磁性材料基本特性
为什么铁磁性材料能够吸附磁铁解析磁性材料的特性

为什么铁磁性材料能够吸附磁铁解析磁性材料的特性铁磁性材料的能够吸附磁铁是因为其特有的磁性特性。
铁磁性材料是一类可以被磁化的物质,具有吸附磁铁的能力。
本文将解析铁磁性材料的特性以及为何能够吸附磁铁。
一、铁磁性材料的基本特性铁磁性材料是由铁、镍、钴等元素组成的,具有独特的磁性特性。
其特点如下:1. 磁化能力强:铁磁性材料具有很强的磁化能力,可以被外界磁场所磁化。
一旦被磁化,铁磁性材料会生成一个磁化强度较大的磁场。
2. 磁化后能保持磁性:铁磁性材料在外界磁场的作用下,可以将一部分外界磁能转化为内部磁能,并能长时间地保持磁化状态。
3. 磁化方向可逆:铁磁性材料的磁化方向可以根据外界磁场的方向进行反转,即磁化方向可以由南极转变为北极,或由北极转变为南极。
4. 磁滞回线:铁磁性材料在磁化和去磁化过程中会有一段磁滞回线,表明了其在磁化和去磁化中的能量损耗。
二、铁磁性材料吸附磁铁的原理铁磁性材料能够吸附磁铁主要是由于其磁性特性所致。
当铁磁性材料靠近磁铁时,由于两者之间存在磁场的相互作用,铁磁性材料会被磁铁的磁场所磁化,从而形成一个磁场。
具体来说,当磁铁靠近铁磁性材料时,磁铁的磁场会使铁磁性材料内部的微小磁矩重新排列,从而使其磁矩方向与磁铁的磁场方向保持一致。
这种重新排列的磁矩形成一个强大的磁场,而这个磁场又与磁铁的磁场相互作用,使得铁磁性材料受到磁铁的吸附力。
此外,铁磁性材料还具有较高的导磁率,在磁化过程中能够吸收磁能,进一步增强了其吸附磁铁的能力。
三、铁磁性材料吸附磁铁的应用铁磁性材料的吸附磁铁的特性在实际应用中具有广泛的用途。
以下是几个应用案例:1. 磁性夹具:铁磁性材料可以用于制作磁性夹具,用于吸附和固定磁铁物体。
例如,在装配线上,磁性夹具可以将磁铁固定在需要的位置,方便人工操作。
2. 磁性卡扣:铁磁性材料可以制作用于吸附和固定物体的磁性卡扣。
例如,在家具制造中,可以使用磁性卡扣将家具的门板或抽屉固定在框架上,提高了操作的便利性和可靠性。
磁性材料的基本特性及分类参数

一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
磁性材料的基本特性

一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数∙饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列;∙剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs;∙矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等);∙磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关;∙初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp;∙居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度;∙损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r;∙在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米)3.软磁材料的磁性参数与器件的电气参数之间的转换∙设计软磁器件通常包括三个步骤:正确选用磁性材料;∙合理确定磁芯的几何形状及尺寸;∙根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
材料:B H,m 磁芯(S,l):f~F 器件(N):U~I,LI ~H: H = IN/l 磁势F =ò Hdl=Hl Nf = ò UdtL~m:L=AL N2 =4N2m SK /D′10-9 U ~B:U = Ndf/dt = kfNBS ′10-6二、常用软磁磁芯的特点及应用(一).粉芯类1.磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
磁场对磁性材料的磁力和磁场的关系

磁场对磁性材料的磁力和磁场的关系磁场是指空间中存在的磁力作用的区域。
而磁性材料是指具有一定磁性的物质。
磁场与磁性材料之间相互作用,形成了复杂的磁力和磁场关系。
本文将就磁场对磁性材料的磁力以及磁场影响磁性材料的行为进行探讨。
一、磁性材料的基本特性磁性材料可以基于其磁性特性分为铁磁材料、抗磁材料和顺磁材料三类。
其中,铁磁材料是指在磁场作用下具有明显磁化特性的物质,如铁、镍等金属。
抗磁材料则是指在磁场作用下磁化度很小或者趋于零的材料,如铜、银等金属。
顺磁材料则是指在磁场中磁化方向与磁场方向一致的物质,如铝、锂等金属。
二、磁场对磁性材料的磁力影响磁场对磁性材料的磁力影响主要表现为磁力线的作用。
磁力线是标示磁场分布的线条,由南极指向北极,呈现出环绕磁体的形状。
当磁场线与磁性材料交叉时,会产生相互作用,即磁力。
磁力的大小与磁场强度以及材料的磁性有关。
1. 铁磁材料的磁力在铁磁材料中,磁力线会穿过材料,使其发生磁化。
当外界磁场越强,磁力线越密集,铁磁材料的磁化强度也越大。
同时,铁磁材料具有记忆磁场的特性,即在去除外界磁场后,铁磁材料仍可保持一定的磁化程度。
2. 抗磁材料的磁力抗磁材料在外界磁场的作用下,磁力线则趋于排斥,使材料呈现抗磁性。
抗磁材料的磁化程度很小,甚至趋于零。
这是因为抗磁材料的原子或离子对外磁场的磁化作用与铁磁材料相反。
3. 顺磁材料的磁力顺磁材料在外界磁场的作用下,磁力线会引导材料中原子或离子的磁化方向与磁场方向一致,使其呈现顺磁性。
顺磁材料的磁化程度随着外磁场的增强而增大,但相对于铁磁材料来说,磁化强度较小。
三、磁场对磁性材料的影响行为除了磁力的影响,磁场还会对磁性材料的性能和行为产生其他影响。
1. 磁场对磁性材料的磁化强度的影响磁场强度对磁性材料的磁化强度有直接影响。
磁场强度越大,材料磁化的强度也会随之增大。
这一现象可以通过磁化曲线来描述,即磁化强度与磁场强度的关系曲线。
曲线上的不同阶段代表了材料在不同磁场强度下的磁化行为。
电工材料 第5章—磁性材料

5.1 磁性材料的基本特性
三、磁性材料的特性曲线
2、磁滞回线
➢ 从整个过程看,B的变化总是落后于H 的变化,这种现象称为磁滞现象。磁 性材料经过一个循环的反复磁化(即 磁场强度从正最大值Hm到负最大值一 Hm 再 到 Hm) 而 得 到 与 原 点 对 称 的 闭 合 曲线(如abcdefa),称为磁滞回线。
➢ 当H单调地减至零时,B值却不等于零,仍保持一个相当的值B,这 个值叫做剩磁感应强度(Br),简称剩磁。
➢ 为了消除剩磁,必须外加反方向的磁场。随着反方向H单调地增大, 磁性材料逐渐退磁。当反方向H增大到一定值时,B值由Br逐渐变 小,直至为零,这一过程称为去磁过程(bc段曲线叫退磁曲线)。
5.1 磁性材料的基本特性
➢ 工程计算所用的磁化曲线就是这种曲线,所以基本磁化曲线是一 种实用的磁化曲线,它是软磁材料确定工作点的依据。
➢ 由于影响磁性能的因素很多,即使是同一种牌号的材料,实验测 得的基本磁化曲线也是有差异的。
5.1 磁性材料的基本特性
三、磁性材料的特性曲线
4、退磁曲线
➢ 退磁曲线是指极限磁滞回线在第二象限 的部分,如右图中的BrHc这段曲线,它 是说明硬磁材料特性的曲线,是鉴定硬 磁材料品质优劣的一项重要依据。
材料的这种特性称为磁饱和,Bs为饱和磁感应强度。
5.1 磁性材料的基本特性
三、磁性材料的特性曲线
1、起始磁化曲线
➢ 起始磁化曲线表明了磁性材料的B 和H是非线性关系,也表明了磁性 材料的磁导率μ(等于B/H)不是常 数。
➢ 由于磁化曲线上任一点的B与H之比 就是相应的磁导率,因而根据B-H 曲线就可绘出μ一H曲线。
5.2 软磁材料
一、软磁材料的性能指标和主要性能要求
磁性材料特性

磁性材料特性
磁性材料是一类具有特定磁性能的材料,广泛应用于电子、通信、医疗、能源等领域。
磁性材料的特性对其在不同领域的应用起着至关重要的作用。
本文将围绕磁性材料的特性展开讨论,以便更好地了解和应用这一类材料。
首先,磁性材料的特性包括磁化强度、磁化曲线、磁化方式等。
磁化强度是指材料在外加磁场下磁化的能力,通常用磁化强度、剩磁和矫顽力等参数来描述。
磁化曲线则是描述材料在外加磁场下磁化过程的曲线,通过磁化曲线可以了解材料的磁化特性。
而磁化方式则是指材料在外加磁场下的磁化行为,包括顺磁、抗磁和铁磁等不同的磁化方式。
其次,磁性材料的特性还包括磁滞回线、磁导率、磁化损耗等。
磁滞回线是描述材料在磁化过程中的磁滞现象的曲线,通过磁滞回线可以了解材料的磁滞特性。
磁导率则是描述材料对磁场的导磁能力,磁导率高的材料对磁场的响应更强。
而磁化损耗则是描述材料在磁化过程中产生的能量损耗,磁化损耗越小,材料的磁化效率越高。
另外,磁性材料的特性还包括磁饱和磁感应强度、居里温度等参数。
磁饱和磁感应强度是指材料在外加磁场下达到饱和磁化状态时的磁感应强度,磁饱和磁感应强度越高,材料的磁化效果越好。
居里温度则是指材料在高温下失去磁性的临界温度,超过居里温度后,材料将失去磁性。
总的来说,磁性材料的特性对其在不同领域的应用起着决定性的作用。
了解和掌握磁性材料的特性,有助于更好地选择和应用这一类材料,推动相关领域的发展和进步。
希望本文能够对磁性材料的特性有所启发,促进相关领域的研究和应用。
分析磁性材料的磁性和磁场效应

分析磁性材料的磁性和磁场效应磁性材料是一类具有磁性的材料,其磁性是由材料中的磁性元素或离子所引起。
磁性材料包括铁、钴、镍等传统磁性材料,同时也包括氧化铁、磁性液体等新型磁性材料,这些材料广泛应用于电子、信息、能源等领域。
本文将从磁性和磁场效应两个方面对磁性材料进行分析。
一、磁性磁性是磁性材料最基本的性质。
磁性的产生是由材料中的磁矩所引起的。
磁矩是指电子自旋和轨道角动量的合力,是磁性产生的基础。
磁性材料中的磁矩可以沿着材料内部的任意方向排列,这就导致了磁性材料在不同的磁场中表现出不同的磁性。
在没有磁场作用下,磁性材料中的磁矩随机排列,因此材料中不存在宏观磁矩,材料不具备磁性。
随着外界磁场的作用,磁矩开始向磁场方向排列,当外界磁场达到一定强度时,材料中的磁矩可以全部或部分沿磁场方向排列,此时材料表现出宏观磁性。
磁性材料的磁性可以通过磁滞回线、磁化曲线等指标来表征。
二、磁场效应磁场效应是磁性材料在磁场中表现出的一系列特殊的物理现象。
磁场效应广泛应用于电子、信息、能源等领域。
1. 磁阻效应磁阻效应是指磁性材料在外磁场作用下,材料电阻发生变化的效应。
磁阻效应分为长方形磁阻效应和小角磁阻效应两种。
长方形磁阻效应是指磁性材料在外磁场作用下,材料横截面积发生改变,从而影响其电阻率的值。
这种效应早在19世纪初就被发现,并被应用于磁场计的制作上。
小角磁阻效应是指磁性材料在外磁场作用下,材料电阻值发生变化,并且变化量与磁场的大小有关。
这种效应是由材料中磁矩的排列所引起的,并且变化量较小,需要高精度的检测设备才能测量。
2. 磁电效应磁电效应是指磁性材料在外磁场作用下,材料产生电压或电流的效应。
磁电效应分为自旋磁电效应和电子磁电效应。
自旋磁电效应是指在外磁场作用下,电子自旋方向发生改变,从而产生电流或电势差的效应。
这种效应在强磁场下非常明显,并且可以应用于高精度磁场测量以及自旋电子学等领域。
电子磁电效应是指在外磁场作用下,电子的轨道角动量发生改变,从而产生电势差的效应。
磁性材料的基本特性

磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.磁性材料的基本特性1磁性材料的磁化曲线.磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2软磁材料的常用磁性能参数.饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列;剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs;矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等);磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米)3软磁材料的磁性参数与器件的电气参数之间的转换.•设计软磁器件通常包括三个步骤:正确选用磁性材料;•合理确定磁芯的几何形状及尺寸;•根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
材料:B H,mI ~ H: H = IN/lL~m:L=AL N2 =4N2m SK /D′10-9磁芯(S,l):f~F磁势 F =ò Hdl=HlU ~B:U = Ndf/dt = kfNBS ′10-6器件(N):U~I,LNf = ò Udt常用软磁磁芯的特点及应用(一).粉芯类1.磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
由于铁磁性颗粒很小(高频下使用的为 0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。
主要用于高频电感。
磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。
常用的磁粉芯有铁粉芯 (IRON CORE) 、坡莫合金粉芯及铁硅铝粉芯(SENDUST) 三种。
(1). 铁粉芯(IRON CORE)常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。
在粉芯中价格最低。
饱和磁感应强度值在 1.4T 左右;磁导率范围从10~100; 初始磁导率 m i 随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。
(2).坡莫合金粉芯坡莫合金粉芯主要有钼坡莫合金粉芯 (MPP) 及高磁通量粉芯 (High Flux) 。
MPP 主要特点是 : 饱和磁感应强度值在 7500Gs 左右;磁导率范围大,从 14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。
主要应用于 300KHz 以下的高品质因素 Q 滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的 LC 电路上常用、输出电感、功率因素补偿电路等 , 在 AC 电路中常用 , 粉芯中价格最贵。
高磁通粉芯主要特点是 : 饱和磁感应强度值在 15000Gs 左右;磁导率范围从 14~160; 在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。
主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等 , 在 DC 电路中常用,高 DC 偏压、高直流电和低交流电上用得多。
价格低于 MPP 。
(3).铁硅铝粉芯(SENDUST Cores)铁硅铝粉芯可在8KHz以上频率下使用;饱和磁感在1.05T左右;导磁率从26~125;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生;比MPP有更高的DC偏压能力;具有最佳的性能价格比。
主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。
有时也替代有气隙铁氧体作变压器铁芯使用。
2.软磁铁氧体(Ferrite core)软磁铁氧体磁芯有 Mn-Zn 、 Cu-Zn 、 Ni-Zn 、 Mg-Zn 等几类,其中 Mn-Zn 铁氧体的产量和用量最大, Mn-Zn 铁氧体的电阻率低,为 1 ~ 10 欧姆 - 米,一般在 100KHZ 以下的频率使用。
Cu-Zn 、 Ni-Zn 铁氧体的电阻率为 10 2 ~ 10 4 欧姆 - 米,在 100kHz ~ 10 兆赫的无线电频段的损耗小,多用在无线电用天线线圈、无线电中频变压器和 EMI 中。
电信用铁氧体的磁导率从 750~2300, 具有低损耗因子、高品质因素 Q 、稳定的磁导率随温度 / 时间关系 , 是磁导率在工作中下降最慢的一种,约每十年下降 3% ~ 4% 。
广泛应用于高 Q 滤波器、调谐滤波器、负载线圈、阻抗匹配变压器、接近传感器。
宽带铁氧体也就是常说的高导磁率铁氧体,磁导率分别有 5000 、 10000 、 15000 。
其特性为具有低损耗因子、高磁导率、高阻抗 / 频率特性。
广泛应用于共模滤波器、饱和电感、电流互感器、漏电保护器、绝缘变压器、信号及脉冲变压器,在宽带变压器和 EMI 上多用。
功率铁氧体具有高的饱和磁感应强度,为 4000~5000 Gs 。
另外具有低损耗 / 频率关系和低损耗 / 温度关系。
也就是说,随频率增大、损耗上升不大;随温度提高、损耗变化不大。
广泛应用于功率扼流圈、并列式滤波器、开关电源变压器、开关电源电感、功率因素校正电路。
三常用软磁磁芯的特点比较1.磁粉芯、铁氧体的特点比较:• MPP 磁芯 : 使用安匝数 < 200 , 50Hz~1kHz: m e : 125 ~ 500 ; 1 ~ 10kHz: m e : 125 ~ 200; > 100kHz: m e : 10 ~ 125• HF 磁芯 : 使用安匝数 < 500 ,能使用在较大的电源上,在较大的磁场下不易被饱和,能保证电感的最小直流漂移, m e :20 ~ 125•铁粉芯 (IRON CORE) :使用安匝数 > 800, 能在高的磁化场下不被饱和 , 能保证电感值最好的交直流叠加稳定性。
在200kHz 以内频率特性稳定 ; 但高频损耗大,适合于 10kHz 以下使用。
• SENDUST 磁芯:代替铁粉芯使用,使用频率可大于 8kHz 。
DC 偏压能力介于 MPP 与 HF 之间。
铁氧体:饱和磁密低(5000Gs) , DC 偏压能力最小四几种常用磁性器件中磁芯的选用及设计开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。
(1).高频功率变压器变压器铁芯的大小取决于输出功率和温升等。
变压器的设计公式如下:P=KfNBSI×10-6T=hcPc+hwPw其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;Pw为铜损;hc和hw为由实验确定的系数。
由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。
但B值的增加受到材料的Bs值的限制。
而频率f可以提高几个数量级,从而有可能使体积重量显著减小。
而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。
一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。
单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。
它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。
特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。
线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W= 1/2 LI 2 。
这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。
对于工作在± Bm之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯 , 其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。
(2).脉冲变压器铁芯脉冲变压器是用来传输脉冲的变压器。
当一系列脉冲持续时间为 t d ( m s) 、脉冲幅值电压为 U m (V) 的单极性脉冲电压加到匝数为 N 的脉冲变压器绕组上时,在每一个脉冲结束时,铁芯中的磁感应强度增量Δ B (T) 为:Δ B = U m t d / NSc ′ 10 -2 其中 S c 为铁芯的有效截面积( cm 2 )。
即磁感应强度增量Δ B 与脉冲电压的面积(伏秒乘积)成正比。
对输出单向脉冲时,Δ B=B m -B r , 如果在脉冲变压器铁芯上加去磁绕组时,Δ B = B m + B r 。
在脉冲状态下,由动态脉冲磁滞回线的Δ B 与相应的Δ H p 之比为脉冲磁导率 m p 。
理想的脉冲波形是指矩形脉冲波,由于电路的参数影响,实际的脉冲波形与矩形脉冲有所差异,经常会发生畸变。
比如脉冲前沿的上升时间 t r 与脉冲变压器的漏电感 L s 、绕组和结构零件导致的分布电容 C s 成比例,脉冲顶降 l 与励磁电感 L m 成反比,另外涡流损耗因素也会影响输出的脉冲波形。
脉冲变压器的漏电感 L s = 4 b p N 1 2 l m / h脉冲变压器的初级励磁电感L m = 4 m p p S c N 2 / l ′ 10 -9涡流损耗 Pe = U m d 2 t d lF / 12 N 1 2 S c rb 为与绕组结构型式有关的系数, l m 为绕组线圈的平均匝长, h 为绕组线圈的宽度, N 1 为初级绕组匝数, l 为铁芯的平均磁路长度, S c 为铁芯的截面积, m p 为铁芯的脉冲磁导率, r 为铁芯材料的电阻率, d 为铁芯材料的厚度, F 为脉冲重复频率。