酵母超糖基化
第三章基因工程常用受体细胞

是一种甲基营养菌,能在相 对较为廉价的甲醇培养基中 生长。
优点
除具有一般酵母所具有的特点 外,还有以下几个 优点: 1、具有目前最强,调控机理最严格的启动子之一 -乙醇氧化酶AOX1基因启动子,外源蛋白表达量 高(一般 500-4000mg/L,最高为破伤风毒素C达到 12g/l) 。 2、表达质粒能在基因组的特定位点稳定整合。 3、蛋白产物糖基化修饰作用大多数情况下接近哺乳动物细
酿酒酵母(Saccharomyces cerevisiae) 巴斯德毕赤酵母(Pichia pastoris)) 乳酸克鲁维酵母(Kluyveromyces lactis) 多型汉逊酵母(Hansenula polymorpha)
一、酿酒酵母
是第一个用于基因药物表达的酵母菌, 遗传背景已相当清楚:有17条染色体, 1996年完成其全基因组测序,基因组为 12068 kb,阅读开放开架5887个,编码 约6000个基因,比单细胞的原核生物和 古细菌大一个数量级。 受体细胞举例:酿酒酵母GRF18
(二)缺点
1、不能识别剪切内含子,不能表达基因组DNA, 只能表达cDNA; 2、缺乏真核生物的蛋白质加工修饰系统,不能进 行蛋白酶解、糖基化、磷酸化、乙酰化、硫酸化、 酰胺化等修饰作用;
蛋白酶解作用:从蛋白前体中切去一段氨基酸序列,从 而获得功能性分子 糖基化意义: 赋予蛋白独特的结合性并增强稳定性
菌体内 稍复杂 简单
不大
哺乳动物
需注意 致癌
第三节、常用原核表达细胞
大肠杆菌 枯草芽孢杆菌 短小芽孢杆菌
一、大肠杆菌表达体系
(一)生物学特性 革兰氏阴性杆菌 大小2~4um×0.4~ 0.1um; 无芽孢; 一般无荚膜(capsule) 裂殖(Fission)分裂, 37℃17分钟繁殖一代。
酵母表达系统

4、甲醇酵母系统高效表达影响因素与对策
载体稳定性 基因剂量 整合位点 甲醇利用表型 mRNA5’端 AT含量分泌信号 表达产物稳定性
1)载体稳定性
同拷贝数时,整合型的比自主复制型的表达水平高 YRp型载体的稳定化:
选择—非选择培养交替数十代可得稳定的整合子 ,但费时,整合位点不确定。 采用YIp型载体: 更易实现整合、整合位点清楚
2)基因剂量
外源基因表达存在基因剂量效应 筛选多拷贝整合子
载体引入G418/Zeocin抗性标记,整合子拷贝数 与抗性成正相关,采用高G418/Zeocin抗性转化子。 体外串联多个表达盒,直接获多拷贝整合子 采用YRp型载体稳定化技术获高拷贝整合子 构建高拷贝整合型表达载体
3)整合位点
外源基因表达盒整合于AOX/MOX或标记基因处,均 可高效表达 毕赤酵母中个别情况整合于His4位点的比AOX1位点 的低
2)分泌表达产物过糖基化
(二) 甲醇酵母表达系统
甲醇酵母与甲醇氧化酶启动子 甲醇酵母表达系统的优缺点 甲醇酵母表达系统操作原理 甲醇酵母系统高效表达影响因素与对策 甲醇酵母表达系统的应用
1、甲醇酵母与甲醇氧化酶启动子
甲醇酵母(methylotrophic yeast) 指可利用甲醇作单一碳源的一类酵母。 毕赤酵母(Pichia pastoris) 汉森酵母(Hansenula ploymorpha) 假丝酵母(Candia boidinii)
组成的、复杂分支结构的现象。增加了免疫原性、对活 性与药代稳定性均有影响。 *糖链组成
O型糖链仅由甘露糖组成、而哺乳细胞的还含唾液酸 基团
4、酿酒酵母表达系统的缺陷
1)表达水平普遍不高 A、表达载体传代不稳定(YEp、YRp) B、所采用的强启动子调控不严谨 C、不能利用简单的无机培养基进行高密度发酵
酵母外泌FAQ

蛋白互作技术是植物保护、细胞生理等领域的关键实验技术,重组蛋白的质量对实验结果具有重要影响。
高质量的重组蛋白必然是“拟真”的,靶蛋白的空间结构(如二硫键成键)及蛋白修饰情况(乙酰化、磷酸化、糖基化)要尽量与天然状态保持一致,才能提供足够高的亲和力与候选蛋白发生相互作用。
由于自然条件下的靶蛋白修饰情况往往未见报道,追求绝对“拟真”并不现实,在蛋白互作实验中保证重组蛋白正确折叠即可。
下面对重组蛋白表达的一些常见问题进行梳理。
Q1:毕赤酵母表达系统最“直观”的优势是什么?毕赤酵母的分泌表达成功率约为80%左右,远高于大肠杆菌(低于10%)。
另一方面,毕赤酵母发酵液上清的杂蛋白较少(见图1A),因此亲和层析纯化的成功率极高(超过95%,不会出现大肠杆菌中“能表达但不能挂柱”的情况),易于获得纯化蛋白进行下游实验。
最后,未经优化的酵母表达产量较大可能低于大肠杆菌,但通过使用高效表达元件、提高目的基因拷贝数、共表达分子伴侣后,重组蛋白的产量可比优化前提高3-8倍。
通过使用高密度发酵技术,又可在此基础上继续提高8-10倍。
最终将重组蛋白产量提高至理想水平。
图1 多拷贝策略对犬α干扰素产量的影响(A) 摇瓶发酵上清的SDS-PAGE检测。
泳道M,蛋白质分子量标记;泳道1-5:1、2、4、6、8拷贝酵母转化子发酵液上清。
4泳道对应的摇瓶表达量可达到350 mg/L左右。
(B) 6拷贝酵母转化子的高密度发酵。
红色圆点:目的蛋白含量;蓝色方块:菌体湿重。
重组蛋白产量即可达到1.26 g/L水平Q2:蛋白可溶是否等同于其具有正常功能?传统观念认为“蛋白可溶即折叠正确”,这是一种略显片面的经验性判断,尤其不适用于大肠杆菌生产的重组蛋白。
如图2所示,天然蛋白会将疏水基团包裹在蛋白内部,使整个蛋白处于亲水状态,整体表现为可溶;错误折叠的重组蛋白即便未形成正确的空间构象,仍有可能借助自身某些高亲水性的基团或亚基阻止蛋白聚集、蛋白沉淀的发生,从而表现为可溶。
酵母表达系统

C、野生型GAL4表达水平低,产物活性可被GLAL80产物完全抑制,半乳糖诱导效果差
2)半乳糖激酶启动子(GAL1)
半乳糖诱导、葡萄糖抑制
GAL10 Promoter
GAL80
GAL4
UAS
GAL1
GAL7
GAL10
A、 将GAL4的启动子换成GAL10的诱导型强启动子 B、半乳糖诱导GAL4高表达,不受GAL80产物抑制,激活GAL1等高效转录
性结合因子:MF-α
酸性磷酸酯酶:PHO5
蔗糖酶:SUC2 杀手毒素因子:KIL
酿酒酵母信号肽特点
*保守性低,大多异源宿主系统的信号肽不能互用
*信号肽结构:
Met 信号肽剪切位点
正电荷区 疏水区
极性区
目的蛋白
MF-α信号肽
*分泌效率高
*在酵母统具有通用性
*88个残基组成
Met KEX2 DAP DAP
AOX1与AOX2 *毕赤酵母和假丝酵母基因组存在二个AOX基因 AOX1、AOX2 *AOX1与AOX2基因97%同源 *AOX1 占主导地位,负责AOX 99%以上活性
1、甲醇酵母与甲醇氧化酶启动子
甲醇氧化酶启动子 A、目前已发现的、最强的真核启动子 B、严谨调控型启动子 AOX1:葡萄糖和甘油脱阻遏、甲醇诱导 MOX:葡萄糖阻遏、甘油脱阻遏、甲醇诱导
8)表达产物稳定性
分泌表达时,胞外蛋白酶是要影响因素
降低培养基pH值:蛋白酶在酸性条件下活性较低
培养基中添加蛋白水解产物:竞争性抑制
采用蛋白酶缺陷宿主株:如P.pastoris SMD1168
3、甲醇酵母表达系统操作原理
宿主株与标记基因 甲醇酵母系统的整合事件 胞内表达与分泌表达
为什么酵母不表达目的蛋白?

为什么酵母不表达目的蛋白?(因为百度文库下载要积分,所以把自己在生物论坛写的帖子上传换点积分)很多朋友问这样一个问题:为什么xx酵母不表达?他们自己也很纳闷,重组酵母PCR检测也证明目的基因重组了,但是诱导之后就是在表达上清中检测不到目的蛋白,仔细研究操作手册后仍然不知道原因。
本人,根据自己的经验,采用倒推的方法,按实验过程从后向前分析,供大家参考:1、诱导之后表达上清中检测不到目的蛋白:分析1:检测的方法是否有问题,要考虑是不是蛋白表达量低而没有检测到?如果是蛋白表达低,可以选择浓缩蛋白,具体的方法很多,有TCA、丙酮、浓缩柱等等方法,之前在本版已经发过帖,在此不赘述。
2、如果蛋白浓缩N倍之后仍然检测不到,那基本可以确证蛋白并不在上清中。
那么蛋白到哪里去了,考虑是否没有分泌出来,而是在胞内,那就需要通过裂解酵母来检测胞内蛋白,具体的方法很多,在此也不赘述,曾整理过相关破碎的帖子。
3、如果胞内也没有目的蛋白表达,那么基本可以确定蛋白并没有表达。
4、为什么没有表达呢?倒推回来就是诱导的过程了,诱导体系是什么?甲醇浓度是多少?培养问题是多少,转速是多少?这些都要注意。
甲醇一般是0.5%-1.0%,本人用的是0.5%,也有很多人也用1.0%,曾见过一个帖子,说超过1.5%反而会抑制表达,没有验证过,供大家参考。
培养问题28-30度比较合适,转速250rpm比较合适,诱导体系没有固定的体系,说明书上推荐的是BMGY到OD600 2~6,换到BMMY中OD600为1左右。
5、如果诱导的过程也没有问题,那问题就复杂了,特别是重组酵母PCR检测证明目的基因确实已经发生了重组。
这个时候是最郁闷的了,但是郁闷怎么办,还是要找原因,在此我给的建议是先做RT-PCR证明mRNA水平的情况,也就是说有没有转录。
如果转录了,后续的操作也没有问题(本帖的1、2、3、4项),那么只有重新设计实验,比如换酵母株,有文章上说:用GS115表达不出蛋白,换KM71H后,大部分克隆能表达。
第七章 酵母基因工程

Dividing Saccharomyces cerevisiae (baker’s yeast) cells
一. 酵母克隆载体
① 能在E.coli中克隆和扩增。 Ori ②有大肠杆菌的选择标记 Ampr、Tetr。 ③ 有酵母的选择标记 Leu2+、His+、Ura3+、Trp1+;
如pYF92:
pBR322 2m 酵母his 3+
2m质粒: 酿酒酵母的内源质粒,长度是2m 。含有自主 复制起始区ori和STB序列(使质粒在供体中维 持稳定)。
特点:
①很高的转化活性(103-105转化子/微克 DNA). ②拷贝数多(25-100分子/细胞)。 ③比YRp稳定。
YEp24
亮氨酸lue2—β-异丙基苹果酸脱 氢酶
• 该酶是把丙酮酸转化成亮氨酸的代谢酶之 一.只要使用亮氨酸lue2突变的营养缺陷型 酵母作受体,载体上带有亮氨酸lue2基因就 能在不含亮氨酸的培养基上实现转化克隆 的筛选(书170页图).
四. 酵母表达系统的特点
(1)优点 ①对其遗传学和生理学的研究比较深入。 ②小量培养和大规模反应器中都能生长。 ③已经分离出很强的启动子。 ④有翻译后的加工。 ⑤本身自然分泌很少,便于胞外蛋白的纯 化。 ⑥安全性高(FDA确认的安全生物),不 需要宿主的安全性检验。
④不稳定,容易丢失。
(3)着丝粒质粒(YCp) 在YRp质粒中插入酵母染色体的着丝粒 区。 YRp质粒 酵母着丝粒 特点: ①行为像染色体,能稳定遗传。 ②单拷贝存在。
③不易从细胞中提取。
(4)附加体型载体(YEp) 由大肠杆菌质粒、2m质粒及酵母染色体 DNA选择标记构成。 大肠杆菌质粒 2m质粒 酵母选择标记
第十五章:酵母菌基因工程选编

③易进行载体DNA的导入。DNA转化技 术的不断发展优化,多数酵母菌可 以取得较高的转化率;
④培养条件简单,容易进行高密度 发酵;
⑤能将外源基因表达产物分泌到培 养基中;
⑥有类似高等真核生物的蛋白质翻 译后的修饰功能。
2.缺陷在于:
①表达效率相对低; ②酵母常有密码子偏爱性,真核基
因在其中表达时需要人工修正。
2.含有ARS的YRp和YEp质粒及其构建
①ARS为酵母菌中的自主复制序列,大 小在0.8-1.5Kb,染色体上每30-40bp 就有一个ARS元件。
②由染色体ARS构成的质粒称为YRp,而 由2μ质粒构建的杂合质粒为YEp。
③上述两类质粒在酿酒酵母中的拷贝数 最高可达200个,但是经过几代培养 后,质粒丢失率达50%-70%,主要由 于分配不均匀所致。
三.抑制超糖基化作用的突变宿主菌
许多真核生物的蛋白质在其天门冬 酰胺侧链上接有寡糖基团,常常影 响蛋白质的生物活性。整个糖单位 由糖基核心和外侧糖链两部分组成。
酵母菌普遍拥有完整的糖基化系统,酿 酒酵母细胞内的天门冬酰胺侧链糖基修 饰和加工系统对来自高等动物和人的异 源蛋白活性表达是极为有利的,但野生 型酿酒酵母对异源蛋白的糖基化反应很 难控制,呈超糖基化倾向,因此超糖基 化缺陷菌株非常重要。
②YAC载体的装载量建
①YIP 载体由大肠杆菌质粒和酵母的 DNA 片段组成,可与受体或宿主的染色体 DNA 同源重组,整合进入宿主染色体中,酵母 片段只提供选择性标志,没有复制起点。
②转化率低(只有1-10转化子/微克DNA), 但转化子遗传性稳定,多用于遗传分析。
一.广泛用于外源基因表达的酵母宿主菌
目前已广泛用于外源基因表达的研究的酵母菌包括:
基因工程:第四章-酵母基因工程

UBC4-UBC5双突变型:
UBC4-UBC5双突变型能大幅度削弱泛
素介导的蛋白降解。
7个泛素连接酶基因的突变对衰减蛋白 降解作用同样有效。
6、内源性蛋白酶缺陷型的突变宿主菌
酿酒酵母具有20多种蛋白酶 空泡蛋白酶基因PEP4野生型和
pep4-3突变株
B-半乳糖苷酶活性明显升高
(三) 酵母菌的载体系统
酵母基因工程
酵母菌作为外源基因表达受体菌的特征 酵母菌的宿主系统 酵母菌的载体系统 酵母菌的转化系统 酵母菌的表达系统 利用重组酵母生产乙肝疫苗
1974 Clarck-Walker和Miklos发现在多数酿酒酵母 中存在质粒。
1978 Hinnen将来自一株酿酒酵母的leu2基因导入 另一株酿酒酵母,弥补了后者leu2的缺陷, 标志着酵母表达系统建立。
酵母菌有4个泛素编码基因:
UBI1 编码泛素-羧基延伸蛋白52 对数生长期表达 稳定期关闭
UBI2 编码泛素-羧基延伸蛋白52 对数生长期表达 稳定期关闭
UBI3 编码泛素-羧基延伸蛋白76 对数生长期表达 稳定期关闭
UBI4 编码泛素五聚体
对数生长期关闭 稳定期表达
酵母菌有7个泛素连接酶基因:
UBC1、UBC2、UBC3、UBC4、UBC5、UBC6、UBC7
酵母菌表达外源基因的优势: 全基因组测序,基因表达调控机理清楚,遗传 操作简便。 具有真核生物蛋白翻译后加工修饰系统。 能将外源基因表达产物分泌至培养基中。 大规模发酵工艺简单、成本低廉。
不含特异性病毒、不产毒素,被美国FDA认定为 安全的基因工程受体系统。
酵母菌表达外源基因的缺点:
表达产物的糖基化位点和结构特点 与高等真核生物有差距。
特点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酵母超糖基化
酵母超糖基化是一种生物化学现象,主要发生在酿酒酵母中。
在酿酒酵母中,Asn(天冬酰胺)上的寡糖核心在高尔基体中通过甘露糖的不断加入而得以延伸。
由于加入甘露糖的数目不定,所以由酿酒酵母表达的外源蛋白或内源蛋白的糖链长度不等。
典型的酿酒酵母糖蛋白中每个糖链的甘露糖数目为50~150,这种现象即为超糖基化。
与酿酒酵母相比,毕赤酵母表达蛋白的糖链结构在超糖基化方面有所不同。
具体来说,毕赤酵母分泌蛋白核心糖单位以外的典型糖单位是ManGlcNAc2或Man9GlcNAc2,其糖链平均为8~14个甘露糖基,远低于酿酒酵母的50~150个。
此外,毕赤酵母还可以形成分支糖链,这也是与酿酒酵母的一个主要区别。
以上内容仅供参考,如需更专业的解释,可查阅相关生物化学领域的书籍或咨询相关领域的专家。