向量方法在高中数学解题中的应用

合集下载

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

高中数学 第二章 平面向量 2.4 向量的应用 2.4.1 向量在几何中的应用 2.4.2 向量在物

2.4 向量的应用2.4.1 向量在几何中的应用 2.4.2 向量在物理中的应用1.向量在平面几何中的应用(1)证明线段相等,转化为证明向量的长度相等,求线段的长,转化为求向量的长度; (2)证明线段、直线平行,转化为证明向量共线;(3)证明线段、直线垂直,转化为证明向量的数量积为零; (4)平面几何中与角相关的问题,转化为向量的夹角问题;(5)对于与长方形、正方形、直角三角形等平面几何图形有关的问题,通常以相互垂直的两边所在的直线分别为x 轴和y 轴,建立平面直角坐标系,通过代数(坐标)运算解决平面几何问题.【自主测试1-1】在四边形ABCD 中,若AB →=13CD →,则四边形ABCD 是( )A .平行四边形B .梯形C .菱形D .矩形解析:由AB →=13CD →⇒AB ∥CD ,且AB ≠CD ,故四边形ABCD 为梯形,故选B .答案:B【自主测试1-2】在△ABC 中,已知|AB →|=|AC →|=4,且AB →·AC →=8,则这个三角形的形状是__________.解析:∵AB →·AC →=|AB →||AC →|cos ∠BAC=8,∴4×4×cos ∠BAC=8,∴∠BAC=60°.又|AB →|=|AC →|,∴△ABC 为等边三角形. 答案:等边三角形2.向量在解析几何中的应用(1)设直线l 的倾斜角为α,斜率为k ,A (x 1,y 1)∈l ,P (x ,y )∈l ,向量a =(m ,n )平行于l ,则k =y -y 1x -x 1=n m =tan α;反之,若直线l 的斜率k =nm,则向量(m ,n )一定与该直线平行.(2)向量(1,k )与直线l :y =kx +b 平行.(3)与a =(m ,n )平行且过点P (x 0,y 0)的直线方程为n (x -x 0)-m (y -y 0)=0. (4)过点P (x 0,y 0),且与向量a =(m ,n )垂直的直线方程为m (x -x 0)+n (y -y 0)=0. 【自主测试2-1】已知直线l :mx +2y +6=0,向量(1-m,1)与l 平行,则实数m 的值为( )A .-1B .1C .2D .-1或2 答案:D【自主测试2-2】过点A (3,-2)且垂直于向量n =(5,-3)的直线方程是__________. 答案:5x -3y -21=0 3.向量在物理中的应用(1)力是具有大小、方向和作用点的向量,它与自由向量有所不同.大小和方向相同的两个力,如果作用点不同,那么它们是不相等的.但是,在不计作用点的情况下,可用向量求和的平行四边形法则求作用于同一点的两个力的合力.(2)速度是具有大小和方向的向量,因而可用三角形法则和平行四边形法则求两个速度的合速度.【自主测试3】已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,则F 1的大小为( )A .5 3 NB .5 NC .10 ND .52N 答案:B1.用向量的方法证明直线平行、直线垂直、线段相等及点共线等问题的基本方法 剖析:(1)要证两线段AB =CD ,可转化为证明|AB →|=|CD →|或AB →2=CD →2; (2)要证两线段AB ∥CD ,只要证明存在一实数λ≠0,使AB →=λCD →成立; (3)要证两线段AB ⊥CD ,可转化为证明AB →·CD →=0;(4)要证A ,B ,C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →,或若O 为平面上任一点,则只需要证明存在实数λ,μ(其中λ+μ=1),使OC →=λOA →+μOB →.2.对直线Ax +By +C =0的方向向量的理解剖析:(1)设P 1(x 1,y 1),P 2(x 2,y 2)为直线上不重合的两点,则P 1P 2→=(x 2-x 1,y 2-y 1)及与其共线的向量λP 1P 2→均为直线的方向向量.显然当x 1≠x 2时,向量⎝ ⎛⎭⎪⎫1,y 2-y 1x 2-x 1与P1P 2→共线,因此向量⎝ ⎛⎭⎪⎫1,-A B =1B(B ,-A )为直线l 的方向向量,由共线向量的特征可知(B ,-A )为直线l 的方向向量.(2)结合法向量的定义可知,向量(A ,B )与(B ,-A )垂直,从而向量(A ,B )为直线l 的法向量.3.教材中的“探索与研究”利用向量与向量平行、垂直的条件,再次研究两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0平行和垂直的条件,以及如何求出两条直线夹角θ的余弦.结论:l 1∥l 2(或重合)⇔A 1B 2-A 2B 1=0. l 1⊥l 2⇔A 1A 2+B 1B 2=0.cos θ=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.剖析:直线l 1:A 1x +B 1y +C 1=0的方向向量为n 1=(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0的方向向量为n 2=(-B 2,A 2).若l 1∥l 2,则n 1∥n 2,从而有-B 1A 2=-A 1B 2,即A 1B 2-A 2B 1=0. 若l 1⊥l 2,则n 1·n 2=0,从而有B 1B 2+A 1A 2=0. 所以直线l 1∥l 2⇔A 1B 2-A 2B 1=0, 直线l 1⊥l 2⇔A 1A 2+B 1B 2=0. 由于n 1·n 2=A 1A 2+B 1B 2, |n 1|=A 21+B 21,|n 2|=A 22+B 22, 所以cos 〈n 1,n 2〉=A 1A 2+B 1B 2A 21+B 21A 22+B 22. 所以直线l 1与l 2夹角θ的余弦值为cos θ=|cos 〈n 1,n 2〉|=|A 1A 2+B 1B 2|A 21+B 21A 22+B 22.题型一 向量在平面几何中的应用【例题1】已知正方形ABCD 中,E ,F 分别是CD ,AD 的中点,BE ,CF 交于点P . 求证:(1)BE ⊥CF ;(2)AP =AB .分析:建系→确定点A ,B ,C ,E ,F ,P 的坐标→证BE →·CF →=0及|AP →|=|AB →|→还原为几何问题证明:建立如图所示平面直角坐标系,设AB =2,则有A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=(-1,2),CF →=(-2,-1). ∵BE →·CF →=(-1)×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF . (2)设点P 的坐标为(x ,y ), 则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2, 同理,由BP →∥BE →得y =-2x +4,由⎩⎪⎨⎪⎧x =2y -2,y =-2x +4,得⎩⎪⎨⎪⎧x =65,y =85.∴点P 坐标为⎝ ⎛⎭⎪⎫65,85.则|AP →|=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=2=|AB →|,即AP =AB . 反思由于向量集数形于一身,用它来研究问题时可以实现形象思维与抽象思维的有机结合,因而向量法是研究几何问题的一个有效的工具,解题时一定注意用数形结合的思想.〖互动探究〗正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,求cos ∠DOE . 解:建立平面直角坐标系如图,则向量OE →=⎝ ⎛⎭⎪⎫12,1,OD →=⎝ ⎛⎭⎪⎫1,12,∴OD →·OE →=12×1+1×12=1.又|OD →|=|OE →|=52,∴cos ∠DOE =OD →·OE →|OD →||OE →|=152×52=45.题型二 向量在解析几何中的应用 【例题2】过点A (-2,1),求: (1)与向量a =(3,1)平行的直线方程; (2)与向量b =(-1,2)垂直的直线方程.分析:在直线上任取一点P (x ,y ),则AP →=(x +2,y -1).根据AP →∥a 和AP →⊥b 解题即可.解:设所求直线上任意一点P 的坐标为(x ,y ). ∵A (-2,1),∴AP →=(x +2,y -1).(1)由题意,知AP →∥a ,则(x +2)×1-3(y -1)=0, 即x -3y +5=0.故所求直线方程为x -3y +5=0.(2)由题意,知AP →⊥b ,则(x +2)×(-1)+(y -1)×2=0, 即x -2y +4=0,故所求直线方程为x-2y+4=0.反思已知直线l的方程Ax+By+C=0(A2+B2≠0),则向量(A,B)与直线l垂直,即向量(A,B)为直线l的法向量;向量(-B,A)与l平行,故过点P(x0,y0)与直线l平行的直线方程为A(x-x0)+B(y-y0)=0.【例题3】已知△ABC的三个顶点A(0,-4),B(4,0),C(-6,2),点D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.分析:(1)利用向量共线的坐标表示求解;(2)利用向量垂直的坐标表示求解.解:(1)由已知,得点D(-1,1),E(-3,-1),F(2,-2).设M(x,y)是直线DE上任意一点,则DM∥DE.又DM=(x+1,y-1),DE=(-2,-2),所以(-2)×(x+1)-(-2)(y-1)=0,即x-y+2=0为直线DE的方程.同理可求,直线EF,FD的方程分别为x+5y+8=0,x+y=0.(2)设点N(x,y)是CH所在直线上的任意一点,则CN⊥AB.所以CN·AB=0.又CN=(x+6,y-2),AB=(4,4),所以4(x+6)+4(y-2)=0,即x+y+4=0为所求直线CH的方程.反思(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等,则对应坐标相等.题型三向量在物理中的应用【例题4】一条河的两岸互相平行,河的宽度为d=500 m,一艘船从A处出发航行到河正对岸的B处,船的航行速度为|ν1|=10 km/h,水流速度为|ν2|=4 km/h.(1)试求ν1与ν2的夹角(精确到1°)及船垂直到达对岸所用的时间(精确到0.1 min); (2)要使船到达对岸所用时间最少,ν1与ν2的夹角应为多少?分析:船(相对于河岸)的航行路线不能与河岸垂直.原因是船的实际航行速度是船本身(相对于河水)的速度与水流速度的合速度.解:(1)依题意,要使船垂直到达对岸,就要使ν1与ν2的合速度的方向正好垂直于对岸,所以|ν|=ν21-ν22=100-16≈9.2(km/h),ν1与ν的夹角α满足sin α=0.4,α≈24°,故ν1与ν2的夹角θ=114°;船垂直到达对岸所用的时间t =d |ν|=0.59.2≈0.054 3(h)≈3.3 min. (2)设ν1与ν2的夹角为θ(如下图).ν1与ν2在竖直方向上的分速度的和为|ν1|·sin θ,而船到达对岸时,在竖直方向上行驶的路程为d =0.5 km ,从而所用的时间t =0.510sin θ.显然,当θ=90°时,t 最小,即船头始终向着对岸时,所用的时间最少,为t =0.510=0.05(h).反思注意“速度”是一个向量,既有大小又有方向.结合具体问题,在理解向量知识和应用两方面下功夫.将物理量之间的关系抽象成数学模型,然后通过对这个数学模型的研究解释相关物理现象.题型四 易错辨析【例题5】在直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC →=13OA →+23OB →.(1)求证:A ,B ,C 三点共线;(2)已知A (1,cos x ),B (1+sin x ,cos x ),x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )=OA →·OC →-⎝ ⎛⎭⎪⎫2m 2+23|AB→|的最小值为12,求实数m 的值.错解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),从而|AB →|=|sin x |.故f (x )=-(sin x +m 2)2+m 4+2.又sin x ∈[-1,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,解得m =±12.错因分析:错解中忽略了题目中x 的取值范围,造成正弦值的范围扩大. 正解:(1)∵AB →=OB →-OA →,AC →=OC →-OA →=13OA →+23OB →-OA →=23OB →-23OA →=23AB →,∴AC →∥AB →,∴A ,B ,C 三点共线.(2)∵A (1,cos x ),B (1+sin x ,cos x ), ∴OC →=⎝ ⎛⎭⎪⎫1+23sin x ,cos x ,AB →=(sin x,0),故|AB →|=sin x ,从而f (x )=-(sin x +m 2)2+m 4+2.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x ∈[0,1],∴当sin x =1时,f (x )有最小值, 即-(1+m 2)2+m 4+2=12,化简得m 2=14,解得m =±12.1.若向量n 与直线l 垂直,则称向量n 为直线l 的法向量,则直线x +2y +3=0的一个法向量为( )A .(1,2)B .(1,-2)C .(2,1)D .(2,-1)解析:可以确定已知直线l 的斜率k =-12,所以直线的方向向量a =⎝ ⎛⎭⎪⎫1,-12.由a ·n =0,可知应选A .答案:A2.已知A (2,1),B (3,2),C (-1,4),则△ABC 是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 答案:C3.过点A (2,3)且垂直于向量a =(2,1)的直线方程是( ) A .2x +y -7=0 B .2x +y +7=0 C .x -2y +4=0 D .x -2y -4=0 答案:A4.在重600 N 的物体上系两根绳子,与铅垂线的夹角分别为30°,60°,重物平衡时,两根绳子拉力的大小分别为( )A .3003N,3003NB .150 N,150 NC .3003N,300 ND .300 N,3003N解析:如图,作矩形OACB ,使∠AOC =30°,∠BOC =60°. 在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,所以|OA |=|OC |cos 30°=3003N , |AC |=|OC |sin 30°=300 N , |OB |=|AC |=300 N. 答案:C5.通过点A (3,2)且与直线l :4x -3y +9=0平行的直线方程为__________. 答案:4x -3y -6=06.已知两个粒子a ,b 从同一点发射出来,在某一时刻,它们的位移分别为v a =(4,3),v b =(3,4),则v a 在v b 上的正射影为__________.解析:由题知v a 与v b 的夹角θ的余弦值为 cos θ=12+125×5=2425.所以v a 在v b 上的正射影为|v a |cos θ=5×2425=245.答案:2457.平面上不共线的三点A ,B ,C 使得AB +BC 所在的直线和AB -BC 所在的直线恰好互相垂直,则△ABC 必为__________三角形.解析:如图所示,作ABCD ,易知AB +BC =AC ,AB -BC =AB -AD =DB .依题意,知BD 与AC 互相垂直,故ABCD 为菱形,从而△ABC 为等腰三角形,且∠ABC 为顶角.答案:等腰 8.如图所示,已知ABCD 是菱形,AC 和BD 是它的两条对角线,求证:AC ⊥BD .证明:证法一:∵AC =AB +AD ,BD =AD -AB ,∴AC ·BD =(AB +AD )·(AD -AB )=|AD |2-|AB |2=0.∴AC ⊥BD . ∴AC ⊥BD .证法二:以BC所在的直线为x轴,点B为原点建立平面直角坐标系.设B(0,0),A(a,b),C(c,0),则由|AB|=|BC|,得a2+b2=c2.∵AC=BC-BA=(c-a,-b),BD=BA+BC=(a+c,b),∴AC·BD=c2-a2-b2=0.∴AC⊥BD,∴AC⊥BD.。

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法单选题1、在△ABC 中,若AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ <0,则△ABC -定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 答案:C分析:根据向量的数量积的运算公式,求得cosA <0,得到A 为钝角,即可求解. 由向量的数量积的运算公式,可得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA <0,即cosA <0, 因为A ∈(0,π),所以A 为钝角,所以△ABC -定是钝角三角形. 故选:C.2、已知a ,b ⃗ 是不共线的向量,OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b ⃗ ,若A,B,C 三点共线,则实数λ,µ满足( )A .λ=μ−5B .λ=μ+5C .λ=μ−1D .λ=μ+1 答案:B解析:根据向量的线性运算方法,分别求得AB ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 再由AB⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,得到3−λ=−(2+μ),即可求解. 由OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b⃗ , 可得AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 若A,B,C 三点共线,则AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,可得3−λ=−(2+μ),化简得λ=μ+5. 故选:B.3、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ). A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9,即c 2−√3c −6=0,解得:c =−√3(舍),∴c =2√3.c故选:B.4、已知非零向量a →与b →共线,下列说法不正确的是( ) A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果. 非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确; 对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确; 对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确. 故选:A.5、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .6、已知f (x )=sin (ωx +π6)+cosωx (ω>0),将f (x )图象上的横坐标伸长到原来的2倍(纵坐标不变时),得到g (x )的图象.g (x )的部分图象如图所示(D 、C 分别为函数的最高点和最低点):其中CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,则ω=( )A .π4B .π2C .πD .2π 答案:C分析:先求出g (x )的解析式,再利用CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22得到cos∠ACB =12,进而求出|AB |=2,所以T =2×2=4,ω=π 由f (x )=√32sinωx +32cosωx =√3sin (ωx +π3),∴g (x )=√3sin (12ωx +π3),因为D 、C 分别为函数的最高点和最低点,所以DA =AC =CB ,由CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,即|CA ⃗⃗⃗⃗⃗ |2⋅cos∠ACB =|AD |22∴cos∠ACB =12,∴△ACB 为正三角形,又△ABC 的高为√3, ∴|AB |=2 ∴T =2×2=4, ∴即2π12ω=4πω=4,∴ω=π, 故选:C .7、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km,即向东北走3√2km.故选:B.8、在锐角△ABC中,角A,B,C的对边分别为a,b,c,S为△ABC的面积,且2S=a2−(b−c)2,则2b2+c2bc 的取值范围为()A.(4315,5915)B.[2√2,4315)C.[2√2,5915)D.[2√2,+∞)答案:C分析:根据余弦定理和△ABC的面积公式,结合题意求出sinA、cosA的值,再用C表示B,求出bc =sinBsinC的取值范围,即可求出2b2+c2bc的取值范围.解:在△ABC中,由余弦定理得a2=b2+c2−2bccosA,且△ABC的面积S=12bcsinA,由2S=a2−(b−c)2,得bcsinA=2bc−2bccosA,化简得sinA+2cosA=2,又A∈(0,π2),sin2A+cos2A=1,联立得5sin2A−4sinA=0,解得或sinA=0(舍去),所以bc =sinBsinC=sin(A+C)sinC=sinAcosC+cosAsinCsinC=45tanC+35,因为△ABC为锐角三角形,所以0<C<π2,B=π−A−C<π2,所以π2−A<C<π2,所以tanC>tan(π2−A)=1tanA=34,所以1tanC∈(0,43),所以bc∈(35,53),设bc =t,其中t∈(35,53),所以2b2+c2bc=2bc+cb=2t+1t=2(t+12t),由对勾函数单调性知y=2t+1t 在(35,√22)上单调递减,在(√22,53)上单调递增,当t=√22时,y=2√2;当t=35时,y=4315;当t=53时,y=5915;所以y∈[2√2,5915),即2b2+c2bc的取值范围是[2√2,5915).故选:C.小提示:关键点点睛:由2b2+c2bc =2bc+cb,所以本题的解题关键点是根据已知及bc=sinBsinC=sin(A+C)sinC=4 sin5AsinAcosC+cosAsinCsinC=45tanC+35求出bc的取值范围.多选题9、等边三角形ABC 中,BD →=DC →,EC →=2AE →,AD 与BE 交于F ,则下列结论正确的是( ) A .AD →=12(AB →+AC →)B .BE →=23BC →+13BA →C .AF →=12AD →D .BF →=12BA →+13BC →答案:AC分析:可画出图形,根据条件可得出D 为边BC 的中点,从而得出选项A 正确; 由EC →=2AE →可得出AE →=13AC →,进而可得出BE →=13BC →+23BA →,从而得出选择B 错误;可设AF →=12AD →,进而得出AF →=λ2AB →+3λ2AE →,从而得出λ=12,进而得出选项C 正确;由AF →=12AD →即可得出BF →=12BA →+14BC →,从而得出选项D 错误. 如图,∵BD →=DC →,∴D 为BC 的中点,∴AD →=12(AB →+AC →),∴A 正确; ∵EC →=2AE →,∴AE →=13AC →=13(BC →−BA →),∴BE →=BA →+AE →=BA →+13(BC →−BA →)=13BC →+23BA →,∴ B 错误;设AF →=λAD →=λ2AB →+λ2AC →=λ2AB →+3λ2AE →,且B ,F ,E 三点共线,∴λ2+3λ2=1,解得λ=12,∴AF →=12AD →,∴C 正确;BF →=BA →+AF →=BA →+12AD →=BA →+12(BD →−BA →)=BA →+14BC →−12BA →=12BA →+14BC →,∴D 错误. 故选:AC10、已知△ABC 是边长为2的等边三角形,D ,E 分别是AC,AB 上的点,且AE ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,BD 与CE 交于点O ,则( )A .OC ⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =0⃗B .AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0 C .|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√3D .ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为76 答案:BD解析:可证明EO =CE ,结合平面向量线性运算法则可判断A ;由AB⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 因为△ABC 是边长为2的等边三角形,AE⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ , 所以E 为AB 的中点,且CE ⊥AB ,以E 为原点如图建立直角坐标系,则E (0,0),A (−1,0),B (1,0),C(0,√3),由AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ 可得AD ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ =(23,2√33),则D (−13,2√33), 取BD 的中点G ,连接GE ,易得GE//AD 且GE =12AD =DC , 所以△CDO ≌△EGO ,EO =CO ,则O (0,√32), 对于A ,OC⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ≠0⃗ ,故A 错误;对于B ,由AB ⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 可得AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,故B 正确; 对于C ,OA ⃗⃗⃗⃗⃗ =(−1,−√32),OB ⃗⃗⃗⃗⃗ =(1,−√32),OC ⃗⃗⃗⃗⃗ =(0,√32),OD ⃗⃗⃗⃗⃗⃗ =(−13,√36), 所以OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(−13,−√33),所以|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=23,故C 错误; 对于D ,BC⃗⃗⃗⃗⃗ =(−1,√3),ED ⃗⃗⃗⃗⃗ =(−13,2√33), 所以ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为BC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗⃗ |BC⃗⃗⃗⃗⃗ |=13+22=76,故D 正确.故选:BD.小提示:关键点点睛:建立合理的平面直角坐标系是解题关键. 11、下列说法中错误的是( ). A .若a //b ⃗ ,b ⃗ //c ,c //d ,则a //d B .若|a |=|b ⃗ |且a //b ⃗ ,则a =b⃗ C .若a ,b ⃗ 非零向量且|a +b ⃗ |=|a −b ⃗ |,则a ⊥b ⃗ D .若a //b ⃗ ,则有且只有一个实数λ,使得a =λb ⃗ 答案:ABD分析:对于题中所给的条件与结论需要考虑周全,可以得出结论. A 选项,当b ⃗ ,c 中至少有一个0⃗ 时,a 与d 可能不平行,故A 错误; B 选项,由|a |=|b ⃗ |且a //b ⃗ ,可得a =b ⃗ 或a =−b⃗ ,故B 错误; C 选项,|a +b ⃗ |=|a −b ⃗ |,根据数量积规则,则两边平方化简可得a ⋅b ⃗ =0, ∴a ⊥b⃗ ,故C 正确; D 选项,根据向量共线基本定理可知当a ,b⃗ 都为非零向量时成立, a 为零向量时也成立(λ=0) ,若b ⃗ =0⃗ 时,λ 不存在,但b ⃗ //a (零向量与所有的向量共线),故D 错误; 故选:ABD.12、下列说法错误的是( )A .若a //b ⃗ ,则存在唯一实数λ使得a =λb⃗ B .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b⃗ 共线且反向C .已知a =(1,2),b ⃗ =(1,1),且a 与a +λb ⃗ 的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .在△ABC 中,BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,则△ABC 为等腰三角形 答案:AC分析:若a =b ⃗ =0⃗ 可判断A ;将已知条件两边平方再进行数量积运算可判断B ;求出a +λb ⃗ 的坐标,根据a ⋅(a +λb ⃗ )>0且a 与a +λb ⃗ 不共线求出λ的取值范围可判断C ;取AC 的中点D ,根据向量的线性运算可得CA ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0可判断D ,进而可得正确选项. 对于A :若a =b ⃗ =0⃗ 满足a //b⃗ ,则实数λ不唯一,故选项A 错误; 对于B :两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则(a −b ⃗ )2=(|a |+|b⃗ |)2, 所以a 2+b ⃗ 2−2a ⋅b ⃗ =|a |2+|b ⃗ |2+2|a ||b ⃗ |,可得2a ⋅b ⃗ =2|a ||b ⃗ |⋅cos 〈a ⋅b ⃗ 〉=−2|a ||b ⃗ |,cos 〈a ⋅b ⃗ 〉=−1,因为0≤〈a ⋅b ⃗ 〉≤π,所以〈a ⋅b ⃗ 〉=π,所以a 与b⃗ 共线且反向,故选项B 正确; 对于C :已知a =(1,2),b ⃗ =(1,1),所以a +λb ⃗ =(1+λ,2+λ),若a 与a +λb ⃗ 的夹角为锐角,则a ⋅(a +λb ⃗ )=1+λ+2(2+λ)>0,解得:λ>−53,当λ=0时,a +λb ⃗ =a ,此时a 与a +λb ⃗ 的夹角为0,不符合题意,所以λ≠0,所以λ的取值范围是(−53,0)∪(0,+∞),故选项C 不正确;对于D :在△ABC 中,取AC 的中点D ,由BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅2BD ⃗⃗⃗⃗⃗⃗ =0,故BD 垂直平分AC ,所以△ABC 为等腰三角形,故选项D 正确. 故选:AC .13、有下列说法,其中错误的说法为 A .若a //b ⃗ ,b ⃗ //c ,则a //cB .若2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S ΔAOC ,S ΔABC 分别表示ΔAOC ,ΔABC 的面积,则S ΔAOC :S ΔABC =1:6 C .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向D .若a //b ⃗ ,则存在唯一实数λ使得a =λb ⃗ 答案:AD分析:对每一个选项逐一分析判断得解.A. 若a //b ⃗ ,b ⃗ //c ,则a //c ,如果a ,c 都是非零向量,b ⃗ =0⃗ ,显然满足已知条件,但是结论不一定成立,所以该选项是错误的;B. 如图,D,E 分别是AC,BC 的中点,2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0⃗ ,∴2(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=0⃗ ,∴4OD ⃗⃗⃗⃗⃗⃗ +2OE ⃗⃗⃗⃗⃗ =0⃗ ,∴OE ⃗⃗⃗⃗⃗ =−2OD ⃗⃗⃗⃗⃗⃗ , 所以OD =16AB,则S ΔAOC :S ΔABC =1:6,所以该选项是正确的;C. 两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向,所以该选项是正确的;D. 若a //b ⃗ ,如果a 是非零向量,b ⃗ =0⃗ ,则不存在实数λ使得a =λb ⃗ ,所以该选项是错误的. 故选A,D小提示:本题主要考查平面向量的运算,考查向量的平行及性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 填空题14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b ⃗ ,且a ,b ⃗ 是不共线的向量,则向量PQ⃗⃗⃗⃗⃗ =___________. 答案:−12a −12b⃗ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b⃗ 所以PE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =−12a ,EQ ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =−12b ⃗ , 所以PQ ⃗⃗⃗⃗⃗ =PE ⃗⃗⃗⃗⃗ +EQ ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ =−12a −12b⃗ .所以答案是:−12a−12b⃗15、在△ABC中,若a=2,c=2√3,cosC=−12,M是BC的中点,则AM的长为____________.答案:√7分析:在△ABC中,由余弦定理求出b=2,进而,在△AMC中,由余弦定理可得AM.在△ABC中,由余弦定理c2=b2+a2−2abcosC得b2+2b−8=0,又b>0,所以b=2.在△AMC中,CA=b=2,CM=a2=1,由余弦定理得AM2=CA2+CM2−2CA⋅CM⋅cosC=22+12−2×2×1×(−12)=7,所以AM=√7.所以答案是:√7.16、在△ABC中,cos∠BAC=−13,AC=2,D是边BC上的点,且BD=2DC,AD=DC,则AB等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可.设DC=x,AB=y,因为BD=2DC,AD=DC,所以BC=3x,AD=DC=x,在△ADC中,由余弦定理可知:cosC=AC2+CD2−AD22AC⋅DC =4+x2−x24x=1x,在△ABC中,由余弦定理可知:cosC=AC2+CB2−AB22AC⋅BC =4+9x2−y212x,于是有4+9x2−y212x =1x⇒9x2−y2=8(1),在△ABC中,由余弦定理可知:cosA=AB2+CA2−CB22AB⋅AC =y2+4−9x24y=−13,⇒27x2−3y2−4y=12(2),把(1)代入(2)中得,y=3,所以答案是:3解答题17、记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2答案:(1)5π8;(2)证明见解析.分析:(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.18、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2OD令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5 ∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题。

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用【摘要】向量是高中数学中重要的概念,具有广泛的应用价值。

本文首先介绍了向量的概念和性质,包括向量的定义、方向、模长等基本概念。

接着讲解了向量的加法和减法运算,以及向量的数量积和夹角的相关知识。

然后通过举例说明了向量在数学问题中的具体应用,例如求解三角形和平行四边形的问题。

讨论了向量在高中数学中的重要性,以及向量在其他领域中的应用拓展。

总结指出,掌握向量的知识能够帮助我们更好地解决数学问题,提高数学思维能力,是高中数学学习中不可或缺的一部分。

通过本文的学习,读者可以更深入地了解向量在解决高中数学问题中的应用及重要性。

【关键词】向量、高中数学、应用、概念、性质、加法、减法、数量积、夹角、三角形、平行四边形、重要性、拓展、总结。

1. 引言1.1 向量在解决高中数学问题中的应用向量在解决高中数学问题中的应用非常广泛,它可以帮助我们更好地理解和解决复杂的数学问题。

在高中数学中,我们经常会遇到各种与方向、大小和位置有关的问题,而向量恰好可以提供一种简洁而直观的方法来描述这些问题。

通过引入向量的概念和性质,我们可以轻松地进行向量的加法和减法运算,从而解决复杂的方向和位置问题。

向量的数量积和夹角也可以帮助我们求解与向量相关的长度、角度等问题。

通过学习向量的基本性质和运算规律,我们可以更快更准确地解决各种高中数学问题。

在实际应用中,向量还可以帮助我们解决三角形和平行四边形等几何问题。

通过向量的方法,我们可以更直观地理解和证明几何定理,从而提高解题的效率和准确性。

向量在高中数学中扮演着非常重要的角色,它不仅可以简化问题的求解过程,还可以帮助我们更深入地理解数学知识。

向量在解决高中数学问题中的应用是非常广泛且重要的。

通过深入学习和理解向量的概念和性质,我们可以更好地应用向量解决各种复杂的数学问题,提高解题的效率和准确性。

向量对于高中数学的学习和应用具有重要的意义。

2. 正文2.1 向量的概念和性质向量是高中数学中的重要概念之一,它在解决各种数学问题中起着至关重要的作用。

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

反思 感悟
用向量法求长度的策略 (1)根据图形特点选择基底,利用向量的数量积转化,用公式 |a|2=a2求解. (2)建立坐标系,确定相应向量的坐标,代入公式:若a=(x,y), 则|a|= x2+y2.
跟踪训练2 在△ABC中,已知A(4,1),B(7,5),C(-4,7),则BC边上的 中线AD的长是
∴A→B=-32C→D,∴A→B与C→D共线. 又|A→B|≠|C→D|,∴该四边形为梯形.
12345
4.当两人提起重量为|G|的旅行包时,两人用力方向的夹角为θ,用力大
小都为|F|,若|F|=|G|,则θ的值为
A.30°
B.60°
C.90°
√D.120°
解析 作O→A=F1,O→B=F2,O→C=-G(图略), 则O→C=O→A+O→B,
答案 物理中的向量:①物理中有许多量,比如力、速度、加速度、位 移都具有大小和方向,因而它们都是向量. ②力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向 量加法的三角形法则和平行四边形法则;力、速度、加速度、位移的分 解也就是向量的分解,运动的叠加也用到了向量的加法. ③动量mv是数乘向量. ④力所做的功就是作用力F与物体在力F的作用下所产生的位移s的数量积.
解析 对于 A,A→B-A→C=C→B,故 A 中结论错误; 对于 B,设 θ 为向量A→B与B→C的夹角, 因为A→B·B→C=A→B·B→C·cos θ,而 cos θ<1, 故A→B·B→C<A→B·B→C,故 B 中结论正确; 对于 C,A→B+A→C·A→B-A→C=A→B2-A→C2=0, 故A→B=A→C,所以△ABC 为等腰三角形,故 C 中结论正确;
A.v1-v2
√B.v1+v2

浅谈平面向量在高中数学中的应用

浅谈平面向量在高中数学中的应用

出来,通过向量的矢量运算,来求解几何问题,这样有
利于学生对知识的融合理解,帮助学生同时增加向量
与立体几何的解题经验.
例3 四边形犃犅犆犇 是菱 形,犃犆犈犉 是矩形,平面 犃犆犈犉
⊥ 平面犃犅犆犇,犃犅=2犃犉=2,
∠犅犃犇 =60°,犌 是犅犈 的中点.
(1)用 两 种 方 法 证 明:犆犌
∥ 平面犅犇犉.
备考
征进行说明,同时也可以利用向量的运算来计算解析
几何的性 质.明 确 向 量 在 解 析 几 何 中 的 应 用,更 加 有
利于学生 开 拓 解 题 思 维,优 化 学 生 的 认 知 结 构,对 于
学生的向量学习有很大意义.
例2 已知点 犕(-2,0),犖(2,0),点犘 满足:直 线犘犕 的斜率为犽1,直线犘犖 的斜率为犽2,且犽1·犽2
犗犎 平面犅犇犉,所以犆犌 ∥
平面 犅犇犉.
图2
向量作为有力的数学工
具,可以通过具体的应用把高中阶段的知识点相互联
系,帮 助 构 成 完 整 又 严 密 的 知 识 体 系.学 生 要 善 于 分
析向量的应用并加以掌握,才能从整体上完成对向量
知识的认知,同时加强数学方法的学习.犠
高中
67
何形 式 与 代 数 形 式,是 连 接 代 数 与 几 何 的 天 然 桥 梁.
在高中数学立体几何中,为了考查学生对于直观性和
抽象性问题 的 理 解,通 常 会 将 数 与 形 结 合 起 来 一 起
考,对 于 这 类 综 合 性 质 较 强 的 问 题,学 生 可 以 利 用 向
量的数学性质,将空间中的几何量用向量的形式表现
为定值.讨论直线犾的斜率存在,设直线犾的方程为狔= 犽(狓 -1)(犽 ≠0),联立轨迹犆 的方程构造函数,运用 韦达定理和向量的数量积可得 犿;当直线犾的斜率不

高中数学解题中向量方法的应用研究

高中数学解题中向量方法的应用研究

高中数学解题中向量方法的应用研究作者:钟桂珍来源:《中学课程辅导·教学研究》2017年第17期摘要:在目前我国高中数学学习中,向量方法解题被广泛的应用,甚至在物理学习中都有所涉及。

向量方法不单单是高中数学学习中较为重要的学习内容,它也是作为一种常见的解题手段而存在。

其数形结合的特点,可以将多方面的知识连接在一起,更为直观和形象的建立成为一个整体。

本文作者通过阅读大量资料和习题,着重分析高中数学解题中向量方法的使用,对于实际的向量方法教学有一定的参考意义。

关键词:高中数学;向量;应用研究一、向量解题方法对于高中数学教学的必要性:1.加深学生理解目前我国数学教育教材的设置,在高中以前的初中数学教育阶段,主要涉及数学常量和变量的一些基础知识,也是主要为高中包括后面的数学学习打下坚实基础。

高中数学中向量的学习则是在初中数学的学习基础之上帮助学生初步构建数学学习知识体系,对于学生从初中数学意识向高中数学学习思路的转型起到过渡作用。

可以有效的加深学生对于数学学习的理解。

2.提升高中生解题能力向量知识作为重要的解题方法存在,对于思维推理能力以及空间能力正在塑造过程中的高中生来说,可通过简单、形象、直观的表现方式,帮助学生快速解答问题,对于学生初步建立数学模型有一定的帮助。

3.数形结合,提升学生发散式思维数形结合思维是向量解题方法中非常重要的部分。

它可以将本身比较复杂和繁琐的数字和文字描述,通过向量构建成形象直观的模型,并且结合命题数据展示出来。

对于教师来说,在课程设计上面,要注重将问题转化为概括性、抽象性等形式,再通过教师的思路引导,可以有效的帮助学生建发散式思维。

二、数学解题中影响向量解题法的一些因素分析:数学解题过程中因素分析:在实际的解题过程中,影响向量解题法的因素众多,本文将这些因素进行了汇总和分析:第一,情感因素。

情感因素在高中生学习过程中占据重要位置。

包括我们常见到的学生的学习兴趣、爱好、学生学习的动力来源等等,这些对于学生的学习和解题过程起到主导作用。

高中数学--空间向量之法向量求法及应用方法

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用一、 平面的法向量1、定义:如果α⊥→a ,那么向量→a 叫做平面α的法向量。

平面α的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。

由n α⊥,得0n a ⋅=且0n b ⋅=,由此得到关于,x y 的方程组,解此方程组即可得到n 。

方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。

0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。

其法向量),,(C B A n =→;若平面与3个坐标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++czb y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。

方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→→⨯b a 为一长度等于θsin ||||→→b a ,(θ为,两者交角,且πθ<<0),而与 , 皆垂直的向量。

通常我们采取「右手定则」,也就是右手四指由 的方向转为的方向时,大拇指所指的方向规定为→→⨯b a 的方向,→→→→⨯-=⨯a b b a 。

:),,,(),,,(222111则设z y x b z y x a ==→→⎝⎛=⨯→→21y y b a ,21z z 21x x - ,21z z 21x x⎪⎪⎭⎫21y y (注:1、二阶行列式:c a M =cb ad db-=;2、适合右手定则。

) 例1、 已知,)1,2,1(),0,1,2(-==→→b a , 试求(1):;→→⨯b a (2):.→→⨯a bKey: (1) )5,2,1(-=⨯→→b a ;)5,2,1()2(-=⨯→→a b例2、如图1-1,在棱长为2的正方体1111ABCD A BC D -中,求平面AEF 的一个法向量n 。

向量在高中数学中的应用

向量在高中数学中的应用


创 设 情 景 。 发 兴趣 激
提高 了学 习数 学 的 兴趣 。 画的直 角三角形 大小不一样 , 但最终都得 喜 悦 ,
教 师在教 学 中要善于联 系教材 与学 设有思考价值 的问题或悬念 , 以激发学生 的求知欲望。
到了相 同的结果 , 从而总结 出了直 角三角
直 1要 生 的实际 ,设计生动有趣 的教学情景 , 创 形 三边 之 间 的 关 系 : 角三 角形 两 直 角边 点 , . 自然合理。导入既是前面知识 的 的 平 方 和 等 于 斜 边 的 平 方 。 这 时 教 师 指 继 续 , 是 后 续 知 识 的 开 端 , 一 定 的积 又 以
体会。

活 动是个人体验 的源泉 , 在数学活动 中学习数学 , 建构新的知识 、 新的信息 , 因 势利导 , 帮助提高学生的思维能 力。 要求每个学 生各 自画一个直角三角形 , 测 下它们 的平方 , 观察两直 角边 的平 方与 经提 问 , 同学们踊跃发言 。虽 然同学们
。这样引入 , 将本节课的教学 如在讲 “ 勾股定理 ” 这节课时 , 课前我 计图的选择”
积 的最 大值 、 小 值 . 类题 在知 识 交 汇 处 最 这 出题 , 点在 于 向量 的运 算 转 化 . 学 生 难 因此

函数的一种工具 , 有着极其丰富 的实际背
景 , 高 考 关 注 的 知 识 “ 汇 点 ”下 面 举 是 交 . 例 说 明 向 量 的几 种 应 用及 应 对 策 略 .
验 到 了数 学 在 实际 生 活 中的 作 用 ,而 且 品
“ 良好 的开 端是 成 功的 一半 ” 教 师 , 要 上 好 一堂 课 , 入 起 着 重 要 的作 用 。 导 倘 若 新 课 一 开始 ,学 生 的积 极 性 就 被 调 动 起 来 ,那 就会 使 学 生 在 浓 厚 的 兴 趣 中接 受 新 的 知识 ,从 而 取 得 良好 的 是 值 得我 们探 讨 的重 要课 题 。下 面 , 本
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量方法在高中数学解题中的应用王贤举摘要:向量具有丰富的物理背景。

它既是几何的研究对象,又是代数的研究对象,是沟通代数、几何的桥梁。

通过向量法使代数问题几何化、使几何问题代数化、使代数问题和几何问题相互转化的一些实例,体现向量法在解决中学代数问题和几何问题的一些作用和优点。

关键词:高中数学;向量法;解题;应用Abstract: The vector has rich physical backgrounds. It is both the object of geometry and the object of algebra, and also is the bridge of algebra and geometry. By some examples about vector methods that make some algebra problems into geometry problems, or make some geometry problems into algebra problems, or make algebra problems and geometry problems transform mutually, it manifests the merit of vector methods in solving algebra and geometry problems in senior high school mathematics.Key word: Senior high school mathematics; Vector methods; Problem solving; Application1、向量与高中数学教学向量是既有大小,又有方向的量【1】,是数学中的重要概念之一。

向量具有丰富的物理背景,如力、位移、速度、加速度、动量、电场强度等都是向量。

在高中数学新课程中设置向量的容,是基于以下几方面原因:1.1向量是几何的研究对象物体的位置和外形是几何学的基本研究对象。

向量可以表示物体的位置,也是一种几何图形(几何里用有向线段表示向量:所指的方向为向量的方向,线段的长度表示向量的大小),因而它成为几何学的基本研究对象。

作为几何学的研究对象,向量有方向,可以刻画直线、平面等几何对象及它们的位置关系;向量有长度,可以刻画长度、面积、体积等几何度量问题。

1.2向量是代数的研究对象运算及其规律是代数学的基本研究对象。

向量可以进行加、减、数乘、数量积(点乘)等多种运算,这些运算及其规律赋予向量集合特定的结构,使得向量具有一系列丰富的性质。

向量的运算及其性质自然成为代数学的研究对象。

1.3向量是代数研究对象和几何研究对象的桥梁。

著名数学家拉格朗日曾经说过:“只要代数同几何分道扬镳,它们的进展就缓慢.它们的应用就狭窄。

但当这两门科学结合成伴侣时,它们就互相吸收新鲜的活力,从而以快捷的步伐走向完美”。

我国著名数学家华罗庚先生也有“数缺形时少直观,形缺数时难入微”的精辟论述。

高中数学中引入向量后【2】,通过在代数、几何中应用,改善教材结构、简化解题方法,也可通过在几何中的应用,加深对向量容的理解。

数学《新大纲》【3】引入向量后学习这部分容既可了解向量的实际应用,又可加深对该部分容的理解。

本文通过向量法使代数问题几何化、使几何问题代数化、使代数问题和几何问题相互转化的一些实例,体现向量法在解决中学代数问题和几何问题的一些作用和优点。

从而让学生学会使用向量法来解决高中数学问题,提高数学解题能力。

2、向量方法在高中数学解题中的应用2.1、向量法使代数问题几何化向量沟通了代数与几何的联系,因此对某些代数问题,如能巧妙地构造向量,便能将其转化为几何问题【4】,从而使问题简化。

例1、证明:对于任意两个向量b a ,,都有| b || a ||b || |b |- | a | |+≤+≤a 。

证明:若b a ,中有一个为0,则不等式显见 成立 若b a ,都不是0时,作a OA =,b AB =则b a OB +=. (1) 当b a ,不共线时,如图1所示, 则||||||||AB ||OA ||OB OA OB +<<-,即|||||a |||b ||a ||b a b +≤+≤-.(2) 当b a ,共线时,若b a ,同向,如图2所示, |||OA ||OB |AB += 即|||||b a |b a +=+.若b a ,反向,如图3所示, |OB |||AB ||OA ||=-, 则|b a |||b ||a ||+=-综上可知: |b ||a ||b a |||b ||a ||+≤+≤-.评注:该命题的证明方法有多种,但应用向量工具把代数问题几何化,使其理解更容易和具体化。

通过向量具有数形结合的性质,当两个向量不共线时,利用向量的三角形法则,转化为几何中三角形的性质进行讨论,得出|b ||a ||b a |||b ||a ||+≤+≤—.当两向量共线时,转化为对线段的讨论,从而可得到|b ||a ||b a |||b ||a ||+≤+≤—。

2.2、向量法使几何问题代数化通过对向量的学习可知,向量有一整套的符号和运算系统,对大量的几何问题,不但可以用向量的语言加以叙述,而且完全可以借助向量的方法予以证明,从而把抽象的逻辑推理转化为具体的向量运算【5】。

例1、求证:直角三角形斜边上的中线等于斜边的一半。

证明:如图4所示,在Rt ABC ∆中,C Rt ∠=∠,D 是AB 边上的中点。

由向量加法的平行四边形法则知 )CB CA (21CD +=, ))(CA (41CD CB CA CB CD ++=⋅∴ ,0CA =⋅CB2222||41)|||CA (|41|CD |AB CB =+=∴ .|AB |21|CD |=∴ 评注:向量作为联系代数与几何图形的最佳桥梁,它可以使图形量化,使图形间的关系代数化。

本题将直角三角形的各边及斜边上的中线用向量表示出来,利用平面向量的平行四边形法则和两向量垂直时数量积为0,转化为向量的代数运算,得AB 21CD =,即证得直角三角形斜边上的中线等于斜边的一半。

例2、设抛物线()220y px p =>的焦点为F ,经过点F 的直线交抛物线于A 、B 两点。

点C 在抛物线的准线上,且BC //x 轴.求证:直线AC 经过原点O 【6】。

证明:如图5所示,设211,2y A y p ⎛⎫ ⎪⎝⎭,222,2y B y p ⎛⎫ ⎪⎝⎭, 由题设可知2,0,,22p p F C y ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭, 故⎪⎪⎪⎭⎫ ⎝⎛--=1212,2AF y p p y , ⎪⎪⎪⎭⎫ ⎝⎛--=122122,2AB y y p y y . 由三点共线,知AB //AF , (图5)()()2222121211022p y y y y y y p p--∴⋅--⋅-=, ()()221120y y p y y ∴-+=.12222121,,y p y p y y y y -=-=∴≠ ⎪⎪⎪⎭⎫ ⎝⎛--=121,2AO y p y⎪⎪⎪⎭⎫ ⎝⎛+-+-=⎪⎪⎪⎭⎫ ⎝⎛---=12122121221,2,22AC y p p p y y p p y y y()22222111110,22y p y p y y p y p ⎛⎫⎛⎫⎛⎫++-⋅---⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且直线AO 与直线AC 有公共点A ,A ∴、O 、C 三点共线,即直线AC 经过原点O .评注:用向量方法去解传统的立体几何题也是有优势的,能使问题很清晰,本题通过建立平面直角坐标,可得到向量AC AO AB AF ,,,。

根据三点共线得AB AF ,是共线的向量,从而可求得AC AO ,也是共线向量。

由平面上共线的两向量有公共点时,那么这三点在同一直线上,所以直线AC 经过原点O 。

例3、如图6,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=,侧棱12AA =,,D E 分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD ∆的重心G 。

(1)求1A B 与平面ABD 所成的角的大小(结果用 反三角函数值表示);(2)求点1A 到平面AED 的距离。

解: 以C 为原点,1,,CA CB CC 分别为,,x y z 轴,建立空间直角坐标系,设CA a =则)2,0a (1,0,00a 0)20a (1,),(),,,(,,,A D B A =, 从而,,1,22a a E ⎛⎫ ⎪⎝⎭1,,,333a a G ⎛⎫ ⎪⎝⎭),1,0,(AD a -=⎪⎭⎫ ⎝⎛=32,6,6G E a a ,由AD G E ⊥得 ,0AD =⋅GE 即22063a -+=,2a ∴=. (1) 设1A B 与平面ABD 所成的角,即BE 与BG 所成的角为θ,),1,1,1(BE -=),31,34,32(-=BG ,37||||.cos =⋅=BG BE BG BE θarccos 3θ∴=. (2) 设点1A 在平面AED 上的射影为(),,,H p s t 则,,H A 11EH H A AH ⊥⊥,H A 1DH ⊥即,,00,0H A 111=⋅=⋅=⋅DH H A EH H A AH 代入运算得()()()()()()()()()()222220,211210,2120.p s t t p p s s t t p p s t t ⎧-++-=⎪⎪--+-+--=⎨⎪-++--=⎪⎩4,32,32.3p s t ⎧=⎪⎪⎪⇒=⎨⎪⎪=⎪⎩ 或 2,0,2.p s t =⎧⎪=⎨⎪=⎩(舍去) 422,,,333H ⎛⎫∴ ⎪⎝⎭从而1A H == 评注:向量解决问题的直接好处体现得异常充分,学生比较容易找到落脚点,把空间的问题转化为代数问题,从向量的角度切入,可以有效地避开很多难点。

本题通过建立空间直角坐标系,设CA a =,得到向量GE AD ,,BG BE ,。

根据空间直线与平面间的定理可得AD ⊥G E ,算出CA 的长,在由BG BE ,之间的数量积、夹角和模的关系,可求出BG BE ,的夹角,即为设1A B 与平面ABD 所成的角。

设点1A 在平面AED 上的射影为),,(t s p H =,可得到向量DH H A EH H A AH ⊥⊥⊥111,,H A 由两向量垂直时其数量积为0得,0H A 1=⋅AH 0,0H A 11=⋅=⋅DH H A EH 可算出1A H 的长度,也就是点1A 到平面AED 的距离。

2.3、向量法使几何与代数问题相互转化在直角坐标系中,向量的坐标运算有加、减、数乘运算、数量积运算。

相关文档
最新文档