数学必修一集合检测卷

合集下载

新北师大版高中数学必修一第一单元《集合》检测卷(含答案解析)

新北师大版高中数学必修一第一单元《集合》检测卷(含答案解析)

一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭ B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-3.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{P x x Q x y =-≤-≤==∣∣,则P Q =★( )A .{12}xx ≤≤∣ B .{01xx ≤≤∣或2}x ≥ C .{01xx ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 4.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+5.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,36.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5117.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭8.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .19.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈10.已知函数()f x =M ,()ln(1)g x x =+的定义域为N ,则()R MC N =( )A .{|1}<x xB .{|1}x x ≥C .φD .{|11}x x -≤<11.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1612.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________ 14.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)15.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 所有取值的集合为_____16.对于任意集合X 与Y ,定义:①{|X Y x x X -=∈且}x Y ∉;②()X Y X Y ∆=-()Y X -,(X Y ∆称为X 与Y 的对称差).已知{}{}221,R =90A y y x x B x x ==-∈-≤,,则A B ∆=_________.17.设集合{}1,2,3A =,若B ≠∅,且B A ⊆,记G(B)为B 中元素的最大值和最小值之和,则对所有的B ,G(B)的平均值是_______.18.已知集合{}1,2,3,4,5P =,若,A B 是P 的两个非空子集,则所有满足A 中的最大数小于B 中的最小数的集合对(,)A B 的个数为____.19.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.20.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.三、解答题21.已知集合{}12,U xx x P =-≤≤∈∣,{}02,A x x x P =≤<∈,{}1,(11)B x a x x P a =-<≤∈-<<.(1)若P =R ,求U A 中最大元素m 与UB 中最小元素n 的差m n -;(2)若P =Z ,求AB 和UA 中所有元素之和及()UAB .22.已知集合{|14}A x x =<<,集合{|21}B x m x m =<<- (1)当1m =-时,求A B ,()R A B ⋂;(2)若AB =∅,求实数m 的取值范围.23.在①A ∩B =A ,②A ∩(R B )=A ,③A ∩B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{|123}A x a x a =-<<+,{}2|280B x x x =--≤. (1)当2a =时,求A ∪B ; (2)若______,求实数a 的取值范围.注:如果选择多个条件分别解答按第一个解答计分.24.已知全集为实数集R ,集合2{|},{|log 1}A x y y R B x x ==∈=>.(1)求AB ;(2)设1a >,集合{|1},()R C x x a D C B A =<<=,若C D ⊆,求a 的取值范围.25.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q ∧为真,求a 的取值范围.26.已知集合()(){}|250A x x x k =++<(1)若()53A ⊆-,,求k 的取值范围. (2)若{}2|20B x x x =-->,且{}2A B Z ⋂⋂=-(Z 为整数集合),求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0,即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-,因此,()2019201920192019101a b +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.C解析:C 【分析】先确定,P Q ,计算P Q 和P Q ,然后由新定义得结论.【详解】由题意{|02}P x x =≤≤,{|10}{|1}Q x x x x =-≥=≥, 则{|0}PQ x x =≥,{|12}P Q x x =≤≤,∴{|01P Q x x =≤<★或2}x >. 故选:C . 【点睛】本题考查集合新定义运算,解题关键是正确理解新定义,确定新定义与集合的交并补运算之间的关系.从而把新定义运算转化为集合的交并补运算.4.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.5.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.6.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.7.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- ,综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.8.B解析:B 【解析】 【分析】首先求解方程组3y x y x ⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.9.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.10.A解析:A【分析】根据函数定义域的求法求得,M N ,再求得()R M C N .【详解】由210x ->解得11x -<<,由10x +>解得1x >-.所以{}|1R C N x x =≤-,故()R MC N ={|1}<x x ,故选A.【点睛】本小题主要考查函数定义域的求法,考查集合补集和并集的运算,属于基础题.11.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.12.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.二、填空题13.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若AB B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.14.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案. 【详解】对于①,111112222----+-⋅=+=-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =, 于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾,∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④ 【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.15.【分析】分类讨论:当时;当时分别讨论中元素为1和-1两种情况依次求解【详解】由题:当时符合题意;当时或所以或1所以实数所有取值的集合为故答案为:【点睛】此题考查通过集合的包含关系求参数的值其中的易漏 解析:{}1,0,1-【分析】分类讨论:当B =∅时,0a =;当B ≠∅时,分别讨论B 中元素为1和-1两种情况依次求解. 【详解】 由题:B A ⊆当0a =时,B =∅符合题意;当0a ≠时,1B A a ⎧⎫=-⊆⎨⎬⎩⎭,11a -=或11a -=-所以,1a =-或1,所以实数a 所有取值的集合为{}1,0,1-. 故答案为:{}1,0,1- 【点睛】此题考查通过集合的包含关系求参数的值,其中的易漏点在于漏掉考虑子集为空集的情况,依次分类讨论即可避免此类问题.16.【分析】先求出AB 再求得解【详解】由题得所以所以=故答案为:【点睛】本题主要考查新定义的理解和应用考查集合的并集运算意在考查学生对这些知识的理解掌握水平解析:)()-3,13⎡⋃+∞⎣,【分析】先求出A,B,,A B B A --,再求A B ∆得解. 【详解】由题得[1,)A =-+∞,[3,3]B =-, 所以(3,),B A [3,1)A B -=+∞-=--,所以A B ∆=()()A B B A -⋃-=)()3,13⎡-⋃+∞⎣,. 故答案为:)()3,13⎡-⋃+∞⎣,【点睛】本题主要考查新定义的理解和应用,考查集合的并集运算,意在考查学生对这些知识的理解掌握水平.17.4【分析】根据题意列出所有可能的集合B 求出相应的求出平均数即可【详解】因为集合若且所以集合B 为:当时当时当时当时当时当时当时则G(B)的平均值是故答案为:【点睛】本题主要考查了集合间的包含关系考查学 解析:4【分析】根据题意列出所有可能的集合B ,求出相应的()G B ,求出平均数即可.【详解】因为集合{}1,2,3A =,若B ≠∅,且B A ⊆所以集合B 为:{}{}{}{}{}{}{}1231,21,32,31,2,3,,,,,,当{}1B =时,()112G B =+=当{}2B =时,()224G B =+=当{}3B =时,()336G B =+=当{}1,2B =时,()123G B =+=当{}1,3B =时,()134G B =+=当{}2,3B =时,()235G B =+=当{}1,2,3B =时,()134G B =+=则G(B)的平均值是246345447++++++= 故答案为:4【点睛】本题主要考查了集合间的包含关系,考查学生分析问题和解决问题的能力,属于中档题. 18.49【分析】分中的最大数为中的最大数为中的最大数为中的最大数为四种情况根据题意列举出满足条件的集合即可得出结果【详解】当中的最大数为即时;所以满足题意的集合对的个数为个;当中的最大数为即时;即满足题 解析:49【分析】分A 中的最大数为1,A 中的最大数为2,A 中的最大数为3,A 中的最大数为4,四种情况,根据题意列举出满足条件的集合,A B ,即可得出结果.【详解】当A 中的最大数为1,即{1}A =时,{2}B =,{3},{4},{5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{2,3,4,5}; 所以满足题意的集合对(,)A B 的个数为15个;当A 中的最大数为2,即{2},{1,2}A =时,{3}=B ,{4},{5},{3,4},{3,5},{4,5},{3,4,5};即满足题意的集合对(,)A B 的个数为2714⨯=个;当A 中的最大数为3,即{3},{1,3},{2,3},{1,2,3}A =时,{4},{5},{4,5}B =,即满足题意的集合对(,)A B 的个数4312⨯=个;当A 中的最大数为4,即{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}A =时,{5}B =,即满足题意的集合对(,)A B 的个数为8个;所以总共个数为49个.【点睛】本题主要考查集合的应用,灵活运用子集的概念,用列举法表示集合即可,属于常考题型. 19.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.【分析】由进行反推可分为集合和集合两种情况进行分类讨论【详解】由进行反推若则解得成立由可知集合因应满足解得综上所述故答案为:【点睛】本题考查根据集合的补集与包含关系求解参数问题是中档题型在处理此类题 解析:(),3-∞【分析】由()()R R C A C B ⊇进行反推,可分为集合A =∅,和集合A ≠∅两种情况进行分类讨论【详解】由()()R R C A C B ⊇进行反推,若A =∅,则121m m +≥-,解得2m ≤,成立 由A ≠∅可知,集合{}|121U A x x m x m =≤+>-或,{}|25U B x x x =<-≥或因()()R R C A C B ⊇,应满足12215211m m m m +≥-⎧⎪-<⎨⎪->+⎩,解得()2,3m ∈综上所述,(),3m ∈-∞故答案为:(),3-∞【点睛】本题考查根据集合的补集与包含关系求解参数问题,是中档题型,在处理此类题型中,易错点为忽略端点处等号取不取得到的问题,解题时要特别仔细三、解答题21.(1)3;(2)所求元素之和为1,(){}1,1,2U A B =-或(){1,0,1,2}U A B =-. 【分析】(1)根据P =R ,然后利用补集的运算,分别求得U A ,U B 再求解.(2)根据P =Z ,得到{}{}02,0,1A x x x =≤<∈=Z ,{}1B =或{}0,1,进而得到{}0A B =或A B =∅求解.【详解】(1)因为P =R ,{}12,U xx x P =-≤≤∈∣, 所以{|10U A x x =-≤<或}2x =,{}1,12U B x x a x =-≤≤-<≤∣, ∴2m =,1n =-,∴(13)2m n --=-=.(2)∵P =Z , ∴{}{}12,1,0,1,2U x x x =-≤≤∈=-Z , ∴{}{}02,0,1A x x x =≤<∈=Z ,{}1B =或{}0,1.∴{}0A B =或A B =∅,即A B 中元素之和为0. 又{}1,2U A =-,其元素之和为121-+=.故所求元素之和为011+=. ∵{}0A B =或A B =∅, ∴(){}1,1,2U A B =-或(){1,0,1,2}U A U C B C U =∅==-.【点睛】本题主要考查集合的补集运算,还考查了分析求解问题的能力,属于中档题.22.(1){|24}A B x x ⋃=-<<,()=R A B {|21}x x -<≤;(2)0m ≥. 【分析】(1)当1m =-时,求集合B ,再求集合的交并补集;(2)讨论B =∅ 和B ≠∅两种情况讨论当AB =∅时,求参数的取值范围. 【详解】(1)1m =-时,{|22}Bx x ,{|24}A B x x ⋃=-<<, {1R A x x =≤或4}x ≥,{|21}R A B x x ⋂=-<≤() (2)由A B =∅,当B =∅时,21m m ,解得:13m ≥ 当B ≠∅时,2111m m m <-⎧⎨-≤⎩,解得:103m ≤< 或2124m m m <-⎧⎨≥⎩,无解 综上可得:0m ≥【点睛】易错点睛:根据集合的运算结果求参数或是根据集合的包含关系求参数时,容易忽略空集的情况,这一点需注意.23.(1)A ∪B ={}|27x x -≤<;(2)答案见解析.【分析】(1)先化简集合,A B ,再求A ∪B ;(2)对集合A 分空集和非空集两种情况讨论,列不等式组即得解.【详解】(1)2a =时,集合{|17}A x x =<<,{|24}B x x =-≤≤,A ∪B ={}|27x x -≤<(2)若选择①A ∩B =A ,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得:112a -≤≤;综上知,实数a 的取值范围是(-∞,-4]∪112⎡⎤-⎢⎥⎣⎦,.若选择②A ∩(R B )=A ,则A 是R B 的子集,R B =(-∞,-2)∪(4,+∞),当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5, 综合得:a 的取值范围是:(-∞,5 2-]∪[5,+ ∞) 若选择③A ∩B =∅,则当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5 综上知,实数a 的取值范围是:(-∞,5 2-]∪[5,+∞). 【点睛】易错点点睛:本题容易忽略集合A 是空集的情况,导致出错.空集是任何集合的子集,是任何非空集合的真子集.解答集合的关系和运算问题时,不要忽略了空集这种情况. 24.(1){|23}x x <≤; (2)(1,3].【分析】(1)可求出13{|}A x x =≤≤,{|2}Bx x ,进行交集的运算,即可求解; (2)进行并集、并集的运算求出集合D ,根据C D ⊆,且{|1}C x x a =<<,即可求得实数a 的取值范围.【详解】 (1)由1030x x -≥⎧⎨-≥⎩,解得13x ≤≤,即集合13{|}A x x =≤≤, 集合2{|log 1}{|2}B x x x x =>=>,所以{|23}A B x x ⋂=<≤.(2)由(1)可得{|2}R C B x x =≤,所以(){|3}R D C B A x x ==≤, 因为C D ⊆,且{|1},1C x x a a =<<>,所以13a,所以实数a 的取值范围是(1,3].【点睛】本题主要考查了集合的标志,对数函数的单调性,以及集合的交集、并集和补集的运算等知识点的综合应用,着重考查推理与运算能力.25.(1)0m ≥;(2)∅.【分析】(1)由于A B ⊆,根据子集的定义,即可求出m 的取值范围;(2)根据p q ∧为真,得出p 真且q 真,分别求出命题p 和命题q 对应的a 的范围,取交集后,即可得出a 的取值范围.【详解】解:由题意得,集合[]1,2A =,{}|1B x x m =≥-,(1)∵A B ⊆,∴11m -≤,则0m ≥;(2)由题可知,∵p q ∧为真,∴p 真且q 真,命题p :[]1,2a ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数, 则抛物线对称轴大于等于5,即:5252a a ≥⇒≥, 则1252a a ≤≤⎧⎪⎨≥⎪⎩,解得:a ∈∅. 所以a 的取值范围为∅.【点睛】本题考查根据集合间的关系求参数范围,以及根据复合命题的真假性判断命题真假,进而求参数范围.26.(1)[] 3,5-;(2)5 3,?2⎡⎫-⎪⎢⎣⎭.【分析】(1)对参数k 进行分类讨论,求得对应情况下不等式的解集,再根据集合之间的关系,求得k 的范围;(2)根据(1)中集合A 的解集,集合{}2A B Z ⋂⋂=-,对参数k 进行分类讨论,即可求得k 的范围.【详解】(1)对集合A : 当52k =时,不等式的解集为空集,即A =∅,满足()53A ⊆-,; 当52k <时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需3k -≤,解得3k ≥-,又52k <,故53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需5k -≥-,解得5k ≤,又52k >,故5,52k ⎛⎤∈ ⎥⎝⎦ 综上所述若满足题意,则[]3,5k ∈-. (2)对集合B :220x x -->,解得()(),12,B =-∞-⋃+∞此时B Z ⋂是小于等于2-的整数和大于等于3的整数的集合.对集合A :由(1)知: 当52k =时,A =∅,不满足{}2A B Z ⋂⋂=-,故舍去; 当52k <时,5,2A k ⎛⎫=-- ⎪⎝⎭,若满足{}2A B Z ⋂⋂=-, 只需3k -≤,解得3k ≥-,又52k <,故可得53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,5,2A k ⎛⎫=-- ⎪⎝⎭,显然不满足{}2A B Z ⋂⋂=-,故舍去. 综上所述,若满足题意,则53,?2k ⎡⎫∈-⎪⎢⎣⎭.【点睛】本题考查由集合之间的关系,求参数的范围,属中档题;本题中需要注意对参数的分类讨论,要做到不重不漏.。

(易错题)高中数学必修一第一单元《集合》检测(答案解析)

(易错题)高中数学必修一第一单元《集合》检测(答案解析)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或23.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞4.若{}|28A x Z x =∈≤<,{}5|log 1B x R x =∈<,则R A C B ⋂的元素个数为( ) A .0B .1C .2D .35.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个6.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥7.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈8.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 ()A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥9.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭10.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集11.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .212.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,,D .{}12, 二、填空题13.已知集合{2,1}A =-,{|2,B x ax ==其中,}x a ∈R ,若A B B =,则a 的取值集合为___________.14.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.15.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.16.若{}|224xA x ≤≤,1|1xB x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;17.已知集合{}{}2|21,|20x A y y B x x x ==+=--<,则()R C A B =__________.18.设全集{|35}U x x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.19.任意两个正整数x 、y ,定义某种运算⊗:()()x y x y x y x y x y +⎧⊗=⎨⨯⎩与奇偶相同与奇偶不同,则集合{(,)|6,,}M x y x y x y =⊗=∈*N 中元素的个数是________20.关于x 的不等式组1ax x a <⎧⎨-<⎩的解集不是空集,则实数a 的取值范围是_____.三、解答题21.已知集合A ={x |2≤x <7},B ={x |3<x <10},C ={x |x a ≤}. (1)求A ∪B ,(∁R A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围. 22.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q∧为真,求a 的取值范围.23.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围. 24.已知全集为R ,函数()()lg 1f x x =-的定义域为集合A ,集合(){}|16B x x x =->.(1)求AB ;(2)若{}|11C x m x m =-<<+,()()RC AB ⊆,求实数m 的取值范围.25.已知不等式()210x a x a -++≤的解集为A ,不等式2103x x +≤-的解集为B . (1) 当3a =时,求AB ;(2)若不等式的解集A B ⊆,求实数a 的取值范围. 26.设集合{}|36A x x =≤<,集合{}|19B x x =<≤. 求:(1)AB ;(2)()R C A B ⋃.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =; 综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.3.A解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0, 而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0,即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.4.D解析:D 【分析】化简集合A 、B ,根据补集与交集的定义写出RA B ,即可得出结论.【详解】集合{|28}{2A x Z x =∈<=,3,4,5,6,7},51{||log |1}{|5}5B x R x x R x =∈<=∈<<,1{|5R B x R x∴=∈或5}x , {5RAB ∴=,6,7}.∴其中元素个数为3个.故选:D . 【点睛】本题考查了集合的化简与运算问题,是基础题.5.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.6.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.7.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.8.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意;②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意; ③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.9.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.10.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.11.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2AB =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.【分析】根据得到之间的关系由此确定出可取的的值【详解】因为所以当时;当时若则所以;若则综上可知:的取值集合为故答案为:【点睛】本题考查根据集合间的包含关系求解参数难度一般分析集合间的子集关系时注意分 解析:{}1,0,2-【分析】根据A B B =得到,A B 之间的关系,由此确定出可取的a 的值. 【详解】因为AB B =,所以B A ⊆,当B =∅时,0a =;当B ≠∅时,若{}2B =-,则22a -=,所以1a =-;若{}1B =,则2a =. 综上可知:a 的取值集合为{}1,0,2-, 故答案为:{}1,0,2-. 【点睛】本题考查根据集合间的包含关系求解参数,难度一般.分析集合间的子集关系时,注意分析空集的存在.14.【分析】解出集合PQ 根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围【详解】由题:是的必要不充分条件即P Q 解不等式所以0P Q 所以解得:故答案为:【点睛】此题考查根据充分条件和必要条解析:9m ≥【分析】解出集合P ,Q ,根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围. 【详解】 由题:“Ux P ∈”是“∈Ux Q ”的必要不充分条件,UQUP ,即P Q ,解不等式1123x --≤,12123x --≤-≤, 646x -≤-≤,210x -≤≤所以[]1122,103x P x ⎧-⎫=-=-⎨⎬⎩⎭≤, (){}()()()(){}22|210|110Q x x x m x x m x m =-+-=-+--≤≤,m >0,P Q ,所以11012m m +≥⎧⎨-≤-⎩,解得:9m ≥.故答案为:9m ≥ 【点睛】此题考查根据充分条件和必要条件判断集合的包含关系求解参数范围,关键在于准确判断两个集合的包含关系,列出不等式组求解.15.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏 解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解. 【详解】由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞, 即()()()()()(),44,22,00,11,44,M =-∞----+∞, 所以{}4,2,0,1,4R C M =--. 故答案为:{}4,2,0,1,4--【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.16.【分析】计算集合等价于在上恒成立计算的最小值得到答案【详解】等价于在上恒成立即设易知函数在单调递减故故答案为:【点睛】本题考查了集合的关系求参数将等价于在上恒成立是解题的关键解析:13a ≤-【分析】计算集合{}12A x x =≤≤,AB =∅等价于在[]1,2上11xa x -≥+恒成立,计算 21()1x f x -++=的最小值得到答案. 【详解】{}{}|22412x A x x x =≤≤=≤≤,11x B x a x ⎧⎫-=<⎨⎬+⎩⎭AB =∅,等价于在[]1,2上11x a x -≥+恒成立,即122111x x x a --+=-+++≤ 设21()1x f x -++= 易知函数在[]1,2单调递减,min 1()(2)3f x f ==-,故13a ≤- 故答案为:13a ≤- 【点睛】本题考查了集合的关系求参数,将A B =∅等价于在[]1,2上11xa x -≥+恒成立是解题的关键.17.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂.【详解】根据指数函数的性质可知,211x y =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-. 故答案为(]1,1-.【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.18.【分析】解绝对值不等式求得集合然后求得其补集解分式不等式求得集合由此求得【详解】由解得所以由解得所以故填:【点睛】本小题主要考查集合交集和补集的概念和运算考查绝对值不等式和分式不等式的解法属于基础题 解析:(2,1)(1,5]--【分析】解绝对值不等式求得集合A ,然后求得其补集.解分式不等式求得集合B ,由此求得()U C A B ⋂.【详解】 由1x ≤解得11x -≤≤,所以[)(]3,11,5U C A =--⋃.由102x >+解得2x >-,所以()U C A B ⋂(2,1)(1,5]=--.故填:(2,1)(1,5]--.【点睛】本小题主要考查集合交集和补集的概念和运算,考查绝对值不等式和分式不等式的解法,属于基础题. 19.【分析】根据正整数的奇偶讨论的不同取值情况:若一奇一偶则取;若都是奇数或都是偶数则取列举出所有可能即可【详解】集合若一奇一偶则取此时所有个数为此时共有4个;若都是偶数则取此时所有个数为此时共有2个; 解析:9【分析】根据正整数的奇偶,讨论x y 、的不同取值情况:若一奇一偶,则取6xy =;若都是奇数或都是偶数,则取6x y +=,列举出所有可能即可.【详解】集合{(,)|6,,}M x y x y x y =⊗=∈*N若x y 、一奇一偶,则取6xy =,此时所有个数为16x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,61x y =⎧⎨=⎩,此时(),x y 共有4个;若x y 、都是偶数,则取6x y +=,此时所有个数为24x y =⎧⎨=⎩,42x y =⎧⎨=⎩,此时共(),x y 有2个; 若x y 、都是奇数,则取6x y +=,此时所有个数为15x y =⎧⎨=⎩,33x y =⎧⎨=⎩, 51x y =⎧⎨=⎩此时(),x y 共有3个;综上可知,满足条件的元素共有9个.故答案为:9【点睛】本题考查了新定义运算与集合的综合应用,注意分析题意并正确理解新定义是解决此类问题的关键,属于中档题. 20.【分析】对进行分类讨论解出的三种情况再和取公共部分从而求得实数的取值范围【详解】根据题意的解为当时的解为此时与显然有公共部分所以解集不为空集当时的解为此时与显然有公共部分所以解集不为空集当时的解为关 解析:(1,)-+∞【分析】对a 进行分类讨论,解出1ax <的三种情况,再和x a <取公共部分,从而求得实数a 的取值范围.【详解】根据题意,0x a -<的解为x a <,当0a >时,1ax <的解为1x a <, 此时x a <与1x a<显然有公共部分,所以解集不为空集. 当0a =时,1ax <的解为R ,此时x a <与R 显然有公共部分,所以解集不为空集.当0a <时,1ax <的解为1x a>, 关于x 的不等式组11,,0,,ax x a x a x a ⎧<>⎧⎪⇔⎨⎨-<⎩⎪<⎩的解集不是空集, ∴1a a<,即21a <,解得10a -<<.综上所述a 的取值范围为(1,)-+∞.故答案为:(1,)-+∞.【点睛】本题考查一元一次不等式组的求解,考查分类论论思想的运用,注意对a 进行分类讨论后,把求得a 的范围进行整合.三、解答题21.(1) {x |2≤x <10}, {x |7≤x <10};(2) 2a ≥【分析】(1)根据交、并、补集的运算分别求出A ∪B ,(∁R A )∩B ;(2)根据题意和A∩C≠∅,即可得到a 的取值范围.【详解】解:(1)因为A ={x |2≤x <7},B ={x |3<x <10},所以A ∪B ={x |2≤x <10}.因为A ={x |2≤x <7},所以∁R A ={x |x <2,或x ≥7},则(∁R A )∩B ={x |7≤x <10}.(2)因为A ={x |2≤x <7},C ={x |x a ≤},且A ∩C ≠∅,所以2a ≥所以a 的取值范围为2a ≥.【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.22.(1)0m ≥;(2)∅.【分析】(1)由于A B ⊆,根据子集的定义,即可求出m 的取值范围;(2)根据p q ∧为真,得出p 真且q 真,分别求出命题p 和命题q 对应的a 的范围,取交集后,即可得出a 的取值范围.【详解】解:由题意得,集合[]1,2A =,{}|1B x x m =≥-,(1)∵A B ⊆,∴11m -≤,则0m ≥;(2)由题可知,∵p q ∧为真,∴p 真且q 真,命题p :[]1,2a ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数,则抛物线对称轴大于等于5,即:5252a a ≥⇒≥, 则1252a a ≤≤⎧⎪⎨≥⎪⎩,解得:a ∈∅. 所以a 的取值范围为∅.【点睛】本题考查根据集合间的关系求参数范围,以及根据复合命题的真假性判断命题真假,进而求参数范围.23.(1)()[)4,1U AB =--(2)[)3,-+∞ 【分析】(1)先化简集合A ,再求()U A B ∩;(2)先求出[)4,A B =-+∞,得14a -≥-,解不等式即得解.【详解】(1)由题得[]4,2A =-,[)1,B =-+∞,(,1)U B =-∞-, 所以()[)4,1U A B =--;(2)由题得[)4,AB =-+∞,若C A B ⊆⋃,则14a -≥-,所以3a ≥-. 所以a 的取值范围是[)3,-+∞.【点睛】本题主要考查集合的运算和关系,意在考查学生对这些知识的理解掌握水平.24.(1){}|13AB x x x =<>或(2)[]1,0- 【分析】(1)解不等式得到集合A ,B ,利用并集定义求解A B ; (2)先求解,R B 再求解()R A B ,利用()()R C A B ⊆,列出不等关系,求解即可. 【详解】(1)由10x ->得,函数()()lg 1f x x =-的定义域{}|1A x x =<, 260x x -->,()()320x x -+>,得{}|32B x x x =><-或,∴{}|13AB x x x =<>或. (2){}|23R B x x =-≤≤,∴(){}|21R A B x x =-≤<,{}|21C x x ⊆-≤<,则121011m m m -≥-⎧⇒-≤≤⎨+≤⎩, 故实数m 的取值范围为[]1,0-.【点睛】本题考查了集合运算综合,考查了学生综合分析,数学运算能力,属于中档题.25.(1){}|13A B x x ⋂=≤<(2)132a -≤< 【分析】先求解不等式,可得1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,{}|13A x x =≤≤,再由交集的定义求解即可;(2)由A B ⊆,判断a 与集合B 的端点的位置即可.【详解】由题,因为()210x a x a -++≤,则()()10x a x --≤, 因为2103x x +≤-,即()()213030x x x ⎧+-≤⎨-≠⎩,所以132x -≤<,即集合1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,()()310x x --≤,解得13x ≤≤,即{}|13A x x =≤≤,所以{}|13A B x x ⋂=≤<(2)由题,当1a <时,{}|1A x a x =≤≤;当1a ≥时,{}|1A x x a =≤≤,因为A B ⊆,所以132a -≤< 【点睛】本题考查集合的交集运算,考查已知集合的包含关系求参数问题,考查解一元二次不等式和分式不等式.26.(1){}|36A B x x ⋂=≤<;(2)()R C A B R ⋃=【分析】(1)根据集合的交集运算即可(2)根据集合的补集、并集运算.【详解】因为集合{}|36A x x =≤<,集合{}|19B x x =<≤所以{}|36A B x x ⋂=≤<.所以{|3R C A x x =<或}6x ≥,∴R C A B R ⋃=.【点睛】本题主要考查了集合的交集,补集,并集运算,属于容易题.。

高一数学必修一集合练习题及单元测试(含答案及解析)

高一数学必修一集合练习题及单元测试(含答案及解析)

题习集合练1.设集合A={x|2 ≤x<4} ,B={x|3x -7≥8-2x} ,则A∪B 等于( )A.{x|x ≥3} B.{x|x ≥2} C .{x|2 ≤x<3} D .{x|x ≥4}2.已知集合A={1,3,5,7,9} ,B={0,3,6,9,12} ,则A∩B=( )A.{3,5} B .{3,6} C .{3,7} D .{3,9}3. 已知集合A={x|x>0} ,B={x| -1≤x≤2} ,则A∪B=( )A.{x|x ≥-1} B .{x|x ≤2 } C .{x|0<x ≤2} D .{x| -1≤x≤2} 4. 满足M?{ ,,,} ,且M∩{ ,,} ={ ,} 的集合M的个数是( ) A.1 B .2 C .3 D .45.集合A={0,2 ,a} ,B={1 ,} .若A∪B={0,1,2,4,16} ,则 a 的值为()A.0 B .1 C .2 D .46.设S={x|2x +1>0} ,T={x|3x -5<0} ,则S∩T=( )A.? B .{x|x< -1/2} C .{x|x>5/3} D .{x| -1/2<x<5/3}7.50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,则仅参加了一项活动的学生人数为________.8.满足{1,3} ∪A={1,3,5} 的所有集合 A 的个数是________.9.已知集合A={x|x ≤1} ,B={x|x ≥a} ,且A∪B=R,则实数 a 的取值范围是________.10. 已知集合A={ -4,2a -1,} ,B={a -5,1 -a,9} ,若A∩B={9} ,求a 的值.11.已知集合A={1,3,5} ,B={1,2 ,-1} ,若A∪B={1,2,3,5} ,求x 及A∩B. 12.已知A={x|2a ≤x≤a+3} ,B={x|x< -1 或x>5} ,若A∩B=? ,求 a 的取值范围.13.(10 分) 某班有36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组人?的有 6 人,同时参加物理和化学小组的有 4 人,则同时参加数学和化学小组的有多少试集合测大题共10 小题,每小题 5 分,共50 分。

高一数学必修一集合练习题及单元测试(含答案及解析)

高一数学必修一集合练习题及单元测试(含答案及解析)

集合练习题1 .设集合A = {x|2 4}, B = {x|3x —7 >8 —2x},贝U A UB 等于()A. {x|x > 3}B. {x|x > 2}C. {x|2 <x3}D. {x|x > 4}2 .已知集合A = {1,3,5,7,9} , B= {0,3,6,9,12},贝U A AB =( )A. {3,5}B. {3,6}C. {3,7}D. {3,9}3. 已知集合A = {x|x>0} , B= {x| —1 w x w 2}则A UB =( )A. {x|x —1}B. {x|x w 2 }C. {x|0<x w 2}D. {x| —1 w x w 2}4. 满足M?{町,口2 ,巾,h },且MQp i ,叱,靭}= ,叱}的集合M的个数是()A . 1B . 2C . 3D . 45 .集合A = {0,2 , a}, B= {1,只}.若A UB = {0,1,2,4,16},贝U a 的值为()A . 0B . 1C . 2 D. 46 .设S= {x|2x + 1>0} , T = {x|3x —5<0},贝U S AT=( )A . ?B . {x|x< —1/2}C . {x|x>5/3}D . {x| —1/2<x<5/3}7 . 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为______________ .8.满足{1,3} U4 {1,3,5}的所有集合A的个数是________________ .9 .已知集合A = {x|x w 1}B = {x|x > a}且A UB = R,则实数a的取值范围是_________________ .10.已知集合A = {—4,2a —1,白}, B= {a —5,1 —a,9},若A AB = {9},求a 的值.11 .已知集合A = {1,3,5} , B= {1,2 , —1},若A UB = {1,2,3,5},求x 及A A B.12 .已知A = {x|2a w x^3}, B= {x|x< —1 或x>5},若A AB = ?,求a 的取值范围.13 . (10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。

河北省人教版高中数学必修一集合部分检测试题附答案解析

河北省人教版高中数学必修一集合部分检测试题附答案解析

- 1 -人教版高中数学必修一 第一章集合部分检测题(满分150分 时间时间120分钟)一、单选题.(每小题5分,共12小题)小题) 1.下列元素的全体可以构成集合的是下列元素的全体可以构成集合的是.A 绝对值很小的实数绝对值很小的实数 .B 高一3班视力比较好的学生班视力比较好的学生C 地球上的比较高的山脉地球上的比较高的山脉D 方程210x -=的实数解的实数解 2.集合()(){}1,2,3,4中元素个数为中元素个数为.A 1个 .B 2个 .C 3个.D 4个 3.下列集合中表示同一集合的是下列集合中表示同一集合的是 A (){}(){}3,2,2,3M N ==B {}{}4,5,5,4M N == .C (){}{},1,1M x y x y N y x y =+==+= .D {}(){}1,2,1,2M N == 4.已知几个关系式:①{}{},,a b b a Í;②{}{},,a b b a =;③{}0=Æ;④{}00Î;⑤{}0ÆÎ;⑥{}0ÆÍ.其中正确的个数为正确的个数为.A 3个 .B 4个 .C 5个 .D 6个 5.已知集合S 中三个元素是ABC D 的三边长,那么ABC D 一定不是一定不是.A 锐角三角形锐角三角形 .B 直角三角形直角三角形 .C 钝角三角形钝角三角形 .D 等腰三角形等腰三角形 6.已知全集U ,集合A B U ÍÍ,则下列关系正确的是则下列关系正确的是.A A B B = .B A B A =.C ()()U U U C A C B C B = .D ()()U U U C A C B C B = 7.已知集合{}0,10,1,2,3,4,2,3,4U =,集合{}1,2,3A =,集合{}2,4B =,则()U C A B =.A {}1,2,4.B {}2,3,4 .C {}0,2,4 .D {}0,2,3,4 8.设全集U 为实数集R ,集合{}2M x x =>,{}2430N x x x =-+<,则图中阴影部分所表示的集合是图中阴影部分所表示的集合是.A {}2x x < .B {}22x x -££ .C {}21x x -£<.D {}12x x <£ 9.若集合{}{}21,,41,A x x n n Z B x x n n Z ==+Î==±Î,则下列关系成立的是则下列关系成立的是.A A B = .B A B Í .C A B Ê .D A B =Æ 10.已知集合{}{}1,0,1,11A B x x =-=-£<,则AB =.A {}0 .B {}1,0- .C {}0,1.D {}1,0,1- UMN11.满足{}{}1,21,2,3,4,5A ÍÜ的集合A 的个数是的个数是.A 3个 .B 4个 .C 7个 .D 8个 12.已知集合{}21P x x ==,集合{}1Q x ax ==,若Q P Í,则a 的值为的值为.A 1 .B -1 .C 1或-1.D 0,1或-1 二、填空题.(每小题5分,共4小题)小题) 13.集合{}21,,42M y y x x Z x ==+Î-<£,可用列举法表示为M =. 14.已知集合{}11A x a x a =-££+,{}2540B x x x =-+³,若AB =Æ,则实数a 的取值范围为的取值范围为. 15.15.集合集合(){}21320A x a x x =-+-=有且仅有两个子集有且仅有两个子集,,则a = . 16.16.已知集合已知集合{}1,2A =,{}B x x A =Í,则集合B = . 三、解答题.17.(10分)已知集合{}28A x x =££,{}16B x x =<<,{}C x x a =>,U R =. (1)求A B ,()U C A B ;(2)若AC =Æ,求a 的取值范围.18.(1218.(12分)(1){}2430P x x x =-+=,{}30S x ax =+=,SP S =,求a 取值取值. .(2){}25A x x =-££,{}121B x m m m =+££-,AB A =,求m 范围范围. .(3)已知集合{|33}U x x =-££,{|11}M x x =-<<,{|02}U C N x x =<<,求集合N 和MN .19.(12分)集合{}2120A x x ax b =++=和{}20B x x ax b =-+=满足(){}2U C A B =,(){}4U A C B =,U R =,求实数,a b 的值的值. .20.(12分)已知集合{}2320A x x x =-+=,{}220B x x mx =-+=,且A B B =,求实数m 的取值范围.的取值范围.21.(12分)已知集合{}240,A x x x x R =+=Î,(){}222110,B x x a x a x R =+++-=Î,若B A Í,求实数a 的值的值. .22.(12分)已知集合3,2A x Z x Z x ìü=ÎÎíý-îþ,{}2230B x x x =--=.(1)用列举法表示集合A ;(2)求A B ,并列出A B 的所有子集的所有子集..参考答案一、单选题.1.【答案】.D【解析】构成集合的三要素:确定性、无序性、互异性.,,A B C 都不满足确定性,只有D 项符合题意.故选.D2.【答案】.B【解析】集合中的元素是点的坐标.显然集合中只有两个点()1,2和()3,4,∴只有2个元素,选.B 3.【答案】.B【解析】A 项中集合M 和N 中元素是两个不同的点;C 项中集合M 的元素为坐标,即点,N 中元素为函数1x y +=的值域,两集合中元素不同;D 项中,M 中元素为两个常数1和2,N 中元素点的坐标.B 项中集合M 和N 都仅有两个元素4和5,根据集合的无序性可得M N =.故选.B 4.【答案】.B【解析】正确的有①②④⑥共4个.错误的为③⑤错误的为③⑤..故选.B 5.【答案】.D【解析】由集合元素的互异性可知,三角形任何两边长不相等,所以不可能是等腰三角形. 6.【答案】.C【解析】根据集合间关系画出韦恩图,如图所示,易知答案为.C7.【答案】.C 【解析】∵{}0,4U C A =,{}2,4B =,∴(){}0,2,4U C A B =,故选.C8.【答案】.D 【解析】图中阴影部分表示的集合间关系为()UN C M,∵{}{}222M x x x x x =>=<->或,∴{}22U C M x x =-££, 又{}{}243013N x x x x x =-+<=<<,∴()UN C M {}12xx =<£.故选.D 9.【答案】.A【解析】都表示奇数集.故选.A 10.【答案】.B【解析】A B 表示集合A 和B 中的公共元素构成的集合,集合A 中在11x -£<中的元素只有1-和0,故A B ={}1,0-,故选.B11.【答案】.C【解析】∵{}1,2A Í,∴集合{}1,2是集合A 的子集,则A 中必含有元素1,2.又∵{}1,2,3,4,5A Ü,∴集合A 的所有可能情况有:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5共7种情况.故选.C 12.【答案】.D 【解析】{}{}211,1P x x ===-,集合P 的子集有{}{}{},1,1,1,1Æ--.∵Q P Í且Q 中最多有一个元素,∴Q 只可能为{}{},1,1Æ-.当Q =Æ时,0a =,当{}1Q =-时,把1x =-代入1ax =中解得1a =-, 当{}1Q =时,把1x =代入1ax =中解得1a =.综上,a 的值为1,01-或故选.D 二、填空题.13.【答案】{}1,2,5,10.【解析】M 中元素为y .∵42x -<£,∴3,2,1,0,1,2x =---。

人教版数学必修一集合专项练习(一)(含答案)

人教版数学必修一集合专项练习(一)(含答案)

人教版数学必修一集合专项练习(一)第I卷(选择题)一、选择题(共10题,每题5分,共50分)1.已知全集U={0,1,2,3}且C U A={0,2},则集合A的真子集共有A.3个B.4个C.5个D.6个2.设U是全集,M,P,S是U的三个子集,则阴影部分所示的集合为A.(M∩P)∩SB.(M∩P)∪(∁U S)C.(M∩P)∪SD.(M∩P)∩(∁U S)3.若A={x|﹣1<x<2},B={x|1<x<3},则A∩B=A.{x|1<x<2}B.{x|﹣1<x<3}C.{x|1<x<3}D.{x|﹣1<x<2} 4.若U={1,2,3,4},M={1,2},N={2,3},则∁U(M∩N)=A.{1,2,3}B.{1,3,4}C.{2}D.{4}5.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断,对于任一戴德金分割(M,N),下列选项中不可能成立的是A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素6.已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B=A.{3}B.{0,1,2}C.{1,2}D.{0,1,2,3}7.已知A={x|3-3x>0},则有A.3∈AB.1∈AC.0∈AD.-1∉A8.下列图形中,表示M⊆N的是A. B.C. D.9.下列四个命题::①a∈(A∪B)⇒a∈A; ②a∈(A∩B)⇒a∈(A∪B); ③A⊆B⇒A∪B=B; ④A∪B=A⇒A∩B=B.其中正确命题的个数是A.1B.2C.3D.410.设全集为U,定义集合M与N的运算:M*N={x|x∈M∪N且x∉M∩N},则N*(N*M)= A.M B.N C.M∩∁U N D.N∩∁U M第II卷(非选择题)二、填空题(共5题,每题5分,共25分)11.设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)=.12.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.13.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=.},N=14.已知全集U=R,实数a,b满足a>b>0,集合M={x|b<x<a+b2{x|√ab<x<a},则M∩∁U N= .15.若数集A同时满足:(1)至少含有2个元素;(2)对任意不相等的a,b∈A,都有ab∈A,则称数集A关于乘法运算封闭.试写出一个关于乘法运算封闭的有限集合A=.三、解答题(共6题,共75分)16.(本题11分)对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如,A={1,2},B={3,4},则有:A×B={(1,3),(1,4),(2,3),(2,4)}, B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)}, B×B={(3,3),(3,4),(4,3),(4,4)}.据此,试回答下列问题:(1)已知C={a},D={1,2,3},求C×D;(2)已知A×B={(1,2),(2,2)},求集合A,B;(3)若集合A中有3个元素,集合B中有4个元素,试确定A×B有几个元素.17.(本题12分)已知:集合A={x|x2+4x=0},集合B={x|x2+2(a+1)x+a2-1=0}(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.18.(本题13分)设非空数集A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},若B∪C=B,求实数a的取值范围.19.(本题13分)己知集合A={x|0≤x−1≤2},R为实数集,B={x|1<x−a<2a+3}.(1)当a=1时,求A∪B及A∩C R B;(2)若A∩B≠φ,求a的取值范围.和g(x)=ln(−x2+4x−3)的定义域分别为集合A和B. 20.(本题13分)设函数f(x)=√a−x(1)当a=2,求函数y=f(x)+g(x)的定义域;(2)若A∩(∁R B)=A,求实数a的取值范围.21.(本题13分)已知集合A={x|ax2+x+1=0,x∈R},且A∩{x|x≥0}=∅,求实数a的取值范围.参考答案1.A【解析】本题考查集合的运算和真子集.因为U={0,1,2,3}且C U A={0,2},所以A={1,3},则A的真子集有3个;故选A.【备注】无2.D【解析】本题主要考查运用集合表示阴影部分.由题意,U是全集,M,P,S是U的三个子集,阴影部分是M与P的交集中的元素,同时还不在集合S中,即为(M∩P)∩(∁U S),故选D.【备注】无3.A【解析】本题考查集合的基本运算.由题意得A∩B={x|1<x<2}.选A.【备注】无4.B【解析】本题主要考查集合的交集补集的运算.由题意,M={1,2},N={2,3},M∩N ={2},则∁U(M∩N)={1,3,4},选B【备注】无5.C【解析】本题考查了学生对新定义的接受与应用能力,属于基础题.解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<√2},N={x∈Q|x≥√2};则M没有最大元素,N也没有最小元素;故B正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;故选C.【备注】无6.B【解析】B={x∈N||x|≤2}={0,1,2},A∩B={0,1,2}.【备注】无7.C【解析】集合A是不等式3-3x>0的解集,即A={x|x<1},可知3∉A,1∉A,0∈A,-1∈A.故选C. 【备注】无8.C【解析】本题考查用韦恩图表示集合间的基本关系.对A,M与N相交;对B,N⊆M;对D,M与N没关系;对C,M⊆N.选C.【备注】无9.C【解析】a∈(A∪B)⇒a∈A或a∈B,所以①错,由交集、并集的定义,易知②③④正确.【备注】无10.A【解析】本题考查新定义问题.如图所示,由定义可知N*M为图中的阴影区域,∴N*(N*M)为图中阴影Ⅰ和空白的区域,∴N*(N*M)=M.选A.【备注】无11.{1,4,7}【解析】因为M∩N={1,4},M∩P={4,7},所以(M∩N)∪(M∩P)={1,4,7}.【备注】无12.12【解析】本题主要考查了集合中元素的个数问题.根据题意可知喜爱篮球运动的人数为21,喜爱乒乓球运动的人数为18,20人对这两项运动都不喜爱,设既喜爱篮球运动又喜爱乒乓球运动的人数为x,则21+18+20−x=50,解得x=9,所以喜爱篮球运动但不喜爱乒乓球运动的人数为21−9=12,故填12.【备注】无13.4【解析】思维导图由S和∁S A可求得A中元素确定x2-5x+m=0的根确定m的值因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得:m=1×4=4.【备注】无14.(b,√ab]【解析】本题主要考查不等式的性质、基本不等式、集合的基本运算.因为a>b>0,所以>√ab>b,则∁U N={x|x≤√ab或x≥a}, 则M∩∁U N={x|b<x≤√ab}a>a+b2【备注】无15.{0,1}(或{0,-1},{0,1,-1},{1,2}等)【解析】若集合A中有0,则0与任何实数的乘积均为0,满足条件,所以集合中可以有元素0.同理,可知集合中也可以有元素1.再适当补充其他元素即可.【备注】无16.(1)C×D={(a,1),(a,2),(a,3)}.(2)因为A×B={(1,2),(2,2)},所以A={1,2},B={2}.(3)从以上解题过程可以看出,A×B中元素的个数与集合A和B中的元素个数有关,即集合A 中的任何一个元素与B中的任何一个元素对应后,得到A×B中的一个新元素.若A中有m个元素,B中有n个元素,则A×B中应有(m×n)个元素.于是,若集合A中有3个元素,集合B中有4个元素,则A×B中有12个元素.【解析】集合中的创新问题是近年来高考命题的热点,这类问题主要以教材知识为背景,进行移植、迁移,旨在考查学生的理解能力和运用数学思想方法分析问题、解决问题的能力.求解集合中的新定义问题,主要抓两点:(1)紧扣新定义——首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在;(2)用好集合的性质——集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键处用好集合的性质.【备注】无17.(1)A ={-4,0},若A ∪B =B,则B =A ={-4,0},解得a =1.(2)若A ∩B =B,则①若B 为空集,则Δ=4(a +1)2-4(a 2-1)=8a +8<0,则a <-1;②若B 为单元素集合,则Δ=4(a +1)2-4(a 2-1)=8a +8=0,解得a =-1,将a =-1代入方程x 2+2(a +1)x +a 2-1=0,得x 2=0得,x =0,即B ={0},符合要求;③若B =A ={-4,0},则a =1,综上所述,a ≤-1或a =1.【解析】本题主要考查集合的基本运算、集合间的基本关系,考查了分类讨论思想思想.(1)根据题意,由A ∪B =B 可得B =A ={-4,0},则结论易得;(2)由A ∩B =B 可得B ⊆A ,再分B 为空集、B 为单元素集合、B =A 三种情况讨论求解即可.【备注】无18.因为A ={x|-2≤x ≤a },B ={y|y =2x+3,x ∈A },所以B ={y|-1≤y ≤2a+3}.又B ∪C =B ,所以C ⊆B.①当-2≤a <0时,C ={y|a 2≤y ≤4},所以2a+3≥4,所以a ≥12,与条件矛盾. ②当0≤a ≤2时,C ={y|0≤y ≤4},所以4≤2a+3,解得a ≥12,此时12≤a ≤2.③当a >2时,C ={y|0≤y ≤a 2},所以a 2≤2a+3,结合二次函数y =a 2-2a-3的图象,可得-1≤a ≤3,此时2<a ≤3.综合①②③,得实数a 的取值范围为{a|12≤a ≤3}.【解析】无【备注】无19.(1)A ={x|0≤x −1≤2}={x|1≤x ≤3},当a =1时,B ={x|1<x −1<2×1+3}={x|2<x <6},A ∪B ={x|1≤x <6},C R B ={x|x ≤2或x ≥6},A ∩C RB ={x|1≤x ≤2},(2)由已知得A ={x|1≤x ≤3},B ={x|a +1<x <3a +3},∵A ∩B ≠φ,∴{a +1<33a +3>1a +1<3a +3,解得−23<a <2, 则a 的取值范围为(−23,2). 【解析】本题考查集合间的基本运算及关系.(1)先化简两集合,再借助数轴完成求解;(2)根据数轴分析两集合中不等式端点的大小关系,列出不等式即可得到参数a 的取值范围.【备注】无20.(1)a =2时,函数f (x )=√a−x =√2−x,g (x )=ln(−x 2+4x −3),∴函数y =f (x )+g (x )=√2−x ln(−x 2+4x −3),应满足{2−x >0−x 2+4x −3>0,解得{x <21<x <3,即1<x <2, 所以函数y 的定义域为(1,2).(2)∵A =(−∞,a),B =(1,3),∴∁R B =(−∞,1]∪[3,+∞),若A ∩(∁R B)=A ,则a ≤1,∴实数a 的取值范围是(−∞,1].【解析】本题考查对数函数,函数定义域的求解,集合的基本运算.(1)a =2时,求得y =f (x )+g (x )=√2−x +ln(−x 2+4x −3),应满足{2−x >0−x 2+4x −3>0,解得1<x <2,所以函数y 的定义域为(1,2).(2)求得A =(−∞,a),∁R B =(−∞,1]∪[3,+∞),因为A ∩(∁R B)=A ,则a ≤1.【备注】无21.当a =0时,A ={x|x+1=0,x ∈R }={-1},此时A ∩{x|x ≥0}=∅;当a ≠0时,∵A ∩{x|x ≥0}=∅,∴A =∅或关于x 的方程ax 2+x+1=0的根均为负数.①当A =∅时,关于x 的方程ax 2+x+1=0无实数根,Δ=1-4a <0,解得a >14 .②当关于x 的方程ax 2+x+1=0的根x 1,x 2均为负数时,{Δ=1-4a ≥0x 1+x 2=-1a <0x 1x 2=1a >0,解得{a ≤14a >0,即0<a ≤14. 综上所述,实数a 的取值范围为{a|a ≥0}.【解析】无【备注】无。

高中数学《必修一》《集合》单元测试(基础卷)

高中数学《必修一》《集合》单元测试(基础卷)

高中数学《必修一》《集合》单元测试(基础卷)考试时间:120分钟满分:*120分一、单选题(共12题;共48分)1.已知集合,则()A. {0,x,1,2}B. {2,0,1,2}C. {0,1,2}D. 不能确定2.已知全集U=R,集合,,则等于( )A. B. C. D.3.集合,若,则a的值为()A. 0B. 1C. 2D. 44.若集合,,则等于()A. B.C. D.5.若U={-2,-1,0,1,2},M={-1,0,1},N={-2,-1,2},则=( )A. B. {0,1} C. {-2,0,1,2} D. {-1}6.设集合.若则a的范围是( )A. a<1B.C. a<2D.7.已知集合A={x|1<x<10,x∈N}.B={x|x= ,n∈A}.则A∩B=()A. {1,2,3}B. {x|1<x<3}C. {2,3}D. {x|1<x<}8.已知集合,则()A. B.C. 且D.9.若集合,则集合A∩B为()A. B. C. D.10.集合A={﹣1,0,1,3},集合B={x|x2﹣x﹣2≤0,x∈N},全集U={x||x﹣1|≤4,x∈Z},则A∩(∁U B)=()A. {3}B. {﹣1,3}C. {﹣1,0,3}D. {﹣1,1,3}11.已知集合,若,实数m=( )A. 3B. 2C. 2或3D. 0或2或312.设全集U=R,集合M={x|x>0},N={x|x2≥x},则下列关系中正确的是()A. M∪N⊆MB. M∪N=RC. M∩N∈MD. (∁U M)∩N=∅二、填空题(共4题;共16分)13.若集合A={﹣1,0,1,2},B={x|x+1>0},则A∩B=________.14.已知集合A=(﹣2,4),B=(﹣∞,a],若A∩B=∅,则实数a的取值范围是________.15.已知集合A=(﹣2,1],B=[﹣1,2),则A∪B=________.16.满足{3}∪A={1,3,5}的集合A可以是________.三、解答题(共6题;共56分)17.已知集合A可表示为{a,a2, },求实数a应满足的条件.18.已知全集U=R,集合A={x|2<x<9},B={x|﹣2≤x≤5}.(1)求A∩B;B∪(∁U A);(2)已知集合C={x|a≤x≤a+2},若C⊆∁U B,求实数a的取值范围.19.设全集,集合或.求(1);(2)记,且,求的取值范围.20.已知集合A={x|﹣1<x<2},B={0,1,2}.(1)求A∩B,A∪B;(2)设函数f(x)=log3(x﹣1)的定义域为集合C,求(∁R C)∩A;(3)设集合M={x|a<x≤a+2},且M⊆A,求实数a的取值范围.21.已知集合A={y|y=x2﹣2x﹣3,x∈R},B={x|log2x<﹣1},C={k|函数f(x)= 在(0,+∞)上是增函数}.(1)求A,B,C;(2)求A∩C,(∁U B)∪C.22.已知全集U=R,集M={x|x﹣3≥0},N={x|﹣1≤x<4}.(1)求集合M∩N,M∪N;(2)求集合∁U N,(∁U N)∩M.答案解析部分一、单选题1.【答案】C【解析】本题主要考查的是集合的运算。

完整版)高一数学必修一集合练习题及单元测试(含答案及解析)

完整版)高一数学必修一集合练习题及单元测试(含答案及解析)

完整版)高一数学必修一集合练习题及单元测试(含答案及解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A。

{x|x≥3} B。

{x|x≥2} C。

{x|2≤x<3} D。

{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A。

{3,5} B。

{3,6} C。

{3,7} D。

{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A。

{x|x≥-1} B。

{x|x≤2} C。

{x|0<x≤2} D。

{x|-1≤x≤2}4.满足M⊆{1,2,3,4},且M∩{3,4}={3}的集合M的个数是()A。

1 B。

2 C。

3 D。

45.集合A={0,2,a},B={1,4},若A∪B={0,1,2,4,16},则a 的值为()A。

4 B。

1 C。

2 D。

06.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A。

Ø B。

{x|x5/3} D。

{x|-1/2<x<5/3}7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为15.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是2.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是(-∞,1]。

10.已知集合A={-4,2a-1,a},B={a-5,1-a,9},若A∩B={9},则a的值为5.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},则x=2,A∩B={1}。

12.已知A={x|2a≤x≤a+3},B={x|x5},若A∩B=Ø,则a的取值范围为(-∞,-1)∪(5,∞)。

13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合检测卷
姓名: 班级: 一.单选题
1.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是( ) A .A B B .A B C .()()U U C A C B D .()()U U C A C B
2.下列命题正确的有( )
(1)很小的实数可以构成集合;(2)集合{}1|2
-=x y y 与集合(){}1|,2
-=x y y x 是同一个集合;
(3)361
1,,,,0.5242
-这些数组成的集合有5个元素;
(4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。

A .0个 B .1个 C .2个 D .3个
3.已知全集U =R ,集合{A x =∈N 2
|650},{x x B x -+≤=∈N 2}x ,图中阴影部分所表示的
集合为( ) A. {}0,1,2
B .{}1,2
C .{}1
D .{}0,1
4.集合{}(,)|1,A x y y x x R ==+∈,集合{}2
(,)|,B x y y x x R ==∈,则集合A B ⋂的子集个数为( ) A .1 B .2 C .3 D .4
5.已知集合2{|}A x x x ==,{1,,2}B m =,若A B ⊆,则实数m 的值为( ) A .2
B .0
C .0或2
D .1
6.已知集合{}2
2A x x x =<+,{}B x x a =<,若A B ⊆,则实数a 的取值范围为( )
A .(],1-∞-
B .(],2-∞
C .[)2,+∞
D .[)1,-+∞
7.已知集合{1,2}A =-,{|1}B x ax ==,若=B A A ,则由实数a 的所有可能的取值组成的集合为( )
A .11,2⎧⎫⎨⎬⎩⎭
B .11,2⎧⎫-⎨⎬⎩⎭
C .10,1,2⎧
⎫⎨⎬⎩⎭
D .11,0,2⎧
⎫-⎨⎬⎩

8.方程组⎩⎨⎧=-=+9
1
2
2y x y x 的解集是( )A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5- 9.集合
1,2n M x x n Z ⎧⎫==+∈⎨⎬⎩⎭,1,2N y y m m Z ⎧⎫
==+∈⎨⎬
⎩⎭,则两集合,M N 关系为( ) A .M N ⋂=∅ B .M N
C .M N ⊆
D .N M ⊆
10.设集合A ={x |ax 2
–ax +1<0},若A =∅,则实数a 取值的集合是 ( ) A .(0,4)
B .[0,4)
C .(0,4]
D .[0,4]
11.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=--+{}1,A B ⋂=-则a 的值是( ) A .1- B .0或1 C .0 D . 2
12.如图所示,I 是全集,M ,P ,S 是I 的三个子集,则阴影部分所表示的集合是( ) A .()M P S ⋂⋂ B .()M P S ⋂⋃ C .()I (C )M P S ⋂⋂ D .()I (C )M P S ⋂⋃ 二.填空题
13. 满足{}{}1,21,2,3B =的所有集合B 的集合为
14. 已知集合A ={2,3,4-},B ={2,x x t t A =∈},用列举法表示集合B=
15.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人。

16. 已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 ;
若至少有一个元素,则a 的取值范围
三.解答题
17.设集合A ={2,3,a 2+2a −3},B ={|2a −1|,2}.
(1)若C A B ={5},求实数a 的值; (2)若B ⊆A ,求实数a 的取值集合.
M
S
P
I
=≠∅,求B A C。

相关文档
最新文档