八年级下平行四边形专题汇总
八年级下册数学平行四边形知识点

八年级下册数学平行四边形知识点一、平行四边形的定义在数学中,平行四边形是指具有两组对边分别平行的四边形。
也就是说,平行四边形有两对边分别平行,并且对边长度相等。
这个定义很重要,因为它决定了平行四边形的性质和特点。
二、平行四边形的性质1. 对角线性质:平行四边形的两条对角线互相平分,即对角线长度相等。
2. 对边性质:平行四边形的对边互相平行且长度相等。
3. 内角性质:平行四边形的内角互相补角,即相对的内角之和为180度,所以任意对角线夹角互为补角。
4. 定理:平行四边形的对角线互相平分并且等长。
三、平行四边形的应用平行四边形在几何学中有着广泛的应用,尤其在计算面积和解决实际问题时非常有用。
1. 面积计算:平行四边形的面积等于底边长乘以高,即S=底×高。
2. 平行四边形的性质在解决实际问题时很有用,比如建筑设计、地图绘制等。
四、个人观点和理解平行四边形是几何学中一个非常重要的概念,它具有丰富的性质和应用价值。
在学习和掌握平行四边形知识点的过程中,我深刻体会到了数学的逻辑性和严谨性。
通过对平行四边形的研究,我不仅提高了自己的数学思维能力,也更加深入地理解了几何学在现实生活中的应用。
总结回顾通过本文的阐述,我们深入探讨了八年级下册数学平行四边形的知识点,包括定义、性质、应用等方面。
我们了解到平行四边形具有特定的对角线性质和对边性质,以及在面积计算和实际问题中的应用。
通过学习和掌握这些知识,我们不仅能提高自己的数学水平,也能更好地理解几何学在实际生活中的重要性。
希望本文的内容能够帮助你更深入地理解平行四边形的知识,提高数学学习的兴趣和能力。
平行四边形是几何学中非常重要的一个概念,它的性质和应用非常广泛。
在平行四边形的学习过程中,除了了解其定义、性质和应用外,还可以进一步深入探讨平行四边形的相关定理及证明,以及与其他几何图形的关联等内容。
1. 平行四边形的相关定理在学习平行四边形的过程中,我们可以深入了解一些与平行四边形相关的定理,比如平行四边形的对角线互相平分并且等长、平行四边形的对角线长度的平方和等于边长的平方和等等。
八年级下册数学平行四边形知识点

八年级下册数学平行四边形知识点平行四边形是我们在数学学习中会遇到的一个重要概念。
它具备一些特殊的性质和规律,对于我们解题和解析几何的能力有很大的帮助。
本文将详细介绍八年级下册数学平行四边形的知识点,包括定义、性质、判定方法及相关定理。
一、平行四边形的定义平行四边形是指具有两组对边平行的四边形。
四边形的两组对边分别是平行边,而对边之间的两组夹角分别是对顶角。
平行四边形的定义为:如果一个四边形的对边互相平行,则它是一个平行四边形。
平行四边形的对边长度相等,对角线互相等长。
二、平行四边形的性质平行四边形有一些独特的性质,掌握这些性质对于解题非常重要。
1. 对边性质:平行四边形的对边互相平行且相等长,即两对对边分别平行且长度相等。
2. 对角性质:平行四边形的对角线互相平分且相等长,即两条对角线分别相等长且平分。
3. 额角性质:平行四边形的一个内角与外角之和为180度,即内外角互为补角。
4. 同底角性质:平行四边形的两组对边夹角相等,即对等长的两边相对应的角相等。
5. 对顶角性质:平行四边形的两组对角之和为180度,即对等长的两个对角之和为180度。
三、平行四边形的判定方法对于给定的四边形,我们可以利用以下判定方法来确定它是否为平行四边形。
1. 判定方法一:如果一个四边形的对边长度相等,那么它是一个平行四边形。
2. 判定方法二:如果一个四边形的对角线互相相等,那么它是一个平行四边形。
3. 判定方法三:如果一个四边形的一个内角与外角之和为180度,那么它是一个平行四边形。
利用这些判定方法,我们可以轻松地确定一个四边形是否是平行四边形。
四、平行四边形的相关定理平行四边形还有一些重要的定理,它们进一步扩展了平行四边形的性质和应用。
1. 对角线分割定理:平行四边形的对角线把它分割成两个面积相等的三角形。
2. 对角线互补定理:平行四边形的对角线相交于一点,这个点将对角线分成互补角。
3. 等腰三角形定理:平行四边形的对边相等,则它是一个等腰三角形。
八年级下册平行四边形题目

八年级下册平行四边形题目一、平行四边形的性质相关题目1. 已知平行四边形ABCD中,∠A = 50°,求其他内角的度数。
- 解析:- 因为平行四边形的邻角互补,所以∠A与∠B互补。
- 已知∠A = 50°,则∠B=180° - ∠A = 180°-50° = 130°。
- 又因为平行四边形的对角相等,所以∠C = ∠A = 50°,∠D=∠B = 130°。
2. 在平行四边形ABCD中,AB = 3cm,BC = 5cm,求平行四边形ABCD的周长。
- 解析:- 平行四边形的对边相等,所以AB = CD = 3cm,BC = AD = 5cm。
- 那么平行四边形ABCD的周长为AB + BC+CD + AD = 3 + 5+3+5 = 16cm。
二、平行四边形的判定相关题目1. 四边形ABCD中,AB = CD,AD = BC,求证:四边形ABCD是平行四边形。
- 解析:- 连接AC。
- 在△ABC和△CDA中,AB = CD,BC = AD,AC = CA(公共边)。
- 根据SSS(边边边)全等判定定理,可得△ABC≌△CDA。
- 所以∠BAC=∠DCA,∠BCA = ∠DAC。
- 根据内错角相等,两直线平行,可得AB∥CD,AD∥BC。
- 所以四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)。
2. 已知四边形ABCD中,∠A = ∠C,∠B = ∠D,求证:四边形ABCD是平行四边形。
- 解析:- 因为四边形内角和为360°,即∠A+∠B + ∠C+∠D = 360°。
- 又因为∠A = ∠C,∠B = ∠D,所以2∠A+2∠B = 360°,即∠A+∠B = 180°。
- 所以AD∥BC(同旁内角互补,两直线平行)。
- 同理可得∠A+∠D = 180°,所以AB∥CD。
八年级下册平行四边形的经典题型

八年级下册平行四边形的经典题型
1. 平行四边形的定义题:什么是平行四边形?如何通过四边形的特点判断一个四边形是不是平行四边形?
2. 平行四边形的性质题:有哪些性质是平行四边形特有的?如何利用平行四边形的性质来解决平行四边形的问题?
3. 平行四边形的面积题:如何求一个平行四边形的面积?如果只知道平行四边形的高和底边长,如何求出它的面积?
4. 平行四边形的边长题:如果只知道平行四边形的一条对角线的长度以及一个角的大小,如何求出平行四边形的各边的长度?
5. 平行四边形的角度题:如果只知道平行四边形的两个内角大小,如何求出其他角度的大小?
6. 平行四边形的中点题:如果在一个平行四边形上每一边上取一个中点,这四个中点连起来所得到的四边形是什么?如何证明?
7. 平行四边形的垂直线题:我们在一个平行四边形中画一条直线,使它与其中一条边垂直相交,并将这个平行四边形分割成两个小平行四边形。
请问这条直线在平行四边形中的位置和作用是什么?
8. 平行四边形的对角线题:平行四边形的两条对角线互相平分,
如何证明?如果相交的两条线段长分别是a和b,如何求出平行四边形的面积?。
人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.
人教版八年级下册数学平行四边形知识点总结

平行四边形、矩形、菱形、正方形知识点总结杭信一中何逸冬一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形分成4个面积相等=⨯的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补对角:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.(3)识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=12 ab.③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .平行四边形 矩形 菱形 正方形 图形性质1.对边且 ;2.对角 ; 邻角 ;3.对角线; 1.对边且 ;2.对角且四个角都是 ;3.对角线;1.对边 且四条边都 ;2.对角 ; 3.对角线 且每 条对角线 ;1.对边 且四条边都 ;2.对角 且四个角都是 ; 3.对角线 且每条对角线 ;面积【素材积累】1、只要心中有希望存摘,旧有幸福存摘。
八年级下册数学平行四边形知识点总结

稿子一
嘿,小伙伴们!今天咱们来聊聊八年级下册数学里的平行四边形那些事儿。
平行四边形啊,简单说就是两组对边分别平行的四边形。
这可是个很重要的图形哦!
它有好多特点呢。
比如说,对边平行且相等,这就意味着它的两组对边长度是一样的,而且互相平行,是不是很神奇?
还有哦,它的对角也是相等的。
想象一下,两个相对的角就像双胞胎一样,大小一样呢!
平行四边形的对角线也有小秘密,它们互相平分。
要判断一个四边形是不是平行四边形,也有办法。
如果两组对边分别相等,或者一组对边平行且相等,那它就是平行四边形啦。
平行四边形的面积计算也不难,就是底乘以高。
记住哦,这个高可一定要看准了。
在做题的时候,可一定要看清楚条件,别弄混了。
怎么样,平行四边形是不是还挺有趣的?
稿子二
亲爱的小伙伴们,咱们一起来瞅瞅八年级下册数学的平行四边形知识点呀!
平行四边形,这可是个常常出现的图形呢!
它的两组对边那是必须平行的,就像两条平行线永不相交一样。
而且这两组对边的长度还相等,是不是很整齐?
它的两组对角也是相等的哟,感觉就像天生一对对的。
再说对角线,互相平分这点可别忘啦。
判断是不是平行四边形,方法得记住呀。
要是两组对边平行,或者两组对边相等,那准没错。
还有呢,平行四边形的面积公式要牢记,底乘高就搞定。
做题的时候,得细心再细心。
比如有时候会让你证明一个图形是平行四边形,那就得根据条件,灵活运用那些判断方法。
平行四边形就像一个神秘的小城堡,里面藏着好多有趣的知识等我们去发现呢!怎么样,是不是觉得没那么难啦?。
人教版八年级数学下册知识点第十八章《平行四边形》

第十八章平行四边形【思维导图】【平行四边形】(1)平行四边形的定义与表示定义:两组对边分别平行的四边形叫做平行四边形。
表示:平行四边形用“□”表示。
2)符号“□”必须与表示顶点的字母同时使用,不能单独使用。
的顺序依次排列。
点拨:1)在用“□”表示平行四边形时, 应把表示顶点的字母按顺时针或逆时针边形。
平行四边形ABCD 记作“□ABCD”,读作“平行四边形ABCD”。
如图,在四边形ABCD 中,AB ∥DC ,AD ∥BC ,那么四边形ABCD 是平行四(2)平行四边形的基本元素如图,在□ABCD 中,邻边:AD 和AB ,AD 和DC ,DC 和BC ,BC 和AB对边:AB 和DC ,AD 和BC邻角:∠BAD 和∠ADC ,∠ADC 和∠DCB ,∠DCB 和∠ABC ,∠ABC 和∠BAD 对角:∠BAD 和∠BCD ,∠ABC 和∠ADC对角线:AC 和BD【平行四边形的性质】性质1:平行四边形的对边相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC性质2:平行四边形的对角相等几何语言:如图1,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D下面证明性质1和2证明:如图2,连接AC。
∵AD∥BC,AB∥CD∴∠1=∠2,∠3=∠4.又∵AC=CA,∴△ABC≌△CDA∴AD=BC,AB=CD,∠B=∠D∴∠1=∠2,∠3=∠4,∴∠1+∠4=∠2+∠3,即∠BAD=∠BCD性质3:平行四边形的对角线互相平分几何语言:如图3,∵四边形ABCD是平行四边形,∴OA=0C=1/2AC,OB=OD=1/2BD【典例】(中考)在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=1800C.AB=ADD.∠A≠∠C解析:平行四边形的对角线互相平分但不一定垂直,所以选项A错误;@简单初中生平行四边形的邻角互补,所以选项B正确;平行四边形的对边相等但邻边不一定相等,所以选项C错误;平行四边形的对角相等,所以∠A=∠C,所以选项D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级平行四边形专题汇总一、平行四边形与等腰三角形专题例题1已知:如图,平行四边形ABCD中,E为AD的中点,BE的延长线交CD的延长线于点F.(1)求证:CD=DF;(2)若AD=2CD,请写出图中所有的直角三角形和等腰三角形.训练一1.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①② B.只有①②③ C.只有③④ D.①②③④2.如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.3.如图,已知AD和BC交于点O,且△OAB和△OCD均为等边三角形,以OD和OB为边作平行四边形ODEB,连接AC、AE和CE,CE和AD相交于点F.求证:△ACE为等边三角形.4.如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.求证:AE=DG.二、平行四边形与面积专题例题2 已知平行四边形ABCD,AD=a,AB=b,∠ABC=α.点F为线段BC上一点(端点B,C除外),连接AF,AC,连接DF,并延长DF交AB的延长线于点E,连接CE.(1)当F为BC的中点时,求证:△EFC与△ABF的面积相等;(2)当F为BC上任意一点时,△EFC与△ABF的面积还相等吗?说明理由.训练二1. 如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG 的面积S1与▱HCFM的面积S2的大小关系是()A. S1>S2 B.S1<S2 C.S1=S2 D.2S1=S22.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m2,10m2,36m2,则第四块田的面积为3.如图,AE∥BD,BE∥DF,AB∥CD,下面给出四个结论:(1)AB=CD;(2)BE=DF;(3)S ABDC=S BDFE;(4)S△ABE=S△DCF.其中正确的有()A.1个B.2个C.3个D.4个4.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A. B. C.或 D.或5.平行四边形ABCD的周长为20cm,AE⊥BC于点E,AF⊥CD于点F,AE=2cm,AF=3cm,求ABCD的面积.6.如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.(1)求证:PA=PC.(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.7.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC 的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.: C.: D.:三、平行四边形与角度专题例题3 如图,在平行四边形ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连接AE、AF.(1)求证:△ABE≌△FDA;(2)当AE⊥AF时,求∠EBG的度数.训练三1.如图,将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,则∠AEF=度.2.如图,已知平行四边形ABCD,DE是∠ADC的角平分线,交BC于点E.(1)求证:CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.3.如图,E、F是▱ABCD对角线AC上的两点,且BE∥DF.求证:(1)△ABE≌△CDF;(2)∠1=∠2.四、平行四边形与线段专题例题4 如图,ABCD为平行四边形,AD=2,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:EF=DF;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求DE的长.训练四1. 如图,□ABCD的对角线相交于点O,过点O任引直线交AD于E,交BC于F,则OE OF(填“>”“=”“<”),并说明理由.2.如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是3.已知:如图,在▱ABCD中,∠ADC、∠DAB的平分线DF、AE分别与线段BC相交于点F、E,DF与AE相交于点G.(1)求证:AE⊥DF;(2)若AD=10,AB=6,AE=4,求DF的长.4. 如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.5.如图,E、F分别是▱ABCD的边AD、BC上的点,且AE=CF,AF和BE相交于点G,DF和CE相交于点H,求证:EF和GH互相平分.6.已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.7. 如图,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的F点,若△FDE的周长为8 cm,△FCB的周长为20 cm,则FC的长为cm.8. 如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点G、E、F分别为边AB、BC、AC的中点.求证:DF=BE.五、三角形中位线专题例题5 如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A. B. C.3 D.4训练五1. 如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.12.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15° B.20° C.25° D.30°3.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7 B.9 C.10 D.11六、平行四边形综合探究专题例题6如图所示,在□ABCD中,AB>BC,∠A与∠D的平分线交于点E,∠B与∠C的平分线交于F 点,连接EF.(1)延长DE交AB于M点,则图中与线段EM一定相等的线段有哪几条?说明理由;(不再另外添加字母和辅助线)(2)EF、BC与AB之间有怎样的数量关系?为什么?(3)如果将条件“AB>BC”改为“AB<BC”,其它条件不变,EF、BC与AB的关系又如何?请画出图形并证明你的结论.训练六1.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是2.如图所示,△ABC为等边三角形,P是△ABC内任一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=3.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为4.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个5.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.6. 在▱ABCD中,对角线AC、BD相交于点O,直线EF过点O,分别交AD、BC于E、F,如图①(1)求证:AE=CF;(2)将图①中▱ABCD沿直线EF折叠,使得点A落在A1处,点B落在B1处,如图②设FB1交CD于点G,A1B1分别交CD、DE于点P、Q,求证:EQ=FG.7.如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.。