期期末试卷高二数学参考答案及评分标准 2020.7一、选择题共10小题,每小题4分,共40分。
(1)D (2)B (3)C (4)A (5) C(6)C(7)B(8)D(9)B(10)B二、填空题共6小题,每小题5分,共30分。
(11)(12)40(13)45(14)1(15)3()1f x x =+(答案不唯一) (16) ②④注:第16小题只选对一个正确命题得2分,错选不得分.三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(17)(本小题满分13分)解:(Ⅰ) 因为3()3f x x x =-,所以2()33f x x '=-. ………………3分令()0f x '=,解得11x =-,21x =.随着x 的变化,()f x ',()f x 变化情况如下表:x(,1)-∞- 1- (1,1)- 1 (1,)+∞()f x ' +-+()f x极大值 极小值………………8分所以,函数()f x 的单调递增区间为(,1)-∞-和(1,+)∞,单调递减区间为(1,1)-.………………9分(Ⅱ) 因为函数()f x 在区间[1,1]-上单调递减,在区间[1,3]上单调递增,又(1)2f -=,(1)2f =-,(3)18f =, ………………11分 所以,函数()f x 在区间[1,3]-上的最大值为18,最小值为2-. ………………13分(18)(本小题满分13分)解:(Ⅰ)设A =“连续射击3次,中29环”.则 223()0.25(0.2)P A C =⋅⋅ ………………4分0.03=所以该射手命中29环的概率为0.03. ………………5分(Ⅱ)设B =“连续射击3次,命中不少于28环”,依题意,命中30环的概率为3(0.2)0.008=; ………………7分 命中28环的概率为2222330.15(0.2)(0.25)0.2C C ⋅⋅+⋅⋅ ………………11分0.0180.03750.0555=+=; ………………12分由(1)知,命中29环的概率为0.03;所以 ()0.0080.05550.030.0935P B =++=, ………………13分 所以该射手连续射击3次,命中不少于28环的概率为0.0935.(19)(本小题满分13分)解:(Ⅰ)当1a =时,()ln f x x x =-,所以11()1x f x x x-'=-=. ………………3分 所以(1)0f '=,又因为(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为1y =. …………5分 (Ⅱ)由已知,()1a x af x x x-'=-=,(0,)x ∈+∞.① 当0a <时,()0f x '>,函数()f x 在定义域内是增函数,不存在极值. ………………7分 ② 当0a >时,令()0f x '=,解得x a =. 随着x 的变化,()f x ',()f x 变化情况如下表:x(0,)aa (,)a +∞()f x ' -0 +()f x极小值………………9分所以,函数()f x 在区间(0,)a 上单调递减,在区间(,)a +∞上单调递增,…………10分 所以,函数()f x 的极小值点为x a =,极小值为()ln f a a a a =-, …………12分 函数()f x 不存在极大值. ………………13分综上,当0a <时,函数()f x 没有极值;当0a >时,()f x 有极小值ln a a a -,极小值点为x a =,无极大值. (20)(本小题满分14分)解:(Ⅰ)设A =“从样本中随机选1人,该学生选择了化学”,则 17121074501(),1001002P A ++++===所以,从样本中随机选1人,该学生选择了化学的概率为12. ………………4分(Ⅱ) 第8、9、10组共有11人,其中选择政治的有6人.所以X 的所有可能取值为0,1,2. ………………5分252112(0)11C P X C ===, ………………6分11562116(1)11C C P X C ===, ………………7分262113(2)11C P X C ===. ………………8分………………9分故X 的期望26312()0+1211111111E X =⨯⨯+⨯=. ………………11分 (Ⅲ) 选择地理的总人数为: 20141210975279+++++++=.所以P (“同时选择生物”)14+12+9+237==7979; P (“同时选择化学”)12+10+729==7979; P (“同时选择政治”)20222==7979+;P (“同时选择物理”)109524==7979++;P (“同时选择历史”)=20147546==7979+++. ………………13分因为4679最大,所以一个学生选择了地理,同时选择历史的可能性最大. …………14分 (21)(本小题满分13分)解:(Ⅰ)当0a =时,()e 1x f x x =--,所以()e 1x f x '=-. ………………1分解()0f x '>,得0x >;解()0f x '<,得0x <.所以()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增, ………………3分 所以()f x 的最小值为(0)0f =,所以()0f x ≥. ………………5分(Ⅱ) 因为2()e 12xa f x x x =---,所以()e 1x f x ax '=--.设()e 1x g x ax =--,则曲线()y f x =的切线斜率不存在最小值等价于()g x 不存在最小值. ……………7分()e x g x a '=-.① 当0a ≤时,()0g x '>恒成立,所以()g x 在区间(,)-∞+∞上单调递增,不存在最小值,所以0a ≤符合题意. ………………9分 ② 当0a >时,解()0g x '>,得ln x a >;解()0g x '<,得ln x a <.所以()g x 在区间(,ln )a -∞上单调递减,在区间(ln ,)a +∞上单调递增,……………10分 所以()g x 在ln x a =处取得最小值,所以0a >不符合题意. ………………12分 综上, a 的取值范围为{0}a a ≤. ………………13分(22)(本小题满分14分)解:(Ⅰ)函数()f x 定义域为{|0}x x >,11()ax f x a x x+'=+=. ① 当0a ≥时,()0f x '>恒成立,函数()f x 的单调递增区间为(0,)+∞. ……………2分 ② 当0a <时,解()0f x '>,得10x a <<-;解()0f x '<,得1x a>-.所以()f x 的单调递增区间为1(0,a -,单调递减区间为1(,)a-+∞. ………………4分综上,当0a ≥时,()f x 单调递增区间为(0,)+∞;当0a <时,()f x 的单调递增区间为1(0,a -,单调递减区间为1(,)a-+∞.(Ⅱ)证法1:由已知1()e ln x g x x ax a -=--+,0x >.因为(1)1g =,所以只需证明()g x 存在最小值,但1x =不是最小值点,即min ()(1)1g x g <=. ……6分因为e ()ln e x g x x ax a =--+,所以11()e x g x a x-'=--.因为函数1e x y -=,1y x=-在区间(0,)+∞上是增函数,所以()g x '在区间(0,)+∞上是增函数, ………………8分因为1a >,所以(1)0g a '=-<,11(1ln(1))1101ln(1)1ln(1)g a a a a a '++=+--=->++++.所以方程()0g x '=在区间(0,)+∞上存在唯一解, ………………10分 不妨设为0x ,则01x >,随着x 的变化,()g x ',()g x 变化情况如下表:x0(0,)x 0x 0(,)x +∞()g x ' -+()g x极小值所以()g x 有最小值,最小值为0()(1)1g x g <=. ………………13分 所以函数1()e ()x g x f x -=-存在最小值,且最小值小于1. ………………14分 证法2: 由已知1e ()eln ln exx g x x ax a x ax a -=--+=--+,0x >.所以11()e x g x a x-'=--, 因为1e x y -=,1y x=-在区间(0,)+∞上是增函数, 所以()g x '在(0,)+∞上是增函数, ………………6分因为1a >,所以(1)0g a '=-<,1(1ln(1))101ln(1)g a a a a '++=+-->++.所以方程()0g x '=存在唯一解, ………………8分 不妨设为0x ,则01x >,随着x 的变化,()g x ',()g x 变化情况如下表:x0(0,)x 0x 0(,)x +∞()g x ' -+()g x极小值 所以01min000()()e ln x g x g x x ax a -==--+,且0101e x a x --=. ………………10分所以0011min 0001()2e ln e 1x x g x x x x --=--+-,01x >. 设111()2e ln e 1x x h x x x x--=--+-, 11122111()=e e (1)(e )x x x h x x x x x x---'--+=-+, 当1x >时,()0h x '<,所以()h x 在区间(1,)+∞上单调递减. ………………12分 所以当1x >时,()(1)1h x h <=,即()g x 的最小值小于1, ………………13分 所以函数()g x 存在最小值,且最小值小于1. ………………14分。
精品解析:北京市西城区2019-2020学年高一下学期期末数学试题(解析版)

∴ ,
故答案为:
【点睛】本小题主要考查三角函数的对称性,属于基础题.
13.向量 , 满足 , .若 ,则实数 ______.
【答案】1
【详细解析】
【详细分析】
根据平面向量数量积的运算法则,可列出关于λ的方程,解之即可.
【答案】(1)答案见详细解析;(2) .
【详细解析】
【详细分析】
(1)在正方形 中,直线 与直线 相交,设 ,连接 ,可证 平面 且 平面 ,得到平面 平面 ;
(2)设 ,连接 ,证明 ,则平面 将正方体分成两部分,其中一部分是三棱台 .设正方体 的棱长为2.求出棱台 的体积,由正方体体积减去棱台体积可得另一部分几何体的体积作比得答案.
③ 的值域是 .
其中,正确结论的序号是______.
【答案】②③
【详细解析】
【详细分析】
判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③.
【详细详细解析】函数 ,
①由于 ,所以 是非奇非偶函数,所以①不正确;
② ,可得 , , ,所以函数有且仅有3个零点;所以②正确;
③函数 , 的值域是 ,正确;
∴ .
∵正三棱锥的三个侧面是全等的等腰三角形,
∴正三棱锥 的侧面积是 .
∵正三棱锥的底面是边长为2的正三角形,∴ .
则正三棱锥 的表面积为 ;
(2)连接 ,设O为正三角形 的中心,则 底面 .
且 .
在 中, .
∴正三棱锥 的体积为 .
【点睛】本小题主要考查锥体的表面积和体积的求法,属于中档题.
19.在 中,角A,B,C所对的边分别为a,b,c,且 , .
北京市西城区2019-2020学年数学高二下期末考试试题含解析

北京市西城区2019-2020学年数学高二下期末考试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z 满足()12z i i +=,则复数z 在复平面内对应点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】把已知变形等式,再由复数代数形式的乘除运算化简得答案. 【详解】 由()12z i i +=,得()122=1255i i ii z i -+==+, ∴复数z 在复平面内对应的点的坐标为2155⎛⎫⎪⎝⎭,,在第一象限. 故选:A . 【点睛】本题考查复数的代数表示法及其几何意义,属于基础题.2.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且124F PF π∠=,则椭圆和双曲线的离心率乘积的最小值为( ) A .12B.2C .1 D【答案】B 【解析】设椭圆的长半轴长为1a ,双曲线的实半轴常为2a 1211222{2PF PF a PF PF a +=⇒-= 1PF ⇒=12,a a +212PF a a =-222121212124()()2()()cos4c a a a a a a a a π⇒=++--+-⇒2221111124(2(24c a a =+-⇒=≥=⇒122e e ≥,故选B. 3.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确..的是( )A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°【答案】B【解析】【分析】“至少有一个”的否定变换为“一个都没有”,即可求出结论.【详解】“三角形的内角中至少有一个不大于60°”时,反设是假设三内角都大于60 .故选:B.【点睛】本题考查反证法的概念,注意逻辑用语的否定,属于基础题.4.已知,则函数的单调递减区间为( ).A.B.C.D.【答案】B【解析】【分析】求出函数的定义域,并对该函数求导,解不等式,将解集与定义域取交集得出函数的单调递减区间。
北京市西城区2019—2020学年度八年级第二学期期末试卷(含答案)

北京市西城区2019—2020学年度第二学期期末试卷一、基础·运用(共14分)中国人使用筷子,是一桩值得骄傲和推崇的事。
一双筷子,蕴含着中国人独特的文明气息。
初二语文组开展了“筷子的前世今生——探寻筷子文化”主题学习活动,请你完成下列任务。
1.下面是一位同学搜集的材料。
阅读材料,完成(1)-(4)题。
(共8分) 中国是筷子的发源地,中国人用筷子进餐至少有3000年的历史。
筷子在世界各受到我国影响,筷子文化也fú( )射到日本、越南、韩国和朝鲜等国家。
筷子最初叫“箸(zh ù)”或“梜(ji ā)”,到了宋代才开始有“筷子”的称呼。
古人讲究忌讳,因“箸”与“住”谐音, 【甲】 听着有“停滞不前”的意思, 【乙】 故谓不吉利之语,特别是对于行船的人更是讳言,所以古人便反其意改“住”为“快”;加之筷子多以竹子为材料,所以又在“快”字上冠以“竹”字头而名“筷”,寄寓了人们对美好生活的向往。
民以食为天��轻便灵巧的筷子被人们餐餐使用,筷子文化逐渐融化在中国人的血液里。
中央电视台曾拍过一个主题�为��筷子��的春节公益宣传片,通过八个不同地域的家庭在除夕使用筷子的故事,揭示了筷子所蕴含的丰富的传统文化和中国人特有的�r én q ín ɡ sh ì ɡù( ),令人感动。
�方寸之中有乾坤。
小小的筷子承载着中华民族几千年来深厚的文化内涵,是华夏其实/相辅相成)。
(1)根据拼音依次所填的汉字和给加点字注音全都正确的一项是(2分)A .幅射 人情世故 z àiB .辐射 人情是故 z ǎiC .辐射 人情世故 z àiD .幅射 人情是故 z ǎi(2)结合上下文,文中所应填入成语正确的一项是(2分)A.独树一帜相辅相成 B.叹为观止相辅相成C.叹为观止名副其实 D.独树一帜名副其实(3)文中方框处�依次填入标点全都正确的一�项是(2分)A.句号引号 B.冒号引号C.句号书名号 D.冒号书名号(4)下面语句是从文中第二段抽取出来的,它在文中原本的位置是(2分)不符合人们祈望兴旺发达的民族心理,【甲】【乙】2.下列有关“筷子”的表述中没有语病的一项是(2分)A.研究者们之所以认为筷子起源于中国,是因为在安阳殷墟曾出土了6支青铜箸头的原因。
北京市西城区2019-2020学年高二下学期期末考试数学试题 含解析

北京市西城区2019-2020学年高二下学期期末考试数学试题一、选择题1. 在复平面内,复数1i +的共轭复数所对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限 【答案】D求出复数的共轭复数,即可得出对应点所在象限. 【详解】复数1i +的共轭复数为1i -,∴其对应的点()1,1-位于第四象限.故选:D.【点睛】本题考查复数的几何意义,属于基础题.2. 函数y =1x =处的瞬时变化率为( )A. 2B.12C. 12-D. 1【答案】B函数在某点处的瞬时变化率即为函数在改点的导数值,求导得解 【详解】,y x y '=∴=,112x y =∴='所以函数y =1x =处的瞬时变化率为12故选:B【点睛】本题考查函数在某点处的导数值,属于基础题. 3. 4(1)x +的展开式中2x 的系数是( ) A. 8 B. 7C. 6D. 4【答案】C根据二项式定理展开式的通项公式,令2r 即可得出答案.【详解】4(1)x +的展开式中,14,(0,1,2,3,4)r r r r T x +==,令2r,2x ∴的系数为246C =.故选:C .【点睛】本题考查二项式定理的应用,考查推理能力与计算能力,属于基础题. 4. 曲线2y x=在点()1,2Q 处的切线方程为( ) A. 240x y +-= B. 240x y ++= C. 10x y -+= D. 10x y +-=【答案】A求出函数在1x =处的导数值,即切线斜率,即可求出切线方程. 【详解】2y x =,22y x'∴=-, 当1x =时,2y '=-,故切线斜率为2-,∴切线方程为()221y x -=--,即240x y +-=.故选:A.【点睛】本题考查利用导数求切线方程,属于基础题.5. 某批数量很大的产品的次品率为p ,从中任意取出4件,则其中恰好含有3件次品的概率是( ) A. 3p B. 3(1)p p -C. 334(1)C p p -D. 334C p【答案】C根据独立重复试验的概率计算公式,由题中条件,可直接得出结果. 【详解】由题意,从这批产品中任取4件,所得次品数记作X , 则X 服从二项分布,即()4,XB p ,所以从中任意取出4件,则其中恰好含有3件次品的概率是()3343(1)P X C p p ==-. 故选:C.【点睛】本题主要考查求独立重复试验对应的概率,属于基础题型.6. 已知某一随机变量ξ的概率分布列如图所示,且E(ξ)=6.3,则a 的值为( )A. 5B. 6C. 7D. 8【答案】C分析:先根据分布列概率和为1得到b 的值,再根据E(X)=6.3得到a 的值. 详解:根据分布列的性质得0.5+0.1+b=1,所以b=0.4.因为E(X)=6.3,所以4×0.5+0.1×a+9×0.4=6.3, 所以a=7. 故答案为C.点睛:(1)本题主要考查分布列的性质和随机变量的期望的计算,意在考查学生对这些知识的掌握水平.(2) 分布列的两个性质:①0i P ≥,1,2,3,,,i n =;②121n P P P ++++=.7. 已知函数()cos sin f x x x x =-,则2f π⎛⎫' ⎪⎝⎭的值为( ) A.2πB. 2π-C. 1-D.π-【答案】B根据基本初等函数的导数公式及导数的运算法求出函数的导数,再代入计算即可; 【详解】因为()cos sin f x x x x =-所以()()cos cos cos cos sin cos sin f x x x x x x x x x x x x '''=+-=--=-所以sin 2222f ππππ⎛⎫'=-=- ⎪⎝⎭故选:B【点睛】本题考查基本初等函数的导数计算,属于基础题.8. 已知函数()f x 和()g x 的导函数()f x '、()g x '图象分别如图所示,则关于函数()()=-y g x f x 的判断正确的是( )A. 有3个极大值点B. 有3个极小值点C. 有1个极大值点和2个极小值点D. 有2个极大值点和1个极小值点【答案】D根据题中图像可知,()f x '、()g x '的图像有三个不同交点,其交点横坐标按从小到大的顺序,依次记为1x 、2x ,3x ,其中20x =;结合题中函数图像,判定函数()()=-y g x f x 的单调性,进而可得极值点.【详解】由题中图像可知,()f x '、()g x '的图像有三个不同交点,其交点横坐标按从小到大的顺序,依次记为1x 、2x ,3x ,其中20x =,由图像可得,当1x x <时,()()x g x f '>',即()()0y g x f x '''=->,则函数()()=-y g x f x 单调递增;当10x x <<时,()()x g x f '<',即()()0y g x f x '''=-<,则函数()()=-y g x f x 单调递减;当30x x <<时,()()x g x f '>',即()()0y g x f x '''=->,则函数()()=-y g x f x 单调递增;当3x x >时,()()x g x f '<',即()()0y g x f x '''=-<,则函数()()=-y g x f x 单调递减; 所以()()=-y g x f x 有两个极大值点1x 和3x ;有一个极小值点0. 故选:D.【点睛】本题主要考查导函数图像与原函数之间的关系,考查极值点个数的判定,属于基础题型.9. 万历十二年,中国明代音乐理论家和数学家朱载堉在其著作《律学新说》中,首次用珠算开方的办法计算出了十二个半音音阶的半音比例,这十二个半音音阶称为十二平均律十二平均律包括六个阳律(黄钟、太簇、姑洗、蕤宾、夷则、无射)和六个阴律(大吕、夹钟、中吕、林钟、南吕、应钟).现从这十二平均律中取出2个阳律和2个阴律,排成一个序列,组成一种旋律,要求序列中的两个阳律相邻,两个阴律不相邻,则可组成不同的旋律( ) A. 450种 B. 900种 C. 1350种 D. 1800种【答案】B分为两步,第一步,取出2个阳律和2个阴律,第二步,两个阳律相邻,两个阴律不相邻,利用分步计数原理可得.【详解】第一步,取出2个阳律和2个阴律,有2266225C C =种, 第二步,两个阳律相邻,两个阴律不相邻,有22224A A =种, 根据分步计数原理可得,共有2254900⨯=种. 故选:B.【点睛】本题考查排列组合与计数原理的问题,属于基础题.10. 设函数()f x 定义域为D ,若函数()f x 满足:对任意c D ∈,存在,a b D ∈,使得()()()f a f b f c a b-'=-成立,则称函数()f x 满足性质Γ.下列函数不满足性质Γ的是( )A. 2()f x x =B. 3()f x x =C. ()x f x e =D.()ln f x x =【答案】B构造函数()()()g x f x f c x '=-,可得()()g x f x ''''=,则()f x ''在定义域内正负号不变时满足性质Γ,若()f x ''有唯一变号零点0x 时不满足性质Γ,则通过计算()f x ''即可判断. 【详解】()()()f a f b f c a b-'=-可化为()()()()f a f c a f b f c b ''-=-,令()()()g x f x f c x '=-,则()()()g x f x f c '''=-,()()g x f x ''''=,∴若()f x ''在定义域内正负号不变,那么x c =是()g x '的变号零点,则()g x 在x c =的两侧的单调性不一致,因此满足性质Γ;若()f x ''有唯一变号零点0x ,那么取0c x =,则()g x '在定义域内的正负号不变,进而函数()g x 在定义域内单调,因此不满足性质Γ.对于A ,()2f x x '=,则()20f x ''=>,所以满足性质Γ;对于B ,()23f x x '=,则()6f x x ''=有唯一变号零点0,所以不满足性质Γ;对于C ,()x f x e '=,则()0x f x e ''=>,所以满足性质Γ; 对于D ,()1f x x '=,则()210f x x''=-<,所以满足性质Γ.【点睛】本题考查利用导数解决新定义问题,属于较难题. 二、填空题 11. 若复数41z i=-,则||z =___________.【答案】先利用复数除法运算求出z ,再求出模即可. 【详解】()()()4142+2111i z i i i i +===--+,||z ∴==故答案为:【点睛】本题考查复数的除法运算和模的求解,属于基础题.12. 在5232x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为___________.(用数字作答)【答案】40先求出展开式的通项105152r rr r T C x-+=,令1050r -=即得解.【详解】设展开式的通项为2510515532()()2r rrr r r r T C x C x x--+==, 令1050,2r r -=∴=, 所以常数项为225240C =. 故答案为:40【点睛】本题主要考查二项式定理的应用,意在考查学生对这些知识的理解掌握水平. 13. 从3名男医生和5名女医生中,选派3人组成医疗小分队,要求男、女医生都有,则不同的选取方法种数为__________(用数字作答). 【答案】45根据题意分为两类:2男1女和1男2女,结合分类计数原理和组合数的计算公式,即可求解.【详解】由题意,从3名男医生和5名女医生中,选派3人组成医疗小分队,要求男、女医可分为两类:第一类,若2男1女,共有213515C C =种不同的选取方法; 第二类,若1男2女,共有123530C C =种不同的选取方法, 由分类计数原理,可得不同的选取方法种数为153045+=种. 故答案为:45.【点睛】本题主要考查了分类计数原理的应用,以及组合数的计算,其中解答中根据题设条件,合理分类,结合分类计数原理求解是解答的关键,着重考查分析问题和解答问题的能力. 14. 中国福利彩票3D 游戏(以下简称3D ),是以一个3位自然数(如:0记作000)为投注号码的彩票.投注者从000~999这些3位自然数中选择一个进行投注,每注2元,如果与官方公布的三位数相同,则视为中奖,获得奖金1000元,反之则获得奖金0元.某人随机投了一注,他的奖金的期望是______元. 【答案】1求出此人中奖和不中奖的概率,利用期望的公式,即可求得数学期望,得到答案.【详解】由题意,此人中奖的概率为11000,不中奖的概率为9991000,所以此人随机投注一次,他的奖金的期望为:199910000110001000⨯+⨯=元. 故答案为:1.【点睛】本题主要考查了离散型随机变量的数学期望的求法,其中解答中正确理解题意,求得此人中奖和不中奖的概率,结合期望的计算公式求解是解答的关键,属于基础题. 15. 能说明“若()f x '为偶函数,则()f x 为奇函数”为假命题的一个函数是__________.【答案】3()1f x x =+(答案不唯一)根据题中条件,只需任意写出满足题意的函数即可.【详解】若3()1f x x =+,则()23f x x '=是偶函数,但3()1()f x x f x -=-+≠-,所以()f x 不是奇函数;能满足“若()f x '为偶函数,则()f x 为奇函数”为假命题.故答案为:3()1f x x =+.【点睛】本题主要考查命题真假的判定,涉及导数的计算,以及函数奇偶性的判定,属于基16. 辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% 对于此次招生,给出下列四个结论: ①法学院的录取率小于商学院的录取率; ②这两个学院所有男生的录取率小于这两个学院所有女生的录取率;③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________. 【答案】②④根据题意,结合古典概型的概率计算公式,逐项进行判定,即可求解. 【详解】设申请法学院的男生人数为x ,女生人数为y ,则200x y +=, 法学院的录取率为0.50.70.50.7(200)0.70.001200200x y x x x ++⨯-==-,设申请商学院的男生人数为m ,女生人数为n ,则300m n +=, 商学院的录取率为0.60.90.60.9(300)0.90.001200200m n m m m ++⨯-==-,由()()0.90.0010.70.0010.20.001()0.001(200)m x m x m x ---=--=-+, 该值的正负不确定,所以①错误,④正确;这两个学院所有男生的录取率为0.50.6x mx m++,这两个学院所有女生的录取率为0.70.9y ny n++,因为0.50.60.70.90.20.40.10.30()()x m y n xy xn my nmx m y n x m y n +++++-=<++++,所以②正确;③错误. 故答案为:②④.【点睛】本题主要考查了古典概型的概率公式的应用,其中解答中正确理解题意,结合古典概型的概率计算公式求得相应的概率是解答的关键,着重考查数学阅读能力,属于基础题. 三、解答题17. 已知函数3()3f x x x =-. (1)求函数()f x 的单调区间;(2)求函数()f x 在区间[]1,3-上的最大值和最小值.【答案】(1)函数()f x 的单调递增区间为(,1)-∞-和(1,)+∞,单调递减区间为()1,1-;(2)最大值为18,最小值为2-.(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)根据函数的单调性求出函数的极值点,从而求出函数的最值即可. 【详解】(1)因为3()3f x x x =-,所以2()33f x x '=-. 令()0f x '=,解得11x =-,21x =.随着x 的变化,()f x ',()f x 变化情况如下表:所以,函数()f x 的单调递增区间为(,1)-∞-和(1,)+∞,单调递减区间为()1,1-.(2)因为函数()f x 在区间[]1,1-上单调递减,在区间[]1,3上单调递增, 又(1)2f -=,(1)2f =-,(3)18f =,所以,函数()f x 在区间[]1,3-上的最大值为18,最小值为2-.【点睛】本题考查了函数的单调性,极值,最值问题,考查导数的应用,属于基础题 18. 某射手打靶命中8环、9环、10环的概率分别为0.15.0.25.0.2.如果他连续打靶三次,且每次打靶的命中结果互不影响. (1)求该射手命中29环的概率; (2)求该射手命中不少于28环的概率. 【答案】(1)0.03;(2)0.0935.(1)根据题中条件,由独立事件的概率计算公式,即可得出结果;(2)根据题中条件,分别计算出命中30环,命中28环,命中29环对应的概率,再求和,即可得出结果.【详解】(1)设A =“连续射击3次,中29环”.则223()0.25(0.2)P A C =⋅⋅0.03=所以该射手命中29环的概率为0.03.(2)设B =“连续射击3次,命中不少于28环”, 依题意,命中30环的概率为3(0.2)0.008=; 命中28环的概率为2222330.15(0.2)(0.25)0.2C C ⋅⋅+⋅⋅0.0180.03750.0555=+=;由(1)知,命中29环的概率为0.03;所以()0.0080.05550.030.0935P B =++=,所以该射手连续射击3次,命中不少于28环的概率为0.0935.【点睛】本题主要考查独立事件的概率,考查求互斥事件发生的概率,属于常考题型. 19. 已知函数()ln (0)f x x a x a =-≠.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()f x 的极值点和极值. 【答案】(1)1y =;(2)答案见解析.(1)当1a =时,求得11()1x f x x x'-=-=,得到()01f '=,()11f =,即可求得曲线()y f x =在点(1,(1))f 处的切线方程;(2)求得0(,())1,a x x x af x x-∈'-=+∞=,分0a <和0a >两种情况讨论,分别求得函数的单调性,进而求得函数的极值,得到答案.详解】(1)当1a =时,函数()ln f x x x =-,可得11()1x f x x x'-=-=,则()01f '=, 又因为()11f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为1y =. (2)由函数()ln f x x a x =-,可得0(,())1,a x x x af x x-∈'-=+∞=, ①当0a <时,()0f x '>,函数()f x 在(0,)+∞上单调递增,不存在极值; ②当0a >时,令()0f x '=,解得x a =. 随着x 的变化,()f x ',()f x 变化情况如下表:所以函数()f x 在区间()0,a 上单调递减,在区间(,)a +∞上单调递增,所以,函数()f x 的极小值点为x a =,极小值为()ln f a a a a =-,无极大值, 综上可得,当0a <时,函数()f x 没有极值;当0a >时,()f x 有极小值ln a a a -,极小值点为x a =,无极大值.【点睛】本题主要考查了利用导数的几何意义求曲线在某点处的切线方程,以及利用导数研究函数的单调性与极值,其中解答中熟记导数与原函数的关系,正确运算是解答的关键,着重考查推理与运算能力.20. 高中必修课程结束之后,学生需要从物理、化学、生物、历史、地理、政治六科中选择三科,继续学习选择性必修课程.某地记者为了了解本地区高一学生的选择意向,随机采访了100名学生作为样本进行情况调研,得到下表:(1)从样本中随机选1名学生,求该学生选择了化学的概率;(2)从第8组、第9组、第10组中,随机选2名学生,记其中选择政治的人数为X,求X的分布列和期望;(3)如果这个地区一名高一学生选择了地理,则在其它五科中,他同时选择哪一科的可能性最大?并说明理由.【答案】(1)12;(2)分布列答案见解析,数学期望:1211;(3)选择历史的可能性最大,理由见解析.(1)先找出选择了化学的学生数,再利用古典概型求解即可;(2)X 的所有可能取值为0,1,2,再利用超几何分布求概率的方式逐一求出每个X 的取值所对应的概率即可得分布列,进而求得数学期望;(3)由表可知,选择地理的总人数为79,然后依次求出同时选择生物、化学、政治、物理或历史的概率,取最大者即可.【详解】解:(1)设A =“从样本中随机选1人,该学生选择了化学”, 则17121074501()1001002P A ++++===,所以,从样本中随机选1人,该学生选择了化学的概率为12. (2)第8、9、10组共有11人,其中选择政治的有6人. 所以X 的所有可能取值为0,1,2.252112(0)11C P X C ===,11562116(1)11C C P X C ===,262113(2)11C P X C ===.所以X 的分布列为故X 的期望()01211111111E X =⨯+⨯+⨯=. (2)选择地理的总人数为:20141210975279+++++++=.所以P (“同时选择生物”)141292377979+++==;P (“同时选择化学”)12107297979++==;P (“同时选择政治”)202227979+==; P (“同时选择物理”)1095247979++==;P (“同时选择历史”)201475467979+++==.因为4679最大,所以一个学生选择了地理,同时选择历史的可能性最大. 【点睛】本题考查古典概型、离散型随机变量的分布列和数学期望,考查学生对数据的分析与处理能力,属于中档题.21. 已知函数2()12xa f x e x x =---. (1)若0a =,证明:()0f x ≥;(2)若曲线()y f x =的切线斜率不存在最小值,求a 的取值范围. 【答案】(1)证明见解析;(2){}0a a ≤.(1)当0a =时,求得()1x f x e =-',根据()'f x 的符号,求得函数的单调性与最小值,即可求解;(2)求得函数的导数()1x f x e ax '=--,设()1xg x e ax =--,把曲线()y f x =的切线斜率不存在最小值,即函数()g x 不存在最小值,利用导数,分类讨论求得函数()g x 单调性与最值,即可求解.【详解】(1)当0a =时,函数()1x f x e x =--,可得()1x f x e =-', 令()0f x '>,即10x e ->,解得0x >; 令()0f x '<,即10x e -<,解得0x <,所以()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增, 所以()f x 的最小值为()00f =,所以()0f x ≥.(2)由函数2()12x a f x e x x =---,可得()1x f x e ax '=--, 设()1xg x e ax =--,可得()xg x e a '=-由曲线()y f x =的切线斜率不存在最小值,即函数()g x 不存在最小值,①当0a ≤时,()0g x '>恒成立,所以()g x 在区间(,)-∞+∞上单调递增,不存在最小值, 所以0a ≤符合题意. ②当0a >时,令()0g x '>,即0x e a ->,解得ln x a >; 令()0g x '<,即0-<x e a ,解得ln x a <,所以()g x 在区间(,ln )a -∞上单调递减,在区间(ln ,)a +∞上单调递增, 所以()g x 在ln x a =处取得最小值,最小值为()ln ln ln 11ln ag a e a a a a a =--=--,所以0a >不符合题意(舍去).综上可得,实数a 的取值范围为{}0a a ≤.【点睛】本题主要考查导数在函数中的综合应用,其中解答中熟练应用导数求得函数的单调性与极值(最值),以及把曲线()y f x =的切线斜率不存在最小值,转化为函数()g x 不存在最小值是解答的关键,着重考查转化思想,以及推理与运算能力. 22. 已知函数()ln f x x ax a =+-. (1)求函数()f x 的单调区间;(2)求证:当1a >时,函数1()()x g x e f x -=-存在最小值,且最小值小于1. 【答案】(1)答案见解析;(2)证明见解析.(1)求出()f x 的导数,讨论0a ≥和0a <时导数情况,即可求出单调区间;(2)由题可得所以只需证明()g x 存在最小值,但1x =不是最小值点,求出()g x 的导数,讨论其单调性,即可进行判断.【详解】解:(1)函数()f x 定义域为()0,∞+,11()ax f x a x x'+=+=. ①当0a ≥时,()0f x '>恒成立,函数()f x 的单调递增区间为(0,)+∞. ②当0a <时,由()0f x '>,得10x a<<-;由()0f x '<,得1x a >-.所以()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a ⎛⎫-+∞ ⎪⎝⎭.综上,当0a ≥时,()f x 单调递增区间为(0,)+∞; 当0a <时,()f x 的单调递增区间为10,a ⎛⎫-⎪⎝⎭,单调递减区间为1,a ⎛⎫-+∞ ⎪⎝⎭.(2)由已知1()ln x g x e x ax a -=--+,0x >.因为()11g =,所以只需证明()g x 存在最小值,但1x =不是最小值点, 即min ()(1)1g x g <=.因为()ln x e g x x ax a e=--+,所以11()x g x e a x -'=--.因为函数1x y e -=,1y x=-在区间(0,)+∞上是增函数, 所以()g x '在区间(0,)+∞上是增函数, 因为1a >,所以(1)0g a '=-<,11(1ln(1))1101ln(1)1ln(1)g a a a a a '++=+--=->++++.所以方程()0g x '=在区间(0,)+∞上存在唯一解, 不妨设为0x ,则01x >,随着x 的变化,()g x ',()g x 变化情况如下表:所以()g x 有最小值,最小值为()()011g x g <=. 所以函数1()()x g x e f x -=-存在最小值,且最小值小于1.【点睛】本题考查利用导数讨论函数的单调性,考查利用导数求函数最值,属于较难题.。
北京市西城区2019-2020学年八年级第二学期期末考试数学试题含解析

北京市西城区2019-2020学年八年级第二学期期末考试数学试题一、选择题(每题只有一个答案正确)1.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )A .50,50B .50,30C .80,50D .30,502.已知正比例函数y=kx 的图象经过第一、三象限,则一次函数y=kx ﹣k 的图象可能是下图中的( ) A . B . C . D .3.函数y kx =(0)k ≠的图象可能是( ) A . B .C .D .4.直角坐标系中,A 、B 两点的横坐标相同但均不为零,则直线AB ( )A .平行于x 轴B .平行于y 轴C .经过原点D .以上都不对5.如图,将点P (-1,3)向右平移n 个单位后落在直线y=2x-1上的点P′处,则n 等于( )A .2B .2.5C .3D .46.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离()s m 和放学后的时间()t min 之间的关系如图所示,给出下列结论:①小刚家离学校的距离是1000m;②小刚跑步阶段的速度为300/m min;③小刚回到家时已放学10分钟;④小刚从学校回到家的m min.其中正确的个数是()平均速度是100/A.4 B.3 C.2 D.17.下列关于矩形对角线的说法中,正确的是()A.对角线相互垂直B.面积等于对角线乘积的一半C.对角线平分一组对角D.对角线相等8.点P(﹣1,2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)9.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( )A.四边形中至多有一个内角是钝角或直角B.四边形中所有内角都是锐角C.四边形的每一个内角都是钝角或直角D.四边形中所有内角都是直角10.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:1二、填空题11.如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____.12.关于x的一元二次方程(x+1)(x+7)= -5的根为_______________.1381m+m=__________.14.某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.15.若直角三角形其中两条边的长分别为3,4,则该直角三角形斜边上的高的长为________.16.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.17.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.三、解答题18.现有两家可以选择的快递公司的收费方式如下.甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.乙公司:按物品重量每千克7元计价,外加一份包装费10元.设物品的重量为x千克,甲、乙公司快递该物品的费用分别为y甲,y乙.(1)分别写出y甲和y乙与x的函数表达式(并写出x的取值范围);(2)图中给出了y甲与x的函数图象,请在图中画出(1)中y乙与x的函数图象(要求列表,描点).x …_____ _____ …y …_____ _____ …19.(6分)已知,如图,在平行四边形ABCD中,AC、BD相交于O点,点E、F分别为BO、DO的中点,连接AF,CE.(1)求证:四边形AECF是平行四边形;(2)如果E,F点分别在DB和BD的延长线上时,且满足BE=DF,上述结论仍然成立吗?请说明理由.20.(6分)已知:如图,一块Rt△ABC的绿地,量得两直角边AC=8cm,BC=6cm.现在要将这块绿地扩充成等腰△ABD,且扩充部分(△ADC)是以8cm为直角边长的直角三角形,求扩充等腰△ABD的周长. (1)在图1中,当AB=AD=10cm时,△ABD的周长为.(2)在图2中,当BA=BD=10cm时,△ABD的周长为.(3)在图3中,当DA=DB时,求△ABD的周长.21.(6分)暑假期间,两名教师计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社.经协商,甲旅行社的优惠条件是:两名教师全额收费,学生都按七折收费;乙旅行社的优惠条件是:教师、学生都按八折收费.请你帮他们选择一下,选哪家旅行社比较合算.22.(8分)如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,BE=DF,在此图中是否存在两个全等的三角形,并说明理由;它们能够由其中一个通过旋转而得到另外一个吗?简述旋转过程.23.(8分)如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若3AE=2,求EF的长.24.(10分)下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.作法:如图①以点B 为圆心,AC 长为半径作弧;②以点C 为圆心,AB 长为半径作弧;③两弧交于点D ,A ,D 在BC 同侧;④连接AD ,CD .所以四边形ABCD 是矩形,根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:链接BD .∵AB=________,AC=__________,BC=BC∴ΔABC ≌ΔDCB∴∠ABC=∠DCB=90°∴AB ∥CD .∴四边形ABCD 是平行四边形∵∠ABC=90°∴四边形ABCD 是矩形.(_______________)(填推理的依据)25.(10分)计算或化简:(1234212-(2()22a b a a b参考答案一、选择题(每题只有一个答案正确)1.A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.详解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元).故选A .点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.2.D【解析】【分析】根据正比例函数y kx =的图象经过第一,三象限可得:0k >, 因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解.【详解】根据正比例函数y kx =的图象经过第一,三象限可得:所以0k >,所以一次函数y kx k =-中0k >,0b k =-<, 所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.3.C【解析】【分析】分x <0,x >0两段来分析.【详解】解:当x <0时,y=-|k|x,此时-|k|<0,∴y 随x 的增大而减小,又y >0,所以函数图像在第二象限,排除A,D;当x >0时,y=|k|x,此时|k|>0,∴y 随x 的增大而增大,又y >0,所以函数图像在第一象限,排除B;故C正确.故选:C.【点睛】本题主要考查一次函数的图像与性质,掌握基本性质是解题的关键.4.B【解析】【分析】平行于y 轴的直线上的点的横坐标相同.由此即可解答.【详解】直角坐标系下两个点的横坐标相同且不为零,则说明这两点到y 轴的距离相等,且在y 轴的同一侧,所以过这两点的直线平行于y 轴.故选B .【点睛】本题考查坐标与图形的性质,关键是根据:两点的横坐标相同,到y 轴的距离相等,过这两点的直线平行于y 轴解答.5.C【解析】【分析】点()1,3P -向右平移得到P ',根据平移性质可设P '(,3x ),代入21y x =-中可求出2x =,则2(1)3n =--=.【详解】∵点()1,3P -向右平移得到P ',∴设P '(,3x ),代入21y x =-,解得2x =,则 2(1)3n =--=,故答案选C.【点睛】本题考查了坐标系中函数图像平移的性质,以及利用函数解析式求点坐标,熟练掌握这些知识点是解题关键.6.A【解析】【分析】由t=0时s=1000的实际意义可判断①;由8≤t≤10所对应的图象表示小刚跑步阶段,根据速度=路程÷时间可判断②;根据t=10时s=0可判断③;总路程除以所用总时间即可判断④.【详解】解:①当t=0时,s=1000,即小刚家离学校的距离是1000m,故①正确;②小刚跑步阶段的速度是600108=300(m/min),故②正确;③当s=0时,t=10,即小刚回到家时已放学10min,故③正确;④小刚从学校回到家的平均速度是100010=100(m/min),故④正确;故选:A.【点睛】本题考查利用函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.7.D【解析】【分析】根据矩形的性质:矩形的对角线相等且互相平分得到正确选项.【详解】解:矩形的对角线相等,故选:D.【点睛】此题考查了矩形的性质,熟练掌握矩形的性质是解本题的关键.8.A【解析】【分析】【详解】解:根据关于y轴对称,横坐标互为相反数,纵坐标不变.故应选A考点:关于x轴、y轴对称的点的坐标9.B【解析】【分析】先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.【详解】假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.【点睛】本题考查反证法,要注意命题“至少有一个是”不成立,对应的命题应为“都不是”.10.C【解析】【分析】菱形的性质;含30度角的直角三角形的性质.【详解】如图所示,根据已知可得到菱形的边长为2cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1,故选C.二、填空题11.144°.【解析】【分析】根据多边形的内角和定理分别求出∠BAE=∠AED=∠FAM=∠AMH,即可求出∠EAM和∠BAF的度数,根据旋转的性质,分顺时针和逆时针讨论,取x的最小值.【详解】∵五边形ABCDE,AFGHM是正五边形∴∠BAE=∠AED=∠FAM=∠AMH()180525⨯-==108°,∴∠AEM=∠AME=72°,∴∠EAM=180°﹣72°﹣72°=36°,∠BAF=360°-∠BAE -∠FAM-∠EAM=108°,∵正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,顺时针旋转最小需:36°+108°=144°,逆时针旋转最小需:108°+108°=216°,∴x的最小值为36°+108°=144°故答案为:144°.【点睛】本题考查多边形的内角和外角,旋转的性质.能分情况讨论找出旋转前后对应线段并由此计算旋转角是解决此题的关键.12.122,6x x =-=-【解析】【分析】整理成一般式后,利用因式分解法求解可得.【详解】解:整理得:x 2+8x+12=0,(x+2)(x+1)=0,x+2=0,x+1=0,x 1=-2,x 2=-1.故答案为:122,6x x =-=-.【点睛】本题考查因式分解法解一元二次方程,能把一元二次方程转化成一元一次方程是解题的关键. 13.1【解析】【分析】m +1=2,然后解方程即可.【详解】=∴m +1=2,∴m =1.故答案为1.【点睛】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.14.87.1.【解析】【分析】根据加权平均数的含义和求法,可求出甲的平均成绩.【详解】面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,∴甲的平均成绩为:64869087.61010⨯+⨯=(分). 故答案为:87.1.【点睛】考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.15.2.4【解析】【分析】分两种情况:直角三角形的两直角边为3、4或直角三角形一条直角边为3,斜边为4,首先根据勾股定理即可求第三边的长度,再根据三角形的面积即可解题.【详解】若直角三角形的两直角边为3、45=,设直角三角形斜边上的高为h,11345 22h⨯⨯=⨯,∴ 2.4h=.若直角三角形一条直角边为3,斜边为4=设直角三角形斜边上的高为h,1134 22h⨯⨯=⨯,∴h=.故答案为:2.4或4.【点睛】本题考查了勾股定理和直角三角形的面积,熟练掌握勾股定理是解题的关键.16.两组对边分別平行的四边形是平行四边形【解析】【分析】根据平行四边形的判定方法即可求解.【详解】解:∵两块相同的含有30°角的三角尺∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)【点睛】此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.17.3 2【解析】【分析】【详解】解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=32.故答案为:32.三、解答题18.(1)2001=20(1)41xyx x<≤⎧⎨+-⋅>⎩甲,,,=7100)y x x+>乙,(;(2)x …__1___ __2___ _3___ …y …___17__ __24___ _31___ …图象见解析【解析】【分析】(1)根据题目中甲乙公司不同的收费方式结合数量关系,找出y甲和y乙与x之间的关系;(2)根据y乙的方程进行列表,依次描点连线即可得出函数图象.【详解】解:(1)设物品的重量为x 千克由题意可得()2001=20141x y x x <≤⎧⎨+-⋅>⎩甲,,;=710(0)y x x +>乙,; (2)y 乙列表为 x … __1___ __2___ _3___ …y … ___17__ __24___ _31___ …函数图象如下:故本题最后答案为:(1)()2001=20141x y x x <≤⎧⎨+-⋅>⎩甲,,,=710(0)y x x +>乙,; (2)x … __1___ __2___ _3___ …y … ___17__ __24___ _31___ …图象如上所示.【点睛】(1)本题主要考查了一次函数的应用,解题的关键是根据不同的x 的范围列出不同的解析式,其中不要忽略本题为实际问题,即x 的取值范围为正;(2)本题主要考查了函数图象的画法,明确画函数图象的步骤是解题的关键.19.见解析【解析】(1)根据平行四边形的性质可得AO=CO ,BO=DO ,再由条件点E 、F 分别为BO 、DO 的中点,可得EO=OF ,进而可判定四边形AECF 是平行四边形;(2)由等式的性质可得EO=FO ,再加上条件AO=CO 可判定四边形AECF 是平行四边形.(1)证明:∵四边形ABCD 是平行四边形,∴AO=CO,BO=DO ,∵点E、F分别为BO、DO的中点,∴EO=OF,∵AO=CO,∴四边形AECF是平行四边形;(2)解:结论仍然成立,理由:∵BE=DF,BO=DO,∴EO=FO,∵AO=CO,∴四边形AECF是平行四边形.20.(1)32m;(2)(m;(3)80 3m【解析】【分析】(1)利用勾股定理得出DC的长,进而求出△ABD的周长;(2)利用勾股定理得出AD的长,进而求出△ABD的周长;(3)首先利用勾股定理得出DC、AB的长,进而求出△ABD的周长.【详解】:(1)如图1,∵AB=AD=10m,AC⊥BD,AC=8m,∴6()DC m==则△ABD的周长为:10+10+6+6=32(m).故答案为:32m;(2)如图2,当BA=BD=10m时,则DC=BD-BC=10-6=4(m),故AD==则△ABD的周长为:(m;故答案为:(m;(3)如图3,∵DA=DB,∴设DC=xm,则AD=(6+x)m,∴DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=7 3∵AC=8m ,BC=6m ,∴AB=10m ,故△ABD 的周长为:AD+BD+AB=2780610()33m ⎛⎫++=⎪⎝⎭【点睛】此题主要考查了勾股定理的应用,根据题意熟练应用勾股定理是解题关键.21.①当两名家长带领的学生少于4人时,应该选择乙旅行社;②当两名家长带领的学生为4人时,选择甲、乙两家旅行社都一样;③当两名家长带领的学生多于4人时,应该选择甲旅行社.【解析】【分析】(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y 1与x 的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y 2与x 的函数关系式;(2)首先分三种情况讨论:①y 1>y 2,②y 1=y 2,③y 1<y 2,针对每一种情况,分别求出对应的x 的取值范围,然后比较哪种情况下选谁更合适,即可判断选择哪家旅行社.解答:【详解】解:设x 名学生,则在甲旅行社花费:y 1=2500500x 0.7350x 1000⨯+⨯=+,在乙旅行社的花费:y 2=()x 25000.8400x 800+⨯⨯=+,当在乙旅行社的花费少时:y 1>y 2 350x 1000400x 800+>+,解得x 4<;在两家花费相同时:y 1=y 2350x 1000400x 1800+=+,解得x 4=;当在甲旅行社的花费少时:y 1<y 2350x 1000400x 800+<+,解得x 4>.综上,可得①当两名家长带领的学生少于4人时,应该选择乙旅行社;②当两名家长带领的学生为4人时,选择甲、乙两家旅行社都一样;③当两名家长带领的学生多于4人时,应该选择甲旅行社.【点睛】本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b (k≠0),然后比较函数值的大小得到对应的x 的取值范围,从而确定省钱的方案.22.在此图中存在两个全等的三角形,即△CDF ≌△CBE .△CDF 是由△CBE 绕点C 沿顺时针方向旋转90°得到的.理由见解析.【解析】【分析】在△CDF 和△CBE 中,根据正方形的性质知DC=BC 、已知条件DF=BE 可以证得△CDF ≌△CBF .【详解】解:在此图中存在两个全等的三角形,即△CDF ≌△CBE .理由如下:∵点F 在正方形ABCD 的边AD 的延长线上,∴∠CDF =∠CDA =90°;在△CDF 和△CBE 中,90CD CB CDF CBE DF BE ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△CDF ≌△CBE (SAS ),∴∠FCD =∠ECB ,CF =CE ,∴∠FCE =∠FCD+∠DCE =∠ECB+∠DCE =∠DCB =90°,∴△CDF 是由△CBE 绕点C 沿顺时针方向旋转90°得到的.【点睛】本题综合考查了正方形的性质、全等三角形的判定与性质以及旋转的性质.本题中通过全等三角形(△CDF ≌△CBE )的对应角∠FCD 与∠ECB 相等是解答△CDF 由△CBE 所旋转的方向与角度的关键. 23.(1)见解析;(2)EF =73. 【解析】【分析】(1)根据有一个角是直角的平行四边形是矩形即可判断;(2)利用勾股定理求出EC,证明△AEF∽△BCF,推出12EF AECF BC,由此即可解决问题.【详解】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形;(2)解:∵四边形AEBD是矩形,∴∠AEB=90°,∵AE=2,BE=∴BC=4,∴EC2227BC,∵AE∥BC,∴△AEF∽△BCF,∴12 EF AECF BC,∴EF=13EC=3.【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(1)见解析;(2)CD,BD,有一个角是直角的平行四边形是矩形【解析】【分析】(1)根据作法画出对应的几何图形即可;(2)先利用作图证明△ABC≌△DCB,得AB∥CD,根据一组对边平行且相等的四边形是平行四边形,由有一个角是直角的平行四边形是矩形可得结论.【详解】解:(1)如图1,四边形ABCD为所作;(2)完成下面的证明:证明:如图2,连接BD .∵AB=CD ,AC=BD ,BC=BC ,∴△ABC ≌△DCB (SSS ).∴∠ABC=∠DCB=90°.∴AB ∥CD .∴四边形ABCD 是平行四边形.∵∠ABC=90°∴四边形ABCD 是矩形.(有一个角是直角的平行四边形是矩形)故答案为:CD ,BD ,有一个角是直角的平行四边形是矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形和矩形的判定方法.25.(13(2)2a 【解析】【分析】(1)选逐项化简,再合并同类项或同类二次根式即可;(2)先计算二次根式的乘法和除法,再合并同类项即可.【详解】(1234212-33(2)2=a+=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质及运算法则是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2019—2020学年度第二学期期末试卷
高二物理参考答案 2020.7
一、选择题 共48分
二、填空题 共8分
17.(1)BCEF (2分) (2)丙 (2分) (3)摆球的球心 (2分) (4)B (2分)
三、计算题 共44分
18.(1)(4分)
折射率
2分
2分
(2)(6分)
∵ c
n v
=
3分 ∴ c v n =
= 3分
sin sin n α
β
=
sin 45sin 30n ︒
=
︒
19.(1)(4分)
∵
2分 ∴ 2分 (2)(6分)
∵ =200A 2分 =60000W 2分
∴ =88% 2分 20.(1)(4分)
A =2cm 2分 λ=6m 2分
(2)(5分)
波的传播方向沿x 轴正方向(或“向右”) 2分
2100.2
s v t ===m/s 3分
(3)(3分)
6
0.610
T s v
λ
=
=
= 3分 21.(1)(4分)
∵ R
U E R r
=
+,E =BLv ∴ R
U BLv R r =
+ 3分
导体棒a 端电势高 1分
11
22
U n U n =2
211
=2500V n U U n =2
P
I U =
2P I R ∆=100%P P
P
η-∆=
⨯
(2)(3分)
∵ E
I R r
=
+, F =BIL ∴ 安培力的大小22B L v
F R r
=+ 2分
安培力的方向为水平向左 1分
(3)(5分)
22==B L v F F R r +外,222
==B L v P F v R r +外外 1分 222==B L v P F v R r --+安安 1分
222
2
=(+)=B L v P I R r R r +热 1分
对于棒有P 外+P 安=0;对回路ab PM a 有P 热=|P 安|; 1分
这表明,外力克服安培力驱使导体棒做切割磁感线产生感应电流的过程中,通过安培
力做功将机械能转化为电能,又在电流流经电路时将电能转化为内能等。
1分。