【西大2017版】[0135]《数学物理方法》网上作业及课程考试复习资料(有答案]

合集下载

数学物理方法第一章作业答案

数学物理方法第一章作业答案

第一章复变函数§1.1 复数与复数运算1、下列式子在复数平面上个具有怎样的意义?(1)z≤ 2解:以原点为心,2 为半径的圆内,包括圆周。

(2)z−a=z−b,(a、b 为复常数)解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。

(3)Re z>1/2解:直线x=1/ 2右半部分,不包括该直线。

(4)z+Re z≤1解:即x2 +y2 +x≤1,则x≤1,y2 ≤1−2x,即抛物线y2 =1−2x及其内部。

(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数)解:(6)0 <arg zz−+ii<π4解:zz−+ii=x2+x2y−1−i2x2+(y+1)2因为0 <arg zz−i+i<π4x+ 2 −(2yx+1) 2>0x 2 2 ++(yy2+−11)2>所以,即x <0,x2 +y2 −1+2x >0 x0 <x2x−+(+22yyx+1)22 −1<1x+( y+1)2 2综上所述,可知z 为左半平面x<0,但除去圆x2 +y2 −1+2x =0 及其内部z -1 ≤(7)1,z +12z-1 x 1 iy x y 1 4y−+⎡+−⎤2 2 2==+⎢⎥解:()[()] +++++iy 1 y22 2z 1 x 1 x⎣x 1 y⎦+ 2 +2所以()[()]x+−+≤++222 y 1 4y2 x 1 y2 22化简可得x≥0(8)Re(1 /z) =2⎛⎞⎡−⎤1 x iy x解:Re( ⎟=R e 21/ z=⎜) Re 2 ==⎜⎟⎢⎥⎝iy⎦x ⎣x++y+y⎠x2 2 2即(1/ 4)1/16x− 2 +y=2(9)Re Z2 =a2解:Re Z2 =x2 −y2 =a2(10) z1 +z+z−z=2 z+2 z2 2 22 1 2 1 22解:()()()()()() x1+x+y+y+x−x+y−y=2 x+y+2 x+y2 2 2 2 2 2 2 22 1 2 1 2 1 2 1 1 2 2 可见,该公式任意时刻均成立。

【免费下载】数学物理方法讲义

【免费下载】数学物理方法讲义

0

ih t
复数


ቤተ መጻሕፍቲ ባይዱ
h2 2m
x, y, z, t
1. 数的概念的扩充
正整数(自然数) 1,2,…
负数
整数

运算规则 +,-,×,÷, 2 ,
- 1 2 1
÷2
2
x2
0,-1,-2,…
…,-2,-1,0,1,2,…
2
y 2
1 0.5 1 0.333
有理数(分数) 整数、有限小数、无限循环小数
无理数 无限不循环小数
实 数 有理数、无理数
虚数 复数
2. 负数的运算符号
2 1.414
1 i yi
实数、虚数、实数+虚数
x2 1
x i
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数学物理方法复习总结

数学物理方法复习总结

数 学 物 理 方 法教 材:梁昆淼编写的《数学物理方法》[第四版]内 容:第一篇 复变函数论 第二篇 数学物理方程第一章 复变函数 一、复数1、复数的定义iy x z +=——代数式)sin (cos ϕϕρi z +=——三角式ϕρi e z =——指数式 重点:复数三种表示式之间的转换!实部: z x Re = 虚部:z y Im = 模:22y x z +==ρ主辐角:)(arg x yarctg z = ,2a r g 0π<≤z辐角:πk z Argz 2arg +=),2,1,0( ±±=k共轭复数:iy x z +=*z x i y =- 2、复数的运算:加、减、乘、除、乘方、开方(1)、加法和减法(2)、乘法和除法))((221121iy x iy x z z ++=)()(12212121y x y x i y y x x ++-=)()(212121y y i x x z z ±+±=±111iyx z +=222iy x z +=21z z *22*21zz z z ⋅⋅=22222211))((y x iy x iy x +-+=2222211222222121y x y x y x i y x y y x x +-+++=(2)、乘法和除法121111122222(cos sin )(cos sin )i i z i ez i eϕϕρϕϕρρϕϕρ=+==+=▶两复数相乘就是把模数相乘, 辐角相加;▶两复数相除就是把模数相除, 辐角相减。

(3) 复数的乘方和开方(重点掌握) )]sin()[cos(21212121ϕϕϕϕρρ-+-=i z z )(2121ϕϕρρ-=i e 12121212[cos()sin()]z z i ρρϕϕϕϕ=+++)(2121ϕϕρρ+=i e n i n e z )(ϕρ=ϕρin n e =)sin (cos ϕϕρn i n n +=或 (n 为正整数的情况)棣莫弗公式:ϕϕϕϕn i n i nsin cos )sin (cos +=+复数的乘、除、乘方和开方运算,采用三角式或指数式往往比代数式来得方便。

数学物理方法

数学物理方法

数学物理方法Mathematical Method in Physics西北师范大学物理与电子工程学院豆福全第五章 Fourier 变换法§5 . 0 引言在数学中,为将较复杂的运算转化为较简单的运算,常常采用变换手段。

如数量的乘积或商可以通过对数变成对数的解或差,,而得原来数量的乘积或商。

(实质是将乘除运算(复杂)——加减运算(简单)),再如解析几何中的坐标变换,复变函数中的保角变换等均如此。

所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变换,一般是含有参变量x 的积分()()(),baF f t k t dt αα=⎰实质是将某函数类A 中的函数f 通过上述积分运算变成另一类函数类B 中的函数()F α ,这里(),k t α 是一个确定的二之函数,称为积分变换的核。

选取不同的积分域和变换核时,就得到不同名称的变换,如(),i t k t e ωα-=积分域()(),,a b =-∞∞则 ()()i t F f t dt e ωω∞--∞=⎰(ω为实变量)------------Fourier 变换(),i t k t e ωα-= 积分域()(),0,a b =∞则()()0tF f t dt e σσ∞-=⎰ (σ为实变量)-------------Laplace 变换()f t 称为象原函数,()F α称为()f t 的象函数,一定条件下,它们是一一对应的,而变换是可逆的。

积分变换可用来求解方程(如微分方程)。

原方程中直接求未知数有困难或较复杂时,则可求它的某种积分变换的象函数,然后再由求得的像函数去找原函数。

这种变换的选择应当使得由原来函数的方程经变换得到象函数的方程,易求解。

积分变换的理论和方法在所有科学和各种工程技术中有广泛的应用,我们重点学习Fourier 变换和Laplace 变换。

§5 . 1 Fourier 级数,积分和Fourier 变5 .1 .0 引言研究一个比较复杂的函数时,往往是将它化作一些简单函数的叠加即展开成无穷级数,再利用无穷级数的积分去近似代替它。

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1u x ∂=∂,0v y ∂=∂,u v x y∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v v x y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*000lim lim lim()0z z z z z z z zz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i ze zθ-∆=∆与趋向有关,则上式中**1z z z z ∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()332222220,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩,332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

数学物理方法 课件

数学物理方法 课件

数学物理方法课件一、引言数学物理方法是一种广泛应用于科学、工程和技术领域的工具,它涵盖了从最简单的线性代数到更复杂的微分方程和量子力学等广泛的主题。

本篇文章将概述数学物理方法在科学、工程和技术中的应用,并重点介绍一些常用的数学物理方法及其基本原理。

二、数学物理方法的应用数学物理方法在各个领域都有广泛的应用,包括物理学、化学、生物学、工程学和地球科学等。

例如,在物理学中,数学物理方法被用于描述和预测各种现象,如力学、电磁学、热力学和量子力学等。

在化学和生物学中,数学物理方法被用于研究化学反应和生物系统的动态行为。

在工程学和地球科学中,数学物理方法被用于解决实际问题和预测自然现象,如流体动力学、结构力学和气候变化等。

三、常用的数学物理方法1、线性代数:线性代数是数学物理方法的基础,它研究的是向量空间和线性变换的数学性质。

线性代数在物理学、工程学和化学中被广泛应用,用于描述和预测各种现象。

2、微积分:微积分是研究变化率和累积量的数学工具,它在物理学和工程学中被广泛使用,用于描述和预测各种动态行为。

3、微分方程:微分方程是描述动态系统变化的数学工具,它在物理学、工程学和生物学中被广泛应用。

微分方程可以用来描述物体的运动、化学反应的速度以及生物系统的动态行为等。

4、量子力学:量子力学是描述微观粒子行为的物理学分支,它使用数学物理方法来描述和预测微观粒子的状态和行为。

量子力学在物理学、化学和材料科学中被广泛应用。

四、结论数学物理方法是科学、工程和技术领域中不可或缺的工具,它为我们提供了描述和预测各种现象的强大工具。

通过学习和掌握这些方法,我们可以更好地理解和解决现实世界中的问题。

在我们的日常生活中,物理现象无处不在。

当我们打开电灯时,为什么会立刻看到光线?当我们在冷天洗热水澡时,为什么会感到身体变暖?这些都是物理现象的表现。

今天,我们将一起走进这个充满奇妙和神秘的物理世界。

让学生了解物理是什么,以及物理学科的特点和研究内容。

20秋西南大学[0135]《数学物理方法》作业辅导资料

0135 20202单项选择题1、1.孤立奇点2.以上都不对3.解析点4.非孤立奇点2、1.2.3.4.3、积分1. C.2.3.4.04、本征值问题的本征函数为1.2.3.4.5、1.与积分路径有关,但与端点坐标无关2.与积分路径无关,但与端点坐标有关3.与积分路径及端点坐标有关4.与积分路径及端点坐标无关6、1.2.3.4.7、是下列哪一个方程的解1. F.2.3.4.8、下列公式正确的是1. E.2.3.4.9、积分1. A. 02. 13. 34. 210、设,则1.2.3.4.11、为的1.一阶极点2.二阶极点3.可去奇点4.本性奇点12、积分1. B. 32. 13. 24.013、为的1.一阶极点2.本性奇点3.可去奇点4.二阶极点14、在的留数为1. D.2.3.4.判断题15、方程的解为.1. A.√2. B.×16、设的傅里叶变换的像函数是,则的傅里叶变换的像函数是1. A.√2. B.×17、设的拉普拉斯变换的像函数是,则的拉普拉斯变换的像函数1. A.√2. B.×18、在复数范围内,。

1. A.√2. B.×19、1. A.√2. B.×20、1. A.√2. B.×21、若实变函数在处连续,则函数续.1. A.√2. B.×22、若实变函数,在处可微,则函数处可微.1. A.√2. B.×23、三维拉普拉斯方程球内问题的1. A.√2. B.×24、若函数在处可导,则在的邻域内一定能展开为泰勒1. A.√2. B.×25、若函数在处可导,则称在处解析.1. A.√2. B.×26、三维拉普拉斯方程球内问题的1. A.√2. B.×27、二维拉普拉斯方程圆内问题的解为1. A.√2. B.×28、在复数域指数函数是一个周期函数。

1. A.√2. B.×主观题29、参考答案:0.530、参考答案:231、参考答案:一阶极点32、参考答案:33、参考答案:134、参考答案:二阶极点35、参考答案:036、参考答案:37、参考答案:38、参考答案:39、参考答案:40、参考答案:41、参考答案:42、参考答案:43、参考答案:44、45、参考答案:46、47、参考答案:48、参考答案:49、50、参考答案:51、参考答案:52、参考答案:53、54、55、计算参考答案:56、参考答案:57、58、参考答案:59、60、参考答案:。

数学物理方法期末复习

数学物理方法期末复习数学物理方法是一门综合应用数学和物理知识的学科,主要涉及到数学工具和数学方法在物理学中的应用。

数学物理方法的核心内容包括数学分析、微分方程、线性代数、复变函数等。

这门课程对于物理学专业的学生来说非常重要,它为我们理解和解决物理问题提供了强有力的工具。

在数学物理方法的学习中,数学分析是一个非常重要的基础部分。

数学分析研究了函数的性质、极限、连续性、微分性和积分性等。

通过学习数学分析的原理和方法,我们可以更深入地理解和分析物理问题中的数学关系。

微分方程是数学物理方法中的另一个重要内容。

微分方程是描述物理系统动力学行为的数学模型。

通过对微分方程进行求解,可以得到物理系统的解析解或数值解,从而进一步研究和分析物理系统的运动和变化规律。

线性代数也是数学物理方法中的关键部分。

线性代数研究了向量空间、线性变换、矩阵以及它们的性质和运算。

在物理学中,线性代数被广泛应用于矩阵理论、量子力学、电磁学等领域。

例如,在量子力学中,波函数的表示和演化可以通过线性代数的方法进行描述和求解。

复变函数是研究复数域上的函数的一门学科,也是数学物理方法中的重要内容。

复变函数在物理学中的应用非常广泛,特别是在电磁学、流体力学和量子力学中。

通过复变函数的分析,我们可以更好地理解和求解这些物理问题。

总的来说,数学物理方法是物理学专业学生必须掌握的一门课程。

它不仅提供了解决物理问题所需的数学工具,而且培养了我们分析和解决问题的能力。

数学物理方法的学习不仅需要我们掌握数学知识,还需要我们运用数学方法进行物理问题的建模和求解。

通过不断练习和研究,我们可以逐渐掌握和运用这些数学物理方法来解决实际问题。

在数学物理方法的期末复习中,我们可以从以下几个方面进行复习和提高:首先,我们可以回顾和复习数学分析的基本概念和原理。

包括函数的性质、极限、连续性、微分性和积分性等。

通过做一些相关的数学分析题目,加深对这些概念和原理的理解和应用能力。

【最新】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题一、简答题(共70分)1、试阐述解析延拓的含义。

解析延拓的结果是否唯一?(6分)解析延拓就是通过函数的替换来扩大解析函数的定义域。

替换函数在原定义域上与替换前的函数相等。

无论用何种方法进行解析延拓,所得到的替换函数都完全等同。

2、奇点分为几类?如何判别?(6分)在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。

判别方法:洛朗级数展开法A,先找出函数f(z)的奇点;B,把函数在的环域作洛朗展开1)如果展开式中没有负幂项,则为可去奇点;2)如果展开式中有无穷多负幂项,则为本性奇点;3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。

3、何谓定解问题的适定性?(6分)1,定解问题有解;2,其解是唯一的;3,解是稳定的。

满足以上三个条件,则称为定解问题的适定性。

4、什么是解析函数?其特征有哪些?(6分)在某区域上处处可导的复变函数称为该区域上的解析函数.1)在区域内处处可导且有任意阶导数.2)()()⎩⎨⎧==21,,CyxvCyxu这两曲线族在区域上正交。

3)()yxu,和()yxv,都满足二维拉普拉斯方程。

(称为共轭调和函数)4)在边界上达最大值。

4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。

波动方程属于其中的双曲线方程。

5、写出)(x δ挑选性的表达式(6分)()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==-⎰⎰⎰∞∞∞-∞∞-)()()(00000R f dv R r r f f dx x x f x f dx x x x fδδδ6、写出复数231i +的三角形式和指数形式(8分)三角形式:()3sin3cos231cos sin 2321isin cos 222ππϕϕρϕϕρi i i+=++=+=+指数形式:由三角形式得:313πρπϕi ez ===7、求函数2)2)(1(--z z z在奇点的留数(8分)解:奇点:一阶奇点z=1;二阶奇点:z=21)2)(1()1(lim Re 21)1(=⎥⎦⎤⎢⎣⎡---=→z z zz sf z1)1(1lim )2)(1()2(!11limRe 22222)2(\-=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---=→→z z z z z dz dsf z z8、求回路积分 dz zzz ⎰=13cos (8分)解:)(z f 有三阶奇点z=0(在积分路径内)[]21-cosz lim z cosz !21limRe 033220)0(\==⎥⎦⎤⎢⎣⎡=→→z z z dzd sf ∴原积分=i i sf i πππ-=-=)21(2)0(Re 29、计算实变函数定积分dx x x ⎰∞∞-++1142(8分)解:⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--+=++=)1(22)1(22)1(22)1(22111)(242i z i z i z i z z z z z f它具有4个单极点:只有z=)1(22i --和z=)1(22i +在上半平面,其留数分别为:ππ2)221221(2I 221)1(22)1(22)1(221lim Re 221)1(22)1(22)1(221lim Re 20))1(22(\20))1(22(\=+=∴=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--+==⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡--+=→+→--iii i i z i z i z z sfi i z i z i z z sfz i z i10、求幂级数kk i z k)(11-∑∞= 的收敛半径(8分)111lim111limlim1≤-=+=+==∞→∞→+∞→i z kk k k a a R k k k k k 所以收敛圆为二、计算题(共30分)1、试用分离变数法求解定解问题(14分)⎪⎪⎩⎪⎪⎨⎧=-===><<=-====0,2/100,000002t t t l x x x x xx tt u x u u u t l x u a u令)()(),(t T x X t x u =,并代入方程得⎪⎩⎪⎨⎧===-0)()(0)()0(0''''2''t T l X t T X T X a XT 移项 λ-==X XT a T ''2'' ⎪⎩⎪⎨⎧===+0)(0)0(0''''l X X X X λ和02''=+T a T λxC x C x X C x C x X eC eC x X x xλλλλλλλsincos)(0)(0)(0212121+=+==+=---时,方程的解为:>在时,方程的解为:在时,方程的解为:<在由边界条件0)(0)0(''==l X X ,得:xl n C x X ln n l l C l C l C l X C C X xC x C x X CXx x X ππλπλλλλλλλλλλλλλλλcos)(0sinsincos)(000)0(sincos)(0(00)(01222121'22'21'==→=∴=≠=+-==≠==+===≡(否则方程无解),,时,>时,时,<)3,21(sin cos )()(000002''222,得:的方程代人和把=⎪⎩⎪⎨⎧+=+==+==n l at n B l at n A t T tB A t T T a T T ln n n nππλπλλx ln lat n B lat n A t B A t x U n n n πππcos)sincos(),(100+∑++=∴∞=由初始条件得⎪⎪⎩⎪⎪⎨⎧=∑+-=∑+∞=∞=0cos 21cos 1010x l n l a n B B x x l n A A nn n n πππ把右边的函数展成傅里叶余弦级数, 比较两边的系数得⎰⎰⎰⎰⋅=⋅-==-=ln ln llxdxl n an B xdxln x lA dx lB dxx lA 000cos02cos )21(201)21(1πππ得:⎪⎩⎪⎨⎧=+=-=∴-=-=)2(0)12(4)1(cos 22122220k n k n n l A n n l A l A n n πππxl n lat n n ll t x U n πππcoscos)4(21),(221-∑+-=∴∞=2、把下列问题转化为具有齐次边界条件的定解问题(不必求解)(6分)⎪⎪⎪⎩⎪⎪⎪⎨⎧===-==∆====0,sin 0),(000b y y a x x u a xB u u y b Ay u u π),(),(),(t x w t x v t x u +=令 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=====+====0sin 00000by y a x x yy xx v a x B v v v v v ,,π ⎪⎪⎩⎪⎪⎨⎧===-==+====000)(000b y y ax x yyxx w w w y b Ay w w w ,,则,v ,w 都可以分别用分离变量法求解了。

数学物理方法习题答案

数学物理方法习题答案数学物理方法习题答案数学物理方法作为一门重要的学科,是自然科学中的基础学科之一。

它的研究对象是自然界中的现象和规律,通过数学的方法来描述和解释这些现象和规律。

在学习数学物理方法的过程中,习题是不可或缺的一部分。

下面我将为大家提供一些数学物理方法习题的答案,希望能对大家的学习有所帮助。

1. 求解微分方程:dy/dx = x^2 + y^2解:将方程改写为dy/(x^2 + y^2) = dx,然后对两边同时积分得到:arctan(y/x) = x + C其中C为积分常数。

将等式两边同时取正切,得到:y/x = tan(x + C)即为所求的解。

2. 求解偏微分方程:∂u/∂t = a^2(∂^2u/∂x^2 + ∂^2u/∂y^2)解:假设u(x, y, t) = X(x)Y(y)T(t),将其代入方程得到:X(x)Y(y)T'(t) = a^2(X''(x)Y(y) + X(x)Y''(y))整理得到:T'(t)/a^2T(t) = X''(x)/X(x) + Y''(y)/Y(y)由于等式两边只依赖于不同的变量,所以必须等于同一个常数,设为-k^2。

于是得到三个常微分方程:T'(t)/a^2T(t) = -k^2X''(x)/X(x) = -k^2Y''(y)/Y(y) = -k^2解这三个方程,得到:T(t) = C1e^(-a^2k^2t)X(x) = C2sin(kx) + C3cos(kx)Y(y) = C4sin(ky) + C5cos(ky)将三个方程的解合并,得到原方程的通解:u(x, y, t) = Σ[C1e^(-a^2k^2t)][C2sin(kx) + C3cos(kx)][C4sin(ky) + C5cos(ky)]其中Σ表示对k的求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1:[论述题]第一次作业数学物理方法第一次作业1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数2⎝⎭的实部u 和虚部v 、模r 与幅角θ。

2. 试解方程:()0,044>=+a a z3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++-. (2)y ie y e z f x x cos sin )(-=4.已知解析函数f z u x y iv x y ()(,)(,)=+的虚部为v x y e x y (,)cos =,求此解析函数。

参考答案:数学物理方法第一次作业答案1. (1)原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2)332()102052(0,1,2,3,4)k i ek ππ+==原式(3)22231221cos sin cos sin ,2333322i i i e πππππ⎛⎫+⎛⎫==+=+==-+ ⎪ ⎪ ⎪⎝⎭⎝⎭原式12u v 1,2k ,k 0,1,2,23r πθπ=-===+=±± 所以:,2.44424400000,0,1,2,3,,,,i k iiz a a e z aek aez i i ππππωωωωω+=-=====--若令则3. (1)()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,.,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:由于在平面上可微所以在平面上解析.()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂(2)证明: y e y x u x sin ),(=, y e y x v x cos ),(-=y e yuy e xux x cos ,sin =∂∂=∂∂, y e yvy e xvx x sin ,cos =∂∂-=∂∂ 平面上解析在平面上可微在平面上连续在z z f z y x v y x u z yvx v y u x u x v y u y v x u )(),(),,(,,,,∴∴∂∂∂∂∂∂∂∂∂∂-=∂∂∂∂=∂∂∴z x x x ie y y i ie y ie y e xv i x u z f -=+-=-=∂∂+∂∂=')cos sin (cos sin )( 4.c x ie x e z f yy++=cos sin )(1:[论述题]第二次作业数学物理方法第二次作业1. 由下列条件求解析函数 ()iv u z f +=(),1,22i i f xy y x u +-=+-=2. ()21,3,,.ii i ii i e ++试求3. 计算221(1),21c z z dz c z z -+=-⎰:()2221(2),21cz z dz c z z -+=-⎰:5.计算232|2:|,1=-+⎰i z c dz z e c iz参考答案:第二次作业答案数学物理方法第二次作业答案1.解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知代入上式,则则解析函数2.()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos ln sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i ii ii ee eei k e e e e i k i eeeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±=== 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+ 3.(1)(2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式4.1sin(1)sin 442.112c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.11c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,作圆1222sinsin44.11c c z zdz dz i i i z z ππ=+==--⎰⎰原式5.21232,21()2|1(-)(-)()iziz iz iz izz i c c c e z i z i z e e e z i edz dz dz i e z z i z i z i z i ππ-=-==++=====+++⎰⎰⎰ 解:在内只有一个奇点,所以原式()1:[论述题]第三次作业数学物理方法第三次作业1.将下列函数按()1-z 的幂级数展开,并指明收敛范围。

2z z + 2.把f z z z ()()()=--123展为z 的泰勒级数,并给出收敛半径。

3.把f z z z ()()()=--123展为下列级数(1) 将f z ()在23<<z 展为罗朗级数。

(2) 将f z ()在3<<∞z 展为罗朗级数。

4.把()()z z z f -=11展开成在下列区域收敛的罗朗(或泰勒)级数212(21)=4 z i z z i ππ==-+解:原式(1),11<+z (2) ,211<+<z (3).21>+z5.计算积分 11sin z dz z z =⎰6.计算2|:|,)1(2=-⎰z c dz z z e c iz参考答案:第三次作业答案数学物理方法第三次作业答案1.()()()11001211211121121,12233331311,313,3nnn n n n z z z z z z z z ∞∞++==--⎛⎫=-=-⋅⋅=-=+- ⎪-++-⎝⎭---<-<-<-∑∑解:其中,即此为级数的收敛范围。

2.100100110111()(2)(3)32111333333(1)3111222222(1)21111()()23223nnn n n nnn n n n n n n f z z z z z z z z z z z z z z z f z z z z z ∞∞+==∞∞+==∞++===------⎛⎫==-=-< ⎪-⎝⎭--⎛⎫==-=-< ⎪-⎝⎭-=-=-<--∑∑∑∑∑3.11021(),2||33n nn n n n z f z z z ∞∞++===--<<∑∑、1100322(),3||n nn n n n f z z z z∞∞++===-<<∞∑∑、 4.(1),11<+z()()()()()100011111111111212111111.222nnn n n n n f z z z z z z z z z z ∞∞∞+=====+=-+⋅+---+-+⎛⎫⎛⎫=-++=-⋅+ ⎪ ⎪⎝⎭⎝⎭∑∑∑解:(2),211<+<z()()()()110000111111111121112111111.112221nnnn n n n n n f z z z z z z z z z z z z ∞∞∞∞++======+=⋅+⋅--+--+++⎛⎫⎛⎫=+=+ ⎪ ⎪++⎝⎭⎝⎭+∑∑∑∑解:(3).21>+z()()()()11000011111111211111111111212.111111nnn n n n n n n f z z z z z z z z z z z z z z z ∞∞∞∞++====-==+=⋅+⋅--++--++-⎛⎫⎛⎫=+⋅=- ⎪ ⎪++++⎝⎭⎝⎭++∑∑∑∑解:5. 解:()zz z f sin 1=的奇点为),2,1,0( ±±==n n z π 在01==z z 内只有一个奇点200200020001011sin sin 0()1Re ()limlim ()sin sin sin cos cos cos sin lim lim sin 2sin cos lim 02cos 12Re ()0sin lim lim z z z z z z z z z z zz z z zz f z d d z s f z z dz z z dz z z z z z z z z z z zzz dz i s f z z z π→→→→=→→→==⋅==∴=⎡⎤=⋅=⎢⎥⎣⎦--+=====⎰ 为的二阶极点 = 6.222000222111201()20,1(1)Re ()lim lim 1(1)(1)(1)Re ()lim (1)lim (1)(1)2(Re ()Re ())(1)iziz izz z z iz iziz z z iz c z z e f z z z z z z e e s f z z z z z d e e iz s f z z i e dz z z z e dz i s f z s f z z z π→→=→→=======-⎡⎤===⎢⎥--⎣⎦⎡⎤-=-==-⎢⎥-⎣⎦=+=-⎰ 在内有一阶极点 二阶极点21(1)ii i e π⎡⎤+-⎣⎦1:[论述题]第四次作业数学物理方法第四次作业1. 试用分离变数法求解定解问题.0,,0,0,00002=====-====t t t lx x xx tt u x u uuu a u ()0,0≥≤≤t l x2. 求解定解问题2(0,0)(0,)0,(,)0(0)(,0)sin ,(,0)sin(0)tt xx t u a u x l t u t u l t t x xu x u x x l l lππ-<<>==≥==≤≤=0 3.试用分离变量法求解定解问题(0,0)(0,),(,)0(0)(,0)0,(,0)0(0)tt xx t u u x l t u t E u l t t u x u x x l -<<>==≥==≤≤=0 其中E 为已知常数。

相关文档
最新文档