七年级数学单元教学目标评价测试题(一)(第一章--有理数)(人教版)

合集下载

人教版七年级上册数学 第一章 有理数 单元测试题 含答案 答题卡

人教版七年级上册数学  第一章 有理数 单元测试题  含答案 答题卡

第一章 有理数 单元测试题(一)一 选择题 (每小题3分 共30分)1.下列四个数中,在-2到 0之间的数是: ( ) A -1 B 1 C -3 D 32.下列说法正确的是: ( ) A 0表示什么也没有B 一场比赛赢4个球得+4分, -3分表示输了3个球 C 7没有符号D 0既不是正数,也不是负数3.既是分数又是正数的是( )A +2B -31C 0D 2.34.下列结论正确的有( )个: ① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是0 ③ 正数,负数和零统称有理数 ④ 数轴上的点都表示有理数A 0B 1C 2D 3 5.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点 ( ) A 向左移动5个单位 B 向右移动5个单位C 向右移动4个单位D 向左移动1个单位或向右移动5个单位 6.如图,在数轴上点M 表示的数可能是( )A .1.5B .-1.5C .-2.4D .2.47.在0.75,-1,-0.75,3,0,+5,-3这几个数中,互为相反数的有( ) A .0对 B .1对 C .2对 D .3对8.数a 在数轴上的对应点在原点左边,且|a|=4,则a 的值为( ) A .4或-4 B .4 C .-4 D .以上都不对 9.一个数的绝对值等于它的相反数,则这个数是( ) A .正数或0 B .负数或0 C .所有正数 D .所有负数10.清晨蜗牛从树根沿着树干往上爬,树高10m ,白天爬4m ,夜间下滑3m ,它从树根爬上树顶,需( ) A 、10天 B 、9天 C 、8天 D 、7天 二 填空题(每小题3分 共18分)1.如果向南走5米,记作+5米,那么向北走8米应记作____米. 2.已知下列各数:-4,3.5,0,-2,10,+21,其中非负数有_______ 3.在数轴上,距原点6个单位长度的点表示的数为____. 4.若a=-2020,则—a=____.5.某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是_____℃.6.如果x <0,y >0,且|x|=2,|y|=3,那么x+y=________. 三 解答题(本大题共72分) 1(30分) 计算(1)1+(-21 )+31 +(-61) (2)(-109)+(-267)+(+109)+268(3)(-23)-(+12)-(-56)-(-13) (4)(-813)-(+12)-(-70)-(-813);(5)(-3)-(-17)-(-33)-81 (6)(-12)+ 14 -(-21)+ 3 -(-2)2(8分)简答题:(1)-1和0之间还有负数吗?如有,请列举。

第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册

第一章 有理数  单元测试卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是  . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为  .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为  .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。

七年级数学上册《第一章 有理数》单元测试题含答案(人教版)

七年级数学上册《第一章 有理数》单元测试题含答案(人教版)

七年级数学上册《第一章 有理数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.以下四个有理数中,绝对值最小的是( )A .-2B .2C .0D .12.下列选项,具有相反意义的量是( )A .增加20个与减少30个B .6个老师和7个学生C .走了100米和跑了100米D .向东行30米和向北行30米3.下列说法中不正确的是( )A .﹣3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2000既是负数,也是整数,但不是有理数D .0是正数和负数的分界4.我国是世界上严重缺水的国家,目前每年可利用的淡水资源总量为 27500 亿立方米,人均占有淡水量居世界第 110 位,因此我们要节约用水,其中 27500 用科学记数法表示为( )A .227510⨯B .42.7510⨯C .52.7510⨯D .327.510⨯5.数轴上的两点之间的距离为7,一个点表示的数是﹣3,则另一个点表示的数是( )A .4B .4或﹣10C .﹣10D .10或﹣46.下列各式中,积为负数的是( )A .()()123-⨯-⨯B .()()123-⨯-⨯-C .()103-⨯⨯D .()()()123-⨯-⨯-7.如图,在一个不完整的数轴上有A ,B ,C 三个点,若点A ,B 表示的数互为相反数,则图中点C 点表示的数是( )A .2-B .1C .0D .48.现定义两种运算“ ⊕ ”,“ * ”.对于任意两个整数 11a b a b a b a b ⊕=+-*=⨯-, ,则 (68)(35)⊕*⊕ 的结果是( )A .69B .90C .100D .112 二、填空题9.123- 的倒数是 ,-2.3的绝对值是 . 10.5月23日,我国许多天文爱好者都拍摄了金星伴月的美丽天象,金星是距离地球最近的行星,距离大约4050万千米,用科学记数法表示这个数字为 千米.(保留两位有效数字)11.我们把向东走8步记作+8步,则向西走5步记作 步.12.大于- 132 而小于 122的所有整数的和是 . 13.已知|a ﹣2|+|b+1|=0,则(a+b )﹣(b ﹣a )= .14.如图是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为 .三、计算题15.510.474( 1.53)166----16.计算:(1)()1375+-- ;(2)()()324542-÷---⨯-17.计算:(1)()15136326⎛⎫-+⨯- ⎪⎝⎭;(2)()22022351113242⎛⎫-⨯-+-÷- ⎪⎝⎭.18.如图所示,在一条不完整的数轴上从左到右有点 ,,A B C ,其中 2AB = , 1BC = 设点 ,,A B C 所对应的数之和是 m ,点 ,,A B C 所对应的数之积是 n .(1)若以 B 为原点,写出点 ,A C 所对应的数,并计算 m 的值;若以 C 为原点, m 又是多少?(2)若原点 O 在图中数轴上点 C 的右边,且 4CO = ,求 n 的值.19.某工厂一周内计划每日生产200辆车.受各种因素影响,实际每天的产量与计划量相比的情况如下表(增加为正)(1)本周三生产了多少辆车?(2)本周的总产量与计划相比,是增加还是减少了?增加或减少的数量是多少?(3)产量最多的一天与最少的一天相比,多生产多少辆?20.早在1960年、中国登山队首次从珠穆朗玛北侧中国境内登上珠峰,近几十年,珠峰更是吸引了大批的登山爱好者,某日,登山运动员傅博准备从海拔7400米的3号营地登至海拔近7900米的4号营地,由于天气骤变,近6小时的攀爬过程中他不得不几次下撤躲避强高空风,记向上爬升的海拔高度为正数,向下撒退时下降的海拔高度为负数,傅博在这一天攀爬的海拔高度记录如下:(单位:米)+320、-55、+116、-20、+81、-43、+115.(1)傳博能按原计划在这天登至4号营地吗?(2)若在这一登山过程中,傅博所处位置的海拔高度上升或下降1米平均消耗8大卡的卡路里,则傅博这天消耗了多少卡路里?参考答案:1.C 2.A 3.C 4.B 5.B 6.D 7.B 8.B9.37-;2.310.74.110⨯11.-512.3-13.414.-115.解:原式= 510.474+1.53166-- = 510.47 1.534166+--=2-6=-4.16.(1)解:原式 1375=--65=-1=(2)解:原式 8458=-÷-+258=--+1=17.(1)解:()15136326⎛⎫-+⨯- ⎪⎝⎭()()()151363636326=⨯--⨯-+⨯-()()12906=---+-12906=-+-72=(2)解:()22022351113242⎛⎫-⨯-+-÷- ⎪⎝⎭511138162=⨯-+÷1383216=-+⨯52=-+3=-18.(1)解:以 B 为原点,点 ,A C 所对应的数分别是 2- , 12011m =-++=-以 C 为原点 (21)(1)04m =--+-+=- ;n=---⨯--⨯-=-(2)解:(412)(41)(4)14019.(1)解:200-3=197(辆)答:本周三生产了197辆车(2)解:-8+8-3+4+14-9-25=-20 (辆)减少了20辆.答:本周与计划相比,总产量减少了,减少了20辆(3)解:产量最多的一天生产了200+14=214(辆)产量最少的一天生产了200-25=175(辆)产量最多的一天与最少的一天相比,多生产了214-175=39(辆)答:产量最多的一天与最少的一天相比,多生产39辆.20.(1)解:依题意得:-+-+-+=(米)傳博一天内的攀爬高度为:32055116208143115514-=<3号营地登至4号营地的高度为:79007400500514∴傳博能按原计划在这天登至4号营地(2)解:依题意得:傅博这天消耗了的卡路里为:()+-++-++-+⨯=⨯= 32055116208143115875086000。

七年级数学上册《第一章-有理数》单元测试题及答案(人教版)

七年级数学上册《第一章-有理数》单元测试题及答案(人教版)

七年级数学上册《第一章有理数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走10步记作()A.+10步B.−10步C.+12步D.−2步2.有理数−12,5,0,-(-3),-2,-|-25|中,负数的个数为()A.1B.2C.3D.43.大于-1且小于2的整数有()A.1个B.2个C.3个D.4个4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是()A.甲B.乙C.丙D.丁5.有理数a、b、c、d在数轴上的对应点的位置如图所示,则下列结论中正确的为()A.a>b B.a+d>0C.|b|>|c|D.bd>06.某种植物成活的主要条件是该地区的四季温差不得超过30℃,若不考虑其他因素,表中的四个地区中,适合大面积栽培这种植物的地区()地区温度甲地区乙地区丙地区丁地区四季最高气温/℃2524324四季最低气温/℃-7-5-11-28 A.甲B.乙C.丙D.丁7.−12023的倒数是()A .2023B .12023C .−2023D .−120228.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a −b >0C .−a >−b >aD .a ⋅b >09. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .0.46×107B .4.6×106C .4.6×107D .46.0×10510.祖冲之是我国古代杰出的数学家,他首次将圆周率π精算到小数第七位,即3.1415926<π<3.1415927,则精确到百分位时π的近似值是( ) A .3.1B .3.14C .3.141D .3.142二、填空题11.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为+1200步,小辰走了4800步,记为 步.12.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次引入负数.下图是小明家长11月份的微信账单,如果收入3377.51元记作+3377.51元,那么支出5333.73元记作 元.13.比较大小:−(13)2 −(12)3(填 > 或者 < 或者 =).14.点A 为数轴上表示−1的点,若将点A 沿数轴一次平移一个单位,平移两次后到达点B ,则点B 表示的数是 .15.若a=4,|b|=3,且ab<0,则a+b= .16.整数a 、b 、c 满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c 的最小值是 .三、计算题17.计算:(1)15+(−13)+18 (2)−10.25×(−4)(3)−12÷4×3(4)−23×3+2×(−3)2四、解答题18.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米20元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?19.已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.20.若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.21.在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?22.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是-6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100米气温大约降低0.6℃,这座山峰的高度大约是多少米?参考答案与解析1.【答案】B【解析】解:向北走5步记作+5步,那么向南走10步记作−10步故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】C【解析】解:−(−3)=3,−|−25|=−25∴有理数−12,5,0,-(-3),-2,-|-25|中是负数的有−12,−2,−|−25|共3个故答案为:C.【分析】首先根据相反数及绝对值的性质将需要化简的数分别化简,再根据小于0的数就是负数即可判断得出答案.3.【答案】B【解析】解:大于-1且小于2的整数有0、1,共2个.故答案为:B.【分析】根据有理数比较大小的方法进行解答.4.【答案】D【解析】|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.60.6<0.7<1.5<3.5最接近标准质量的足球是丁.故答案为:D【分析】根据绝对值最小的最接近标准加以判定。

2022-2023学年人教版七年级数学上册第一章有理数单元测试(一)(含答案)

2022-2023学年人教版七年级数学上册第一章有理数单元测试(一)(含答案)

人教版七年级数学上册第一章有理数 单元测试(一)一、单选题(共10小题,每题3分,共30分)1.−15的相反数是( )A .−15B .15C .−5D .52. 2021年5月国家统计局公布了第七次人口普查结果,我国人口数约为14.12亿,其中14.12亿用科学记数法表示为( ) A .14.12×108 B .0.1412×1010 C .1.412×109D .1.412×1083.在 −(−5) , −|−3| ,4, −4 这4个数中,最小的有理数是( )A .−(−5)B .−|−3|C .4D .−44.如果给出两个说法:①用四舍五入法对3.355取近似值,精确到百分位得3.35;②近似数5.2万精确到千位;那么( ) A .①②都正确 B .①正确,②不正确 C .①不正确,②正确D .①②都不正确5.已知|x |=3,|y |=2,且xy >0,则x ﹣y 的值等于( )A .5或﹣5B .1或﹣1C .5或1D .﹣5或﹣16.数轴上点A 表示的数是-2,那么与点A 相距5个单位长度的点表示的数是 ( )A .-7B .3C .-7或3D .以上都不对7.下列说法中正确的个数是( )①|a| 一定是正数;②−a 一定是负数;③−(−a) 一定是正数;④a3 一定是分数.A .0个B .1个C .2个D .3个8.已知 a,b 表示两个非零的实数,则 |a|a +|b|b的值不可能是( )A .2B .–2C .1D .09.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了( ) A .80元B .120元C .160元D .200元10.若a=-2020,则式子 |a 2+2019a +1|+|a 2+2021a −1| 的值是( )A .4036B .4038C .4040D .4042二、填空题(共5小题,每题3分,共15分)11.如图,数轴上点A,B所表示的两个数的和的绝对值是.12.观察图形,并用你发现的规律直接写出图4中的y的值是.13.用计算器计算并填空:112=,1112=,11112,你发现计算结果有什么规律?根据你发现的规律,不用计算器计算:1111112=14.若a,b都是不为零的有理数,那么|a|a+ |b|b的值是.15.若整数a、b、c、d满足abcd=21,且a>b>c>d,则|c﹣a|+|b﹣d|=.三、计算题(24分)16(8分).计算(1)12﹣(﹣18)+(﹣7)﹣15(2)﹣8²+2×(﹣2)³﹣(﹣6)÷(﹣13)²﹣(−1)200817(8分).阅读(1)题的计算方法,再计算(2)题.( 1 )计算:(−556)+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−114)=−114.上面这种解题方法叫拆项法.( 2 )计算:(−201856)+(−201723)+403323+(−112)18(8分).化简|x+5|+|2x−3|四、解答题(31分)19(9分).为了迎接全国文明城市创建,市交警队的一辆警车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆警车的司机如何向队长描述他的位置?(2)如果此时距离出发点东侧2千米处出现交通事故,队长命令他马上赶往现场处置,则警车在此次巡逻和处理事故中共耗油多少升?(已知每千米耗油0.2升)20(12分).(1)已知|m|=5,|n|=2,且m<n,求m−n值.(2)已知|x+1|=4,(y+2)2=4,若x+y≥−5,求x−y的值.21(12分).甲、乙两商场上半年经营情况如下(“+”表示盈利,“-”表示亏本,以百万为单位)(1)三月份乙商场比甲商场多亏损多少元;(2)六月份甲商场比乙商场多盈利多少元;(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元.参考答案一、单选题(共10小题,每题3分,共30分)1.【答案】B【解析】解:−15的相反数是15.故答案为:B.【分析】只有符号不同的两个数叫做互为相反数,根据定义即可得出答案。

人教版数学七年级上册单元测试卷-第一单元 有理数(含答案)

人教版数学七年级上册单元测试卷-第一单元 有理数(含答案)

保密★启用前人教版数学七年级上册单元测试卷第一单元 有理数一、单选题1.如果规定收入为正,那么支出为负,收入2元记作2+,支出5元记作( ). A .5元B .5-元C .3-元D .7元2.2022的相反数是( ) A .12022B .12022-C .−2022D .20223.下列计算结果为0的是( ) A .2222--B .223(3)-+-C .22(2)2-+D .2333--⨯4.数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是( ). A .-5B .-1C .1D .55.华为最新款手机芯片“麒麟990”是一种微型处理器,每秒可进行100亿次运算,它工作2022秒可进行的运算次数用科学记数法表示为( ) A .140.202210⨯B .1220.2210⨯C .132.02210⨯D .142.02210⨯6.下面算式与11152234-+的值相等的是( )A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭B .11133234⎛⎫--+ ⎪⎝⎭C .111227234⎛⎫+-+ ⎪⎝⎭D .11143234⎛⎫--+ ⎪⎝⎭7.观察下列三组数的运算:3(2)8-=-,328-=-;3(3)27-=-,3327-=-;3(4)64-=-,3446-=-.联系这些具体数的乘方,可以发现规律.下列用字母a 表示的式子:①当0a <时,33()a a =-;①当0a >时,33()a a -=-.其中表示的规律正确的是( ) A .①B .①C .①、①都正确D .①、①都不正确8.数轴上,点A 对应的数是6-,点B 对应的数是2-,点O 对应的数是0.动点P 、Q 从A 、B 同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中,下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ =9.如图,正方形的周长为8个单位,在该正方形的4个顶点处分别标上0,2,4,6,先让正方形上表示数字6的点与数轴上表﹣3的点重合,再将数轴按顺时针方向环绕在该正方形上,则数轴上表示2017的点与正方形上的数字对应的是( )A .0B .2C .4D .610.如图,数轴上4个点表示的数分别为a 、b 、c 、d .若|a ﹣d |=10,|a ﹣b |=6,|b ﹣d |=2|b ﹣c |,则|c ﹣d |=( )A .1B .1.5C .1.5D .2二、填空题11.用科学记数法表示的数的原数5.001×106=___.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.13.东京与北京的时差为1h +,伯伯在北京乘坐早晨9:00的航班飞行约3h 到达东京,那么李伯伯到达东京的时间是____.(注:正数表示同一时刻比北京时间早的时数) 14.大家知道,550=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是:表示6的点与表示3的点之间的距离.类似地,式子()5a --在数轴上的意义是______. 15.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |; (2)a +b +c ______0:(3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a . 16.下列说法:①若a ,b 互为相反数,则ab=﹣1;①如果|a +b |=|a |+|b |,则ab ≥0;①若x 表示一个有理数,则|x +2|+|x +5|+|x ﹣2|的最小值为7; ①若abc <0,a +b +c >0,则a bc ab abc a bc ab abc+++的值为﹣2.其中一定正确的结论是____(只填序号). 三、解答题 17.计算:(1)2(7)18(2)-⨯--÷-; (2)212316()12()234-÷--⨯-.18.画出数轴,用数轴上的点表示下列各数,并用“>”将它们连接起来: 33,2,1.5,,0,0.54---.19.比较下列各数的大小,并用“<”号连接起来:2.5-,12,3,3--,(2)--,0.20.如图所示,在数轴上点A,B,C表示得数为﹣2,0,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC ﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.21.入冬以来,某品牌的羽绒服统计了在西乡市场某一周的销售情况,以每天100件为标准,超过的件数记作正数,不足的件数记作负数,记录如下:8,12,-9,6,-11,10,-2.(1)求销量最多的一天比销量最少的一天多销售______件;(2)该品牌羽绒服这一周的销售总量是多少件?若每件羽绒服的利润为130元,则这一周销售该品牌羽绒服的总利润为多少元?22.对于平面内的两点M、N,若直线MN上存在点P,使得MP=1NP成立,则称点P为点M、N的“和谐点”,但点P不是点N、M的“和谐点”.(1)如图1,点A、B在直线l上,点C、D是线段AB的三等分点,则是点A、B的“和谐点”(填“点C或“点D”);(2)如图2,已知点E、F、G在数轴上,点E表示数-2,点F表示数1,且点F是点E、G的“和谐点”,求点G表示的数;(3)如图3,数轴上的点P表示数5,点M从原点O出发,以每秒3个单位的速度向左运动,点N从点P出发,以每秒10个单位的速度向左运动,点M、N同时出发.在M、N、P三点中,若点M是另两个点的“和谐点”,则OM= .23.计算:已知|m|=1,|n|=4.(1)当mn<0时,求m+n的值;(2)求m﹣n的最大值.24.阅读下面的文字回答后面的问题:求231005555+++⋯+的值解:令231005555S=+++⋯+①将等式两边同时乘以5到:23410155555S=+++⋯+①①-①得:101455S=-①101554S-=即101231005555554-+++⋯+=问题:求231002222+++⋯+的值;参考答案:1.B【解析】【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.2.C【解析】【分析】根据相反数的定义求解即可,只有符号不同的两个数互为相反数.【详解】解:2022的相反数是−2022.故选:C.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.3.B【解析】【分析】根据有理数的乘方对各选项分别进行计算,然后利用排除法求解即可.【详解】A. 22--=−4−4=−8,故本选项错误;22B. 22-+-=−9+9=0,故本选项正确;3(3)C. 22-+=4+4=8,故本选项错误;(2)2D. 2333--⨯=−9−9=−18,故本选项错误.故选B.【点睛】此题考查有理数的乘方,解题关键在于掌握运算法则4.B【解析】【分析】根据数轴上点的坐标特点及平移的性质解答即可.【详解】解:根据题意:数轴上2所对应的点为A,将A点左移3个单位长度,得到点的坐标为2-3=-1,故选:B.【点睛】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识.5.C【解析】【分析】科学记数法的表示形式为10na⨯的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同,题中:1亿810=.【详解】解:100亿1010=,1013102022 2.02210⨯=⨯,故选:C.【点睛】本题考查科学记数法的表示方法,关键要正确确定a的值以及n的值.6.C【解析】【分析】直接计算每个算式,对比答案即可.【详解】解:1111115 52527 23423412-+=+-++=;A 、1111111117324324324123423423412⎛⎫⎛⎫--+-=++-=+++--= ⎪ ⎪⎝⎭⎝⎭;B 、1111111111333333723423423412⎛⎫--+=++=++++= ⎪⎝⎭;C 、1111115227227723423412⎛⎫+-+=+--++= ⎪⎝⎭;D 、11111114343823423412⎛⎫--+=++++= ⎪⎝⎭,故选:C 【点睛】本题考查了有理数的加减运算,熟记有理数的加减混合运算的法则是解题的关键. 7.B 【解析】 【分析】根据三组数的运算的规律逐个判断即可得. 【详解】解:由三组数的运算得:[]333222))8((-=-==----, []3333(3)(3)27-=--=--=-,[]3334(4)(4)64-=--=--=-,归纳类推得:当0a <时,33()a a =--,式子①错误; 由三组数的运算得:3328(2)-=-=-, 33327(3)--=-=, 33464(4)--=-=,归纳类推得:当0a >时,33()a a -=-,式子①正确; 故选:B . 【点睛】本题考查了有理数乘方的应用,正确归纳类推出一般规律是解题关键. 8.A 【解析】 【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:①当动点P、Q在点O左侧运动时,①当动点P、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t秒,由题意可知: AP=3t,BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,①当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),①OQ= BO- BQ=2-t,①PQ= 2OQ ;①当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),①OQ=BQ- BO=t-2,①PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离,解题时注意分类讨论的运用.9.B【解析】【分析】表示2017的点在﹣1的右侧,从点﹣1到2017共2018个单位长度,根据2018÷8=252……2,是252圈余2个单位长度,所以对应的数字就是2.【详解】解:因为正方形的周长为8个单位长度,所以正方形的边长为2个单位长度.表示2017的点与表示﹣1的点的距离等于2017﹣(﹣1)=2018个单位长度,因为2018÷8=252……2,所以252圈余2个单位长度,所以对应的数字是2.故选:B.【点睛】此题考查了数轴,解题的关键是找出正方形的周长与数轴上的数字的对应关系.10.D【解析】【分析】根据|a−d|=10,|a−b|=6得出b和d之间的距离,从而求出b和c之间的距离,然后假设a 表示的数为0,分别求出b,c,d表示的数,即可得出答案.【详解】解:①|a−d|=10,①a和d之间的距离为10,假设a表示的数为0,则d表示的数为10,①|a−b|=6,①a和b之间的距离为6,①b表示的数为6,①|b−d|=4,①|b−c|=2,①c表示的数为8,①|c−d|=|8−10|=2,故选:D.【点睛】本题主要考查数轴上两点间的距离、绝对值的意义,关键是要能恰当的设出a、b、c、d表示的数.11.5001000【解析】【分析】把5.001×106表示成原数的形式,就是把5.001的小数点向右移动6位即可得到.【详解】解:5.001×106=5001000,故答案为:5001000.【点睛】本题考查了科学记数法,把科学记数法表示的数还原成原数,当n>0时,n是几,小数点就向右移几位.12.1或-3##-3或1【解析】【分析】根据a、b互为相反数,c、d互为倒数,m的绝对值为2,可以得到a+b=0,cd=1,m=±2,然后代入所求式子计算即可.【详解】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,当m=2时,()()2202120112020a bm cd++-=+-=;当m=﹣2时,()()220212013 2020a bm cd++-=-+-=-;故答案为:1或-3.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a+b=0,cd=1,m=±2.13.13时【解析】【分析】根据题意,9点先加上3个小时,再加上时差的1个小时,得到达到东京的时间.【详解】由题意得93113++=,∴李伯伯到达东京是下午13时.故答案是:13时.【点睛】本题考查有理数加法的实际应用,解题的关键是掌握有理数加法运算法则.14.表示a的点与表示-5的点之间的距离【解析】【分析】利用绝对值的意义即可求解.【详解】=-,它在数轴上的意义是:表示5的点与原点(即表示0的点)之间的距解:因为550-,它在数轴上的意义是:表示6的点与表示3的点之间的距离,离,式子63a--在数轴上的意义是表示a的点与表示-5的点之间的距离.所以式子()5【点睛】本题考查了绝对值,掌握绝对值的意义是解题的关键.15.<<>>>【解析】【分析】首先根据数轴可得b<a<0<c,然后再结合绝对值的性质和有理数的加减法法法则进行计算即可.【详解】解:(1)①根据数轴可得b<a<0<c,①|a|<|b|故答案为:<;(2)①a<0<c,|a|>|c|,①a+c<0,①a+b+c<0;故答案为:<;(3)①a-b>0,①a-b+c>0;故答案为:>;(4)①a >b ,①a +c >b ;故答案为:>;(5)①c >b ,①c -b >0,①c -b >a .故答案为:>;【点睛】此题主要考查了有理数的比较大小,关键是掌握绝对值的定义和有理数的加减法法法则. 16.①①##①①【解析】【分析】根据相反数和绝对值的意义讨论即可得出答案.【详解】①若a ,b 互为相反数,则0a b +=,不能得出1a b=-,故①错误; ①当0,0a b ≥≥或0,0a b <<时,a b a b +=+成立,当0,0a b ><或0,0a b <>时,a b a b a b +=-≠+, ∴a b a b +=+成立,则0,0a b ≥≥或0,0a b <<,即0ab ≥,故①正确; ①252x x x ++++-表示x 到数2-、5-、2三个点的距离之和,所以2x =-时,252x x x ++++-取得最小值,最小值为2(5)7--=,故①正确;①当0,0,0c a b <>>且0a b c ++>时,111102abcababca bc ab abc a bc ab abc a bc ab abc--+++=+++=-+-=≠-,故①错误. 故答案为:①①.【点睛】本题考查相反数与绝对值,掌握绝对值的意义是解题的关键.17.(1)23(2)-63【解析】【分析】直接利用有理数混合运算法则计算即可.(1)解:2(7)18(2)14(9)14923-⨯--÷-=--=+=.(2) 解:21231116()12()1612()64163234412-÷--⨯-=-÷-⨯-=-+=-. 【点睛】本题考查有理数的混合运算,注意先算乘方,再算乘除,后算加减,有括号要先算括号里面的;可以结合题目特点,灵活运用结合律、分配律、交换律,从而起到简化运算的效果.18.作图见解析;33 1.500.524>>>->->-. 【解析】【分析】先在数轴上表示出各个数,再根据数轴上的点表示的数的大小规律即可得到结果.【详解】解:在数轴上表示出各个数如图所示:则可得3>1.5>0>−0.5>34->−2【点睛】本题考查了利用数轴比较有理数的大小,解题的关键是熟练掌握数轴上的点表示的数,右边的数始终大于左边的数.19.()13 2.50232-<-<<<--< 【解析】【分析】先把每个数进行化简,再根据有理数的大小排列起来即可.解:33--=-,(2)2--=, ①13 2.50232-<-<<<< , ①13 2.50(2)32--<-<<<--<.【点睛】本题考查比较数的大小,准确的把每个数进行化简是解题的关键.20.(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【解析】【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t , 则6436BC t t t =+-=+,()32225AB t t t =---=+ ()62544BC AB t t t ∴-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.21.(1)23(2)该品牌羽绒服这一周的销售总量是714件,总利润为92820元【解析】(1)直接利用有理数的减法法则,用最大的数减去最小的数即可;(2)可以先求出7天的标准件数,再加上比标准多或少件数即可,利用这周销售羽绒服的总件数×130即可.(1)12(11)23--=(件)故答案为:23;(2)7×100+8+12+(-9)+6+(-11)+10+(-2)=714(件)所以该品牌羽绒服这一周的销售总量是714件.714×130=92820(元)所以这一周销售该品牌羽绒服的总利润为92820元.【点睛】本题主要考查正数和负数,正确利用有理数的运算法则是解题的关键.22.(1)点C(2)-5或7(3)45或1517或4511【解析】【分析】(1)点C、D是线段AB的三等分点,故可直接依题意判断得到答案.(2)按“和谐点”的定义列出等式,然后可求得答案.(3)设经过t秒后满足点M是点N、P的“和谐点”或点M是P、N的“和谐点”,求出t的值,进而得到答案.(1)解:①点C、D是线段AB的三等分点①12 AC BC=故点C是点A、B的“和谐点”.(2)解:点F 是点E 、G 的“和谐点”,依题意有12EF GF =, ①3EF =①6GF =①点G 为-5或7.(3)解:设时间t 秒后:①满足点M 是点N 、P 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12NM PM = ①()157532t t -=+当570t ->时,()15757532t t t -=-=+,解得517t =①点M 为1517-,1517OM = 当570t -<时,()()157532t t --=+,解得1511t①点M 为1511-,4511OM =①满足点M 是P 、N 的“和谐点”,此时点M 为-3t ,点N 为5-10t ,依题意有12PM NM = ①153572t t +=- ,解得15t =①45OM =综上所述,45OM =或1517或4511 【点睛】本题考查数轴上的两点距离及动点问题,熟练掌握数轴的相关知识,按定义列出等式求解是解题的关键.23.(1)±3;(2)m ﹣n 的最大值是5.【解析】【分析】由已知分别求出m =±1,n =±4;(1)由已知可得m =1,n =﹣4或m =﹣1,n =4,再求m +n 即可;(2)分四种情况分别计算即可.【详解】①|m |=1,|n |=4,①m =±1,n =±4;(1)①mn <0,①m =1,n =﹣4或m =﹣1,n =4,①m +n =±3;(2)分四种情况讨论:①m =1,n =4时,m ﹣n =﹣3;①m =﹣1,n =﹣4时,m ﹣n =3;①m =1,n =﹣4时,m ﹣n =5;①m =﹣1,n =4时,m ﹣n =﹣5;综上所述:m ﹣n 的最大值是5.【点睛】本题考查了有理数的运算,绝对值的运算;掌握有理数和绝对值的运算法则,能够正确分类是解题的关键.24.10122-【解析】【分析】根据题目解题过程进行求解即可;【详解】解:令231002222S =+++⋯+①将等式两边同时乘以2到:20134122222S =+++⋯+①①-①得:10122S =-①10122S =-,即23100101222222++++=⋯-.【点睛】本题主要考查有理数混合运算的应用,正确理解题意,根据题目方法步骤进行求解是解题的关键.。

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

2023-2024学年七年级上册数学人教版第一章《有理数》单元测试题(含答案)

21.计算: (1)﹣20+(﹣14)﹣(﹣18)﹣|13|; (2) (1 1 3) (48) ;
68 (3)﹣32+(﹣ 1 )2×(﹣3)3÷(﹣1)25
3
1 22.已知数 3.3,-2,0, ,-3.5.
8 (1) 比较这些数的大小,并用“<”号连接起来; (2) 比较这些数的绝对值的大小,并将这些数的绝对值用“>”号连接起来; (3) 比较这些数的相反数的大小,并将这些数的相反数用“<”号连接起来.
法表示为( )
A.1.7×104
B.1.7×105
C.1.7×106
D.0.17×106
8.若 a b 0 ,则 a 和 b 的关系为( )
A.相等
B.互为倒数
9. 1 2 的倒数的绝对值是( ) 5
A.1 2 5
B.1 5 2
6. 1 2022 1 2023 的值是( )
C.互为相反数
a A.
b
B.b﹣a
C.a+b
D.ab
6.用四舍五入按要求对 0.04018 分别取近似数,其中正确的是( ).
A.0.4(精确到 0.1)
B.0.040(精确到百分位)
C.0.040(精确到 0.001)
D.0.0402(精确千分位)
7.据北京市通信管理局披露,截至 3 月 30 日,北京市已建设了 5G 基站数量超过 17000 个.将 17000 用科学记数
则此时蜗牛离地面的距离为 米.
15.气象部门测定,高度每增加 1 千米,气温大约下降 5℃,现在地面气温是 18℃,那么 4 千米高空的气温
,若开始输入 x 2 ,则最后输出的结果是 .
17.据统计,2021 年国庆小长假期间,我市累计接待游客 197.9 万人次,实现旅游总收入 969000000 元.数据 969000000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学单元教学目标评价测试题(一)
(第一章
有理数)
(人教版)
一.选择题(每小题4分,共24分)
1、- 2的相反数是()
A.
2
1
- B.-2 C.
2
1
D.2
2、如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()
~
A B C D
3、在有理数-3, 0, 23, -85, 3.7中,属于非负数的个数有().
A.4个B.3个C.2个D.1个
4、在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是()
A.-1
B.-6
C.-2或-6
D.无法确定
5、已知|1|
a+与|4|
b-互为相反数,则b a的值是()。

A.-1
B.1
C.-4
D.4
6、若ab≠0,则
b
a
a b
+的取值不可能是()
{
A 0
B 1
C 2
D -2
二.填空题(每小题4分,共24分)
7、如果节约16度电记作+16度,那么浪费5度电记作度;
8.据中新社北京2012年12月5日电,2012年中国粮食总产量达到578900000吨,用科学记数法表示为.
9、如果|x+1|=2,那么x=。

10.右图是一数值转换机,若输入的x为-5,则输出的结果为________
11、定义“*”是一种运算符号,规定a﹡b=5a+4b+2013,
输入x
-2
则(-4)﹡5的值为 。

12、探究与发现:两数之间有时很默契,请你观察下面的一组等式:

()()3
2
3222+-=⨯-;()()434333+-=⨯-;……你能按此等式的规律,再写出符合这个规律的一个等式吗? 。

*
三.解答题(每小题8分,共32分) 13.计算:
⑴(23 -14 -38 +5
24 )×48 ⑵
(
14.把下列各数在数轴上表示出来,并用“>”连接各数。

321,―4,―22
1
,0,―1,1
15.m 和n 互为相反数,p 和q 互为倒数,求pq n m -+)(3的值。

·
()()11
22
11-⨯=-+222
33
1[1(12)6](1)74
--+-÷⨯-
16、 若3,2a b ==,且a >b,求32a b -的值。

|
四.应用题(每小题10分,共20分)
17、2012年“十·一”黄金周期间,罗浮山风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):
(1) 请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少千人? (2) 若9月30日的游客人数为3千人,求这7天的游客总人数是多少千人?
&
18、阅读下列材料: 1×2 =
1
3×(1×2×3-0×1×2), 2×3 = 1
3×(2×3×4-1×2×3),
3×4 = 1
3
×(3×4×5-2×3×4),
由以上三个等式相加,可得 1×2+2×3+3×4 =
1
3
(1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4)=
1
3
×3×4×5 = 20。

读完以上材料,请你计算下列各题: (1) 1×2+2×3+3×4+···+10×11(写出过程);
.
(2) 1×2+2×3+3×4+···+n×(n+1) = _________
-
(第一章有理数)
一、选择题(每小题4分,共24分)
1.D 2.C3.B4.C5.B6.B
二.填空题(每小题4分,共24分)
7.-5 8.8
⨯9.-3或1
5.78910
10.21 11.201312.44
-⨯=-+等
(4)4
55
三.解答题(每小题8分,共32分)
13.⑴.12 ⑵.-2 14.略15.-1
16.5或13
四.应用题(每小题10分,共20分)
17.(1)七天内游客人数最多的是7月3日。

最少的是7月7日。

它们相差2.2千人。

(2)这7天的游客总人数是34.2千人
18.解:
(1) 1×2+2×3+3×4+···+10×11
=1
3
(1×2×3-0×1×2+2×3×4-1×2×3+……+10×11×12-9×10×11)
=1
3
×10×11×12= 440。

(2)1
(1)(2) 3
n n n
++。

相关文档
最新文档