初中数学-商品利润问题

合集下载

初中数学精品试题:一元二次方程利润问题

初中数学精品试题:一元二次方程利润问题

专题06一元二次方程利润问题这类问题在考试中是必考内容,需要掌握的知识点也比较多,是一类非常重要的考题,需要掌握以下知识点:①总利润=单件利润×数量(销售量);②单件利润=售价-进价;③总利润与x是二次函数关系;④数量与x是一次函数关系;【1】降价问题(问题为降价多少元)①设应降价x元;②公式中“单利”为未降价前的单件利润,即单利=售价-进价;③公式中“基础数量”为降价前的销售量,题目中给出;④公式中“件数”为题目中说明的,降价“1元”,增加的数量;(注意必须是降价1元,不是1元的,转化为1元)⑤列出方程;(注意降价的范围)⑥解出方程;【2②公式中“单利”为未涨价前的单件利润,即单利=售价-进价;③公式中“基础数量”为涨价前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价“1元”,减少的数量;(注意必须是涨价1元,不是1元的,转化为1元)⑤列出方程;(注意涨价的范围)⑥解出方程;①设应定价x元;②公式中“进利”为题目中给出的进价;③公式中“基础数量”为价格改变前的销售量,题目中给出;④公式中“件数”为题目中说明的,涨价(或者降价)“1元”,增加(或者减少)的数量;(注意必须是涨价或降价1元,不是1元的,转化为1元)⑤公式中“售价”为题目中给出价格为改变前的销售价格;⑥列出方程;(注意x的范围)⑦解出方程;【4】数量为一次函数类型我们已经知道,数量与x(涨价,降价或者定价)是一次函数关系,因此我们可以用一次函数的待定系数法求出数量的表达式,再将一次函数表达式代入方程中即可;①设数量y=kx+b(k≠0);②在给出的函数图像上找两个已知坐标的点代入;③求出y的解析式;④总利润=单利×数量中,“数量”用求出的“kx+b”代替,列出方程;⑤注意x的取值范围;1.水果店张阿姨以每千克4元的价格购进某种水果若干千克,然后以每千克6元的价格出售,每天售出100千克.通过调查发现,这种水果每千克的售价每降低0.1元,每天可多售出20千克,为了保证每天至少售出240千克,张阿姨决定降价销售.(1)若售价降低0.8元,则每天的销售量为千克、销售利润为元;(2)若将这种水果每千克降价x元,则每天的销售量是千克(用含x的代数式表示);(3)销售这种水果要想每天盈利300元,张阿姨应将每千克的销售价降至多少元?2.合肥百货大楼服装柜在销售发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价2元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?3.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1200元,每件衬衫应降价多少元?4.某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?5.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,该商品每降价1元,商场平均每天可多售出2件.(1) 设每件商品降价x元,则商场日销售量增加件,每件商品盈利_________元(用含x的代数式表示);(2) 每件商品降价多少元时,商场日盈利可达到2000元?6.商场某种商品平均每天可销售30件,每件赢利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多销售出2件.(1)若某天,该商品每天降价4元,当天可获利多少元?(2)每件商品降多少元,商场日利润可达2100元?1.某商店将进价为30 元的商品按售价50 元出售时,能卖500 件.已知该商品每涨价1 元,销售量就会减少10 件,为获得12000 元的利润,且尽量减少库存,售价应为多少元?2.某商店销售一款口罩,每袋的进价为12元,计划售价大于12元但不超过22元,通过试场调查发现,这种口罩每袋售价提高1元,日均销售量降低5袋,当售价为18元时,日均销售量为50袋.(1)在售价为18元的基础上,将这种口罩的售价每袋提高x元,则日均销售量是袋;(用含x的代数式表示)(2)要想销售这种口罩每天赢利275元,该商场每袋口罩的售价要定为多少元?3.某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价x元(x为非负整数),每周的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?1.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价0.5元,那么每天就少售10件;如果每件降价0.5元,那么每天能多售出20件.为了使该商品每天销售盈利为1980元,每件定价多少元?2.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?3.平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少4.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?5.某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?6.某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售200件,售价每提高1元,销售量将减少10件.那么,该服装每件售价是多少元时,商店销售这批服装获利能达到2240元?7.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额﹣进货成本).(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?2.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,该商店每天的销售利润为6480元?3.某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y;(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?4.某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?5.某科技公司为提高经济效益,近期研发一种新型设备,每台设备成本价为2万元.经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)对应的点(x,y)在函数y=kx+ b的图象上,如图:(1)求y与x的函数关系式;(2)根据相关规定,此设备的销售单价不高于5万元,若该公司要获得80万元的月利润,则该设备的销售单价是多少万元?6.某商店代销一种智能学习机,促销广告显示“若购买不超过40台学习机,则每台售价800元,若超出40台,则每超过1台,每台售价将均减少5元”,该学习机的进价与进货数量关系如图所示:x 时,用含x的代数式表示每台学习机的售价;(1)当40(2)当该商店一次性购进并销售学习机60台时,每台学习机可以获利多少元?(3)若该商店在一次销售中获利4800元,则该商店可能购进并销售学习机多少台?7.某公司购进一批新产品进行销售,已知该产品的进货单价为8元/件,该公司对这批新产品上市后的销售情况进行了跟踪调查.销售过程中发现,该产品每月的销售量y(万件)与销售单价x(元)之间的关系满足下表.(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并求出y与x之间的函数关系式;(2)当销售单价为多少元时,该产品每月获得的利润为240万元?(3)如果该产品每月的进货成本不超过160万元,那么当销售单价为多少元时,该产品每月获得的利润最大?最大利润为多少万元?8.吴江区某桶装水经营部每天的房租、人员工资等固定成本为150元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1200元,求该桶装水的销售单价.9.为提高农民收入,某区一水果公园引进一种新型蟠桃,蟠桃进价为每公斤40元.上市后通过一段时间的试营销发现:当蟠桃销售单价在每公斤40元至90元之间(含40元和90元)时,每月的销售量y(公斤)与销售单价x(元/公斤)之间的关系可近似地看作一次函数,其图像如图所示.(1)求y与x的函数解析式,并写出定义域;(2)如果想要每月获得2400元的利润,那么销售单价应定为每公斤多少元?。

(word完整版)初中利润问题解题技巧

(word完整版)初中利润问题解题技巧

利润问题是公务员考试行测科目数学运算部分的常考题型之一。

利润问题也是人们在经济生活中遇到的问题,它主要考查进价、售价、利润之间的关系。

中公教育专家提醒各位考生,在复习的过程中,应重点掌握利润问题涉及的几种题型及解题方法。

利润问题概念及相关公式一、简单的利润问题利润问题本身是从商业活动中抽象出来的,几乎所有的题目都与进价、售价、利润相关,尤其是那些最简单的利润问题。

例题:一商品的进价比上月低了5%,但超市仍按上月售价销售,其利润率提高了6个百分点,则超市上月销售该商品的利润率为:A.12%B.13%C.14%D.15%中公中公解析:此题答案为C。

为避免出现分数,这里遇到百分数,则设特值时可设为100,因此设上月的进价为100,则这个月的进价为100×(1-5%)=95。

设上个月的利润率为x,则这个月的利润率为x+6%。

根据售价相同可知:100(1+x)=95(1+x+6%),解得x=14%。

二、打折问题商家定完价格以后,往往不是按照最初的定价进行出售,一般都会通过打折这一方式,降低实际的售价,从而吸引更多的顾客来购买商品。

例题:某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价,结果只销售了商品总量的30%。

为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元。

问商店是按定价打几折销售的?A.四八折B.六折C.七五折D.九折中公解析:此题答案为B。

方法一,商品的总定价为(1+25%)×10000=12500元,销售30%后,得到12500×30%=3750元。

由于整体亏本1000元,说明剩下70%的销售额为10000-1000-3750=5250元,然而剩下70%商品的原定价为12500-3750=8750元,5250÷8750=0.6,即打了六折,选B。

三、价格与销量反向变化问题价格上涨,销量就会降低;价格下跌,销量就会增加。

人教版初中数学九年级上册第二十二章22.3.2实际问题与二次函数——商品利润问题

人教版初中数学九年级上册第二十二章22.3.2实际问题与二次函数——商品利润问题

人教版数学九年级上册某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价180006000为每件40元,则每星期销售额是元,销售利润元.数量关系(1)销售额= 售价×销售量;(2)利润= 销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.例1某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10x y=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.60001.自变量x 的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.2.涨价多少元时,利润最大,最大利润是多少?y =-10x 2+100x +6000,当时,y =-10×52+100×5+6000=6250.10052(10)x =-=⨯-即定价65元时,最大利润是6250元.例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18x y=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即:y=-18x2+60x+6000.6000综合可知,应定价65元时,才能使利润最大.1.自变量x 的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤20.2.降价多少元时,利润最大,是多少?当时,6052(18)3x =-=⨯-即定价57.5元时,最大利润是6050元.即:y =-18x 2+60x +6000,25518()6060006050.33y =-⨯+⨯+=由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?某网络玩具店引进一批进价为20元/件的玩具,如果以单价30元出售,那么一个月内售出180件,根据销售经验,提高销售单价会导致销售量的下降,即销售单价每上涨1元,月销售量将相应减少10件,当销售单价为多少元时,该店能在一个月内获得最大利润?①每件商品的销售单价上涨x元,一个月内获取的商品总利润为y元,填空:单件利润(元)销售量(件)每月利润(元)正常销售涨价销售1018010+x180-10x y=(10+x)(180-10x)1800建立函数关系式:y=(10+x)(180-10x),即:y=-10x2+80x+1800.营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故180-10x ≥0,因此自变量的取值范围是x ≤18.③涨价多少元时,利润最大,最大利润是多少?y =-10x 2+80x +1800= -10(x-4)2+1960.当x =4时,即销售单价为34元时,y 取最大值1960元.答:当销售单价为34元时,该店在一个月内能获得最大利润1960元.②自变量x的取值范围如何确定?求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.例2 某商店试销一种新商品,新商品的进价为30元/件,经过一段时间的试销发现,每月的销售量会因售价的调整而不同.令每月销售量为y件,售价为x元/件,每月的总利润为Q元.(1)当售价在40~50元时,每月销售量都为60件,则此时每月的总利润最多是多少元?解:由题意得:当40≤x≤50时,Q = 60(x-30)= 60x-1800∵y= 60 > 0,Q随x的增大而增大= 50时,Q最大= 1200∴当x最大答:此时每月的总利润最多是1200元.(2)当售价在50~70元时,每月销售量与售价的关系如图所示,则此时当该商品售价x 是多少元时,该商店每月获利最大,最大利润是多少元?解:当50≤x ≤70时,设y 与x 函数关系式为y =kx +b ,∵线段过(50,60)和(70,20).50k +b =6070k +b =20∴∴y =-2x +160(50≤x ≤70)解得:k =-2b = 160∴y=-2x+160(50≤x≤70)∴Q=(x-30)y=(x-30)(-2x+ 160)=-2x2+ 220x-4800=-2(x-55)2+1250 (50≤x≤70)∵a = -2<0,图象开口向下,∴当x= 55时,Q= 1250最大∴当售价在50~70元时,售价x是55元时,获利最大,最大利润是1250元.解:∵当40≤x ≤50时,Q 最大= 1200<1218当50≤x ≤70时,Q 最大= 1250>1218∴售价x 应在50~70元之间.∴令:-2(x -55)2+1250=1218解得:x 1=51,x 2=59当x 1=51时,y 1=-2x +160=-2×51+160= 58(件)当x 2=59时,y 2=-2x +160= -2×59+160= 42(件)∴若4月份该商品销售后的总利润为1218元,则该商品售价为51元或59元,当月的销售量分别为58件或42件.(3)若4月份该商品销售后的总利润为1218元,则该商品售价与当月的销售量各是多少?变式:(1)若该商品售价在40~70元之间变化,根据例题的分析、解答,直接写出每月总利润Q与售价x的函数关系式;并说明,当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?解:Q与x的函数关系式为:60x-1800 (40≤x≤50 )Q =-2(x-55)2+ 1250 (50≤x≤70)由例3可知:若40≤x≤50,则当x=50时,Q= 1200最大= 1250若50≤x≤70,则当x=55时,Q最大∵1200<1250∴售价x是55元时,获利最大,最大利润是1250元.(2)若该商店销售该商品所获利润不低于1218元,试确定该商品的售价x 的取值范围;解:①当40≤x≤50时,= 1200<1218,∵Q最大∴此情况不存在.60x-1800 (40≤x≤50 )Q =-2(x-55)2+ 1250 (50≤x≤70)②当50≤x ≤70时,Q 最大= 1250>1218,令Q = 1218,得-2(x -55)2 +1250=1218解得:x 1=51,x 2=59由Q = -2(x -55)2+1250的图象和性质可知:当51≤x ≤59时,Q≥1218∴若该商品所获利润不低于1218元,则售价x 的取值范围为51≤x ≤59.x Q 055121859511250(3)在(2)的条件下,已知该商店采购这种新商品的进货款不低于1620元,则售价x为多少元时,利润最大,最大利润是多少元?解:由题意得:51≤x≤5930 (-2 x +160)≥1620解得:51≤x≤53∵Q =-2(x -55)2+1250的顶点不在51≤x ≤53范围内,又∵a =-2<0,∴当51≤x ≤53时,Q 随x 的增大而增大∴当x 最大= 53时,Q 最大= 1242∴此时售价x 应定为53元,利润最大,最大利润是1242元.x Q 055124253511.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x 元(20 ≤x ≤30)出售,可卖出(300-20x )件,使利润最大,则每件售价应定为元.252.进价为80元的某件定价100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y (件)与衬衣售价x (元)之间的函数关系式为.每月利润w (元)与衬衣售价x (元)之间的函数关系式为.(以上关系式只列式不化简).y =2000-5(x -100)w =[2000-5(x -100)](x -80)3.一工艺师生产的某种产品按质量分为9个档次.第1档次(最低档次)的产品一天能生产80件,每件可获利润12元.产品每提高一个档次,每件产品的利润增加2元,但一天产量减少4件.如果只从生产利润这一角度考虑,他生产哪个档次的产品,可获得最大利润?w =[12+2(x -1)][80-4(x -1)]=(10+2x )(84-4x )=-8x 2+128x +840=-8(x -8)2+1352.解:设生产x 档次的产品时,每天所获得的利润为w 元,则当x=8时,w 有最大值,且w 最大=1352.答:该工艺师生产第8档次产品,可使利润最大,最大利润为1352.xy 516O 74. 某种商品每天的销售利润y (元)与销售单价x (元)之间满足关系:y=ax 2+bx -75.其图象如图.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?解:(1)由题中条件可求y =-x 2+20x -75∵-1<0,对称轴x =10,∴当x =10时,y 值最大,最大值为25.即销售单价定为10元时,销售利润最大,为25元;(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?(2)由对称性知y=16时,x=7和13.故销售单价在7 ≤x ≤13时,利润不低于16元.求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.。

初中数学二次函数的应用题型分类——商品销售利润问题(精选50题 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题(精选50题 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题(精选50题附答案)1.某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在如图所示的一次函数关系.(1)求y关于x的函数关系;(2)试写出该公司销售该种产品的年获利W(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支),当销售单价为何值时年获利最大?并求这个最大值.2.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(单位:元)与每件涨价x(单位:元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.3.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.若商场想平均每天盈利达1200元,那么每件衬衫应降价多少元?你若是商场经理,为获得最大利润,每件衬衫应降价多少元,此时最大利润是多少?4.银隆百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.5.某商店销售一种商品,通过记录,发现该商品从开始销售至销售的第x天结束时(x 为整数)的总销量y(件)满足二次函数关系,销量情况记录如下表:(1)求y与x之间的函数关系式(不需要写自变量的取值范围);(2)求:销售到第几天结束时,该商品全部售完?(3)若第m天的销量为22件,求m的值.6.河西王府井销售一种T 恤衫,每件进价为40 元,经过市场调查,一周的销售量y 件与销售单价x 元/件满足某种函数关系:(1)请根据所学的知识,选择合适的函数模型,求出y 与x 的之间的函数关系式;(2)设一周的销售利润为w 元,请求出w 与x 的函数关系式,并确定当销售单价为多少时一周的销售利润最大,并求出最大利润;(3)商场决定将一周销售T 恤衫的利润全部捐给某村用于精准扶贫的水网改造项目,在商场购进该T 恤衫的资金不超过6000 元情况下,请求出该商场最大捐款数额是多少元?7.某产品成本为400元/件,由经验得知销售量y与售价x是成一次函数关系,当售价为800元/件时能卖1000件,当售价1000元/件时能卖600件,问售价多少时利润W最大?最大利润是多少?8.某大型超市将进价为40 元的某种服装按50 元售出时,每天可以售出300 套,据市场调查发现,这种服装每提高1 元,销售量就减少5 套,如果超市将售价定为x 元,请你求出每天销售利润y 元与售价x 元的函数表达式.9.某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之问存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助⑵中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?10.我市红领服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如表所示:时间t(天)0 5 10 15 20 25 30 日销售量y t0 25 40 45 40 25 0 (百件)(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的关系如图所示.求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y 与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.11.某旅游度假区内某个宾馆有120间标准房,当标准房价格为每间200元时,每天都客满,经市场调查,标准房价格与平均入住房数之间的关系如下:(1)若日平均入住房数y(间)与日平均每间房价x(元)之间成一次函数关系,求出y关于x的函数关系式:(2)如果不考虑其他因素,宾馆的标准房日平均每间房价为多少元时,客房的日营业收入最大,最大日营业额为多少元?12.某商品现在的售价为每件25元,每天可售出30件.市场调查发现,售价每上涨1元,每天就少卖出2件.已知该商品的进价为每件20元,设该商品每天的销售量为y 件,售价为每件x元(x为正整数)(1) 求y与x之间的函数关系式;(2) 该商品的售价定为每件多少元时,每天的销售利润P(元)最大,最大利润是多少元?(3) 如果物价部门规定该商品每件的售价不得高于32元,若要每天获得的利润不低168元,请直接写出该商品的售价x(元)的取值范围.13.某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)14.某商场将进货价30元的书包以40元售出,平均每月能售出600个。

初中数学九年级下册商品利润最大问题

初中数学九年级下册商品利润最大问题

关系式为 y=2000-5(x-100) .每月利润w(元)与衬衣售价
x(元)之间的函数关系式为 w=[2000-5(x-100)](x-80) .(以
上关系式只列式不化简).
3. 某种商品的成本是120元,试销阶段每件商品的售价 x(元)与产品的销售量y(件)满足当x=130时,y=70, 当x=150时,y=50,且y是x的一次函数,为了获得最大 利润S(元),每件产品的销售价应定为( A ) A.160元 B.180元 C.140元 D.200元
②自变量x的取值范围如何确定? 营销规律是价格上涨,销量下降,因此只要考虑
销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的
取值范围是0 ≤x ≤30. ③涨价多少元时,利润最大,最大利润是多少?
y=-10x2+100x+6000,
100 5 当x 2 (10)
时,y=-10×52+100×5+6000=6250.
(2)销售单价在什么范围时,该种商品每天的销售
利润不低于16元? (2)由对称性知y=16时,x=7和13. 故销售单价在7 ≤x ≤13时,利润不低于16元.
课堂小结
建立函数 关 系 式
总利润=单件利润×销 售量或总利润=总售价总成本.
最大利 润问题
确定自变 量的取值 范 围
确定最大 利 润
涨价:要保证销售量≥0; 降件:要保证单;bx-75.其图象如图.
(1)销售单价为多少元时,该种商品每天的销售利润 最大?最大利润是多少元? 解:(1)由题中条件可求y=-x2+20x-75 ∵-1<0,对称轴x=10, ∴当x=10时,y值最大,最大值为25. 即销售单价定为10元时,销售利润最 大,为25元;

初中数学利润计算问答题整合

初中数学利润计算问答题整合

年级利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。

(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x 元:(1)设平均每天销售量为y 件,请写出y 与x 的函数关系式.(2)设平均每天获利为Q 元,请写出Q 与x 的函数关系式.(3)若想商场的盈利最多,则每件衬衫应降价多少元?(4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +ab 2)2+a b ac 442 的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y 与x 的函数关系式;(2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x 表示床价,Y 表示该宾馆一天出租床位的纯收入。

初中数学第十讲 商品的利润问题--电子教案

初中数学第十讲 商品的利润问题--电子教案
中学统一备课用纸
科目
数学
年级
七年级
班级
授课时间
年月日
课题
第十讲 商品的利润问题
课型
活动课
教学目标
1、知识与技能:熟记利润问题中相关量的关系,会分析关系,解决问题.
2、过程与方法:通过审题分析题意,找相等关系解决问题.
3、情感态度价值观:生活中的利润问题解决,感受数学建模思想以及数学应用于生活。.
教学重点
三、课后作业
1、某件进价为200元的商品按标价打六折出售,仍能获利20%,则该商品的标价为.
2、甲用1 000元购买了一些股票,随即他将这些股票转卖给乙,获利10%,而后乙又将这些股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这些股票卖给了乙,若上述股票交易中的其它费用忽略不计,则甲( ).
A.盈亏平衡B.盈利1元C.盈利9元D.亏损1.1元
3、某大型超市国庆期间举行促销活动.假定一次购物不超过100元的不给优惠;超过100元而不超过300元时,按该次购物金额9折优惠;超过300元的其中300元仍按9折优惠,超过300元部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽顾客实行优惠购物,规定如下:
(1)若一次购物少于200元,则不予优惠;
(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;
(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.
小明两次去超市购物,分别付款198元与554元.现在小亮决定一次去购买小明两次购买的同样多的物品,他需付款多少?
3、随着服装市场竞争日益激烈,某品牌服装专卖店一款服装先按原价降价a元,再降价20%,现售价为b元,则原售价为()

初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题(附答案)1. 某网店经营一种品牌水果, 其进价为10元/千克, 保鲜期为25天, 每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品牌水果定价为多少元时, 每天销售所获得的利润最大?(3)若该网店一次性购进该品牌水果3000千克, 根据(2)中每天获得最大利润的方式进行销售, 发现在保鲜期内不能及时销售完毕, 于是决定在保鲜期的最后5天一次性降价销售, 求最后5天每千克至少降价多少元才能全部售完?2. 特产店销售一种水果, 其进价每千克40元, 按60元出售, 平均每天可售100千克, 后来经过市场调查发现, 单价每降低2元, 则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元, 每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大, 每千克水果应降多少元?3.某文具店购进A, B两种钢笔, 若购进A种钢笔2支, B种钢笔3支, 共需90元;购进A种钢笔3支, B种钢笔5支, 共需145元.(1)求该文具店购进A.B两种钢笔每支各多少元?(2)经统计, B种钢笔售价为30元时, 每月可卖64支;每涨价3元, 每月将少卖12支, 求该文具店B种钢笔销售单价定为多少元时, 每月获利最大?最大利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本), 成功研发出一种产品, 公司按订单生产(产量=销售量), 第一年该产品正式投产后, 生产成本为8元/件, 此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+28.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元, 那么该产品第一年的售价是多少?(3)第二年, 该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发, 使产品的生产成本降为6元/件, 为保持市场占有率, 公司规定第二年产品售价不超过第一年的售价, 另外受产能限制, 销售量无法超过14万件, 请计算该公司第二年的利润W2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来, 购进一批电学实验盒子, 一台电学实验盒的成本是30元, 当售价定为每盒50元时, 每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品, 专营店准备对它进行降价销售.根据以往经验, 售价每降低3元, 销量增加6盒.设售价降低了x(元), 每天销量为y(盒).(1)求y与x之间的函数表达式;日销售利润w875 1875 1875 875(元)(注: 日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时, 日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时, 日销售利润w在1500元以上?(请直接写出x的范围)7. 某公司销售一批产品, 进价每件50元, 经市场调研, 发现售价为60元时, 可销售800件, 售价每提高1元, 销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元, 问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大, 问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品, 又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销, 已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.其中点为抛物线的顶点.结合图象, 求出(万台)与外地广告费用(万元)之间的函数关系式;()2求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;如何安排广告费用才能使销售总量最大?9.某电子厂生产一种新型电子产品, 每件制造成本为20元, 试销过程中发现, 每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 厂商每月获得的利润为400万元?(3)根据相关部门规定, 这种电子产品的销售单价不能高于40元, 如果厂商每月的制造成本不超过520万元, 那么当销售单价为多少元时, 厂商每月获得的利润最大?最大利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏, 生产并销售一盏A型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯, 则每盏B型台灯可以获利90元, 如果超出20盏B型台灯, 则每超出1盏, 每盏B型台灯获利将均减少2元.设生产并销售B型台灯x盏.(其中x>20)(2)当A型台灯所获得的利润比B型台灯所获得利润少200元时, 求生产并销售A, B 两种台灯各多少盏?(3)如何设计生产销售方案可以获得最大利润, 最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件, 每件盈利40元, 为了扩大销售量, 增加盈利, 尽快减少库存, 商场决定采取适当的降价促销措施, 经市场调查发现:如果每件衬衫降价1元, 那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(1)请直接写出a的值为;(2)从第21天到第40天中, 求q与x满足的关系式;(3)若该网店第x天获得的利润y元, 并且已知这40天里前20天中y与x的函数关系式为y=﹣x2+15x+500i请直接写出这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?13. 某工厂生产甲、乙两种产品, 已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A. 根据市场调研, 产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时, y=2.6;x=3时, y=3.6产品乙: y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨, 请设计方案, 应怎样分配给甲、乙两种产品组织生产, 才能使得最终两种产品的所获利润最大.14. 某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40元. 为了扩大销售, 增加盈利, 商场采取了降价措施. 假设在一定范围内, 衬衫的单价每降1元, 商场平均每天可多售出2件, 设衬衫的单价降x元, 每天获利y元.(1)如果商场里这批衬衫的库存只有44件, 那么衬衫的单价应降多少元, 才能使得这批衬衫一天内售完, 且获利最大, 最大利润是多少?种成本为25元/件的新型商品.在40天内, 其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时, ;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系, 具体情况记录如下表(天数为整数):时间x(天)日销售量m(件)45 40 35 30 25 …(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元, 试写出日销售利润w(元)与时间x(天)的函数关系式;16.某体育用品商店试销一款成本为50元的排球, 规定试销期间单价不低于成本价, 且获利不得高于40%.经试销发现, 销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元, 试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时, 该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元, 请确定销售单价x的取值范围.销售单价q(元/件)与x满足: 当1≤x<25时q=x+60;当25≤x≤50时q=40+ . (1)请分析表格中销售量p与x的关系, 求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(1)请你根据表中的数据, 用所学知识确定与之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格, 才能使日销售利润最大?(3)根据(2)中获得最大利润的方式进行销售, 判断一个月能否销售完这批文具盒, 并说明理由.20. 某工厂加工一种商品, 每天加工件数不超过100件时, 每件成本80元, 每天加工超过100件时, 每多加工5件, 成本下降2元, 但每件成本不得低于70元.设工厂每天加工商品x(件), 每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量x(件)之间的函数关系式, 并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%, 求每天加工多少件商品时利润最大, 最大利润是多少?21.家用电器开发公司研制出一种新型电子产品, 每件的生产成本为18元, 按定价40元出售, 每月可销售20万件, 为了增加销量, 公司决定采取降价的办法, 经过市场调研, 每降价1元, 月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润, 每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围, 使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心, 城隍庙商业步行街某商场购进一批品牌女装, 购进时的单价是600元, 根据市场调查, 在一段时间内, 销售单价是800元时, 销售量是200件, 销售单价每降低10元, 就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;倍,且y是x的二次函数,它们的关系如下表:x(10万元)y 1 1.5 1.8 …(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费, 试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果投入的年广告费为10~30万元, 问广告费在什么范围内, 公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品, 每日最多生产130kg, 假设生产出的产品能全部售出, 每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣x+168, 生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.(1)求生产成本y2(元)与产量x(kg)之间的函数关系式;(2)求日利润为W(元)与产量x(kg)之间的函数关系式;(3)当产量为多少kg时, 这种产品获得的日利润最大?最大日利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品, 该产品的成本为每件40元, 市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80, 且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)新鑫公司计划五年收回投资, 如何确定售价(假定每年收回投资一样多)?26. 某商品的进价是每件40元, 原售价每件60元. 进行不同程度的涨60 61 62 63 …价后, 统计了商品调价当天的售价和利润情况, 以下是部分数据:售价(元/件)利润(元)6000 6090 6160 6210 …(1)当售价为每件60元时, 当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装, 每件成本为65元, 规定不低于10件可以批发, 其批发价y (元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式, 并写出x的取值范围;(1)由题意知商品的最低销售单价是元, 当销售单价不低于最低销售单价时, y是x的一次函数. 求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下, 当销售单价为多少元时, 所获销售利润最大, 最大利润是多少元?29. 某店只销售某种进价为40元/kg的产品, 已知该店按60元kg出售时, 每天可售出100kg, 后来经过市场调查发现, 单价每降低1元, 则每天的销售量可增加10kg.(1)若单价降低2元, 则每天的销售量是_____千克, 每天的利润为_____元;若单价降低x元, 则每天的销售量是_____千克, 每天的利润为______元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元, 单价应降价多少元?(3)当单价降低多少元时, 该店每天的利润最大, 最大利润是多少元?30. 某文具店出售一种文具, 每个进价为2元, 根据长期的销售情况发现:这种文具每个售价为3元时, 每天能卖出500个, 如果售价每上涨0.1元, 其销售量将减少10个. 物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润, 每个文具的售价应是多少?(2)该如何定价, 才能使这种文具每天的利润最大?最大利润是多少?31.某制衣企业直销部直销某类服装,价格(元)与服装数量(件)之间的关系如图所示,现有甲乙两个服装店,计划在"五一”前到该直销部购买此类服装, 两服装店所需服装总数为件,乙服装店所需数量不超过件,设甲服装店购买件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为元.(1)求y关于x的函数关系式,并写出x的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱32. 某企业接到生产一批手工艺品订单, 须连续工作15天完成. 产品不能叠压, 需专门存放, 第x天每件产品成本p(元)与时间x(天)之间的关系为p=0.5x+7(1≤x≤5, x 为整数). 约定交付产品时每件20元. 李师傅作了记录, 发现每天生产的件数y(件)与时间X(天)满足关系:(1)写出李师傅第x天创造的利润W(不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范围.)(2)李师傅第几天创造的利润最大?是多少元?(3)这次订单每名员工平均每天创造利润299元. 企业奖励办法是: 员工某天创造利润超过平均值, 当天计算奖金30元. 李师傅这次获得奖金共多少元?33. 某手机专营店, 第一期进了品牌手机与老年机各50部, 售后统计, 品牌手机的平均利润是160元/部, 老年机的平均利润是20元/部, 调研发现:①品牌手机每增加1部, 品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部, 设品牌手机比第一期增加x部. (1)第二期品牌手机售完后的利润为8400元, 那么品牌手机比第一期要增加多少部?(2)当x取何值时, 第二期进的品牌手机与老年机售完后获得的总利润W最大, 最大总利润是多少?34.某公司经销一种水产品, 在一段时间内, 该水产品的销售量W(千克)随销售单价x(元/千克)的变化情况如图所示.(1)求W与x的关系式;(2)若该水产品每千克的成本为50元, 则当销售单价定为多少元时, 可获得最大利润?(3)若物价部门规定这种水产品的销售单价不得高于90元/千克, 且公司想要在这段时间内获得2250元的销售利润, 则销售单价应定为多少元?35. 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示, 成本y2与销售月份x之间的关系如图2所示(图1的图象是线段, 图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低, 此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜, 每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元, 且5月份的销售量比4月份的销售量多2万千克, 求4、5两个月的销售量分别是多少万千克?36. 某商品的进价为每件20元, 市场调查反映, 若按每件30元销售, 每天可销售100件;若销售单价每上涨1元, 每天的销售就减少5件.(1)设每天该商品的销售利润为y元, 销售单价为x元(x≥30), 求y与x的函数解析式;(2)求销售单价为多少元时, 该商品每天的销售利润最大, 最大利润是多少?37. 数学兴趣小组几名同学到商场调查发现, 一种纯牛奶进价为每箱40元, 厂家要求售价在40~70元之间, 若以每箱70元销售平均每天销售30箱, 价格每降低1元平均每天可多销售3箱.(1)求出y 与x 之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w (元), 求w 关于x 的函数表达式, 并指出销售单价为多少元时利润最大, 最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大, 厂家又进行了改装, 此时超市老板发现进价提高了m 元, 当每月销售量与销售单价仍满足上述一次函数关系, 随着销量的增大, 最大利润能减少1750元, 求m 的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%, 则可以多购买该花卉20盆.市场调查反映, 该花卉每盆售价25元时, 每天可卖出25盆.若调整价格, 每盆花卉每涨价1元, 每天要少卖出1盆. (1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时, 且销量尽可能大, 该花卉每盆售价是多少元? (3)为了让利给顾客, 该花店决定每盆花卉涨价不超过5元, 问该花卉一天最大的销售利润是多少元?40. 某商店经营一种小商品, 进价为3元, 据市场调查, 销售单价是13元时平均每天销售量是400件, 而销售价每降低一元, 平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x 元, 商店每天销售这种小商品的利润y 元, 请写出y 与x 之间的函数关系. (注:销售利润=销售收入-购进成本)(Ⅱ)当每件小商品降低多少元时, 该商店每天能获利4800元?40元, 根据市场调查:在一段时间内, 销售单价是50元时, 销售量是600件,而销售单价每涨2元, 就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50), 请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元, 并把结果填写在表格中:销售单价(元)销售量y(件)①销售玩具获得利润ω(元)②(2)在(1)问条件下, 若玩具厂规定该品牌玩具销售单价不低于54元, 且商场要完成不少于400件的销售任务, 求商场销售该品牌玩具获得的最大利润是多少元?42.如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地.已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元.设该工厂有吨产品销往地.(利润=售价—进价—运费)(1)用的代数式表示购买的原材料有吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨, 且每吨售价不得低于1440元, 记销完产品的总利润为元, 求关于的函数表达式, 及最大总利润.43. 水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变), 据市场推测, 经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克, 在围养过程中(最多围养20天), 平均每围养一天有10千克的鳊鱼会缺氧浮水。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、利润问题
(1)利润=售价-进价
(2)利润率=进价利润=进价
进价售价- (3)打折销售中的售价=标价×10
折数 (4)售价=成本+利润+成本×(1+利润率)
(5)利润=利润率×成本
(6)利息=本金×利率
1.商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元
解析:售价=标价⨯打折
利润=售价-进价
设商品的标价是x 元
x =120
x =900
答:商品的标价为900元
2.某商品的进价是2000元,标价为3000元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品
解析:售价=标价⨯打折
利润=售价-进价
设可以打x 折出售
3000 ⨯10x -2000=2000 ⨯5% x =7
答:售货员最低可以打7折出售。

相关文档
最新文档