平面直角坐标系,二元一次方程(含答案)

合集下载

平面直角坐标系与二元一次方程组

平面直角坐标系与二元一次方程组

平面直角坐标系与二元一次方程组一、平面直角坐标系的基本概念平面直角坐标系是数学中常用的一种表示平面上点位置的方式。

它由两条相互垂直的数轴组成,分别称为x轴和y轴。

原点O是两个轴的交点,用来确定坐标的起点。

在平面直角坐标系中,x轴上的点都有一个对应的实数值,这个值叫做该点的x坐标;同理,y轴上的点有一个对应的实数值,叫做该点的y坐标。

一个平面点在直角坐标系中的位置可以用一个有序数对(x,y)来表示,其中x表示x轴上的坐标,y表示y轴上的坐标。

二、二元一次方程组的基本概念二元一次方程组是一个包含了两个变量的一次方程的集合。

一般地,一个二元一次方程的一般形式可以写作:ax + by = cdx + ey = f其中a、b、c、d、e、f为已知实数,且a和b不同时为0,d和e不同时为0。

解二元一次方程组即为找到使得两个方程同时成立的变量值。

解的方法可以是代入法、消元法、图解法等。

三、平面直角坐标系与二元一次方程组的联系平面直角坐标系提供了一种方便的方式来解决二元一次方程组的问题。

通过将方程中的变量值代入直角坐标系中,可以将问题转化为在坐标系中求解的几何问题。

具体地,将二元一次方程组化简后,可以得到两个关于x和y的直线方程。

这两条直线在坐标系中的交点就是方程组的解。

解的个数可以有三种情况:无解、唯一解和无穷多解。

当两条直线相交于一个点时,该方程组有唯一解;当两条直线平行时,该方程组无解;当两条直线重合时,该方程组有无穷多解。

四、通过实例理解平面直角坐标系与二元一次方程组的应用假设有一个二元一次方程组:2x + 3y = 6-3x + 2y = 1首先,我们可以将其转化为直角坐标系中的两条直线方程。

在直角坐标系中,第一条方程可以表示为:y = (6 - 2x) / 3第二条方程可以表示为:y = (1 + 3x) / 2绘制这两条直线,可以发现它们在坐标系中相交于一个点,即(-1,2)。

所以,这个方程组的解就是x = -1,y = 2。

人教版数学七年级下册前四章相交线 实数 平面直角坐标系 二元一次方程 测试题(答案详细)

人教版数学七年级下册前四章相交线 实数 平面直角坐标系 二元一次方程 测试题(答案详细)

人教版数学七年级下册前四章相交线实数平面直角坐标系二元一次方程测试题(答案详细)七年级下册前四章测试题一、选择题(本题共10小题,每题3分,共30分)1.(2014湖北荆门3,3分)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()FABGCDE第3题图A。

155°B。

145°C。

110°D。

35°解析:∠XXX∠CAG,∠BAC=∠XXX,所以∠XXX∠BAC-∠BAG=∠EFC-∠BAG=70°-35°=35°,选D。

2.(2013广东茂名,10,3分)如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()第2题图A。

15°B。

25°C。

35°D。

45°解析:∠1+∠2+90°=180°,所以∠2=180°-90°-∠1=65°,选D。

3.(2014台湾省,11,3分)如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与11﹣239最接近?第3题图A。

AB。

BC。

CD。

D解析:数轴上A、B、C、D四点的坐标分别是-240、-238、-236、-234,与-239最接近的是-238,所以选B。

4.(2014年江西省抚州市6,3分)已知a、b满足方程组2a-b=2a+2b=6,则3a+b的值为A。

8B。

4C。

-4D。

-8解析:将第一个方程式乘以2,得到4a-2b=4,将第二个方程式加上这个式子,得到5a=10,所以a=2,代入第一个方程式,得到b=2,所以3a+b=3×2+2=8,选A。

5.(2014辽宁锦州,8,3分)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁,”如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A。

北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案

北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
一、单选题
1.如图,在平面直角坐标系中,一次函数y=kx+b和y=mx+n相交于点(2,-1)则关于x、y的方程组 的解是()
A. B. C. D.
2.某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为 人,组数为 组,则列方程组为()
参考答案:
1.B
2.D
3.C
4.A
5.C
6.B
7.C
8.B
9.D
10.A
11. (答案不唯一)
12.2
13.2或
14.
15.
16.4
17.9
18.5 2或3
19.(1)h是x的一次函数
(2)9只
20.(1)
(2)
21.(1)30;(2)①小丽步行的速度为 ,小明步行的速度为 ;②点 ,点C表示:两人出发 时,小明到达甲地,此时两人相距 .
(1)丽丽所买皮衣与毛衣的单价各是多少元?
(2)丽丽可以到线上客服处领取多少元补贴?
24.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足 ,DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
(1)求A、B、E三点的坐标;
(2)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.
22.1
23.(1)丽丽所买皮衣的单价是 元,毛衣的单价是 元
(2) 元
24.(1)A(0,3),B(-1,0),E(2,1),(2) (-4,1)(-3,4)(-2,2)
A. B. C. D.
9.若 是二元一次方程组 的解,则 的值为()

北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)

北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)

北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)一、单选题1.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,那么这个方程可以是( ) A .3416x y -= B .1254x y +=C .1382x y +=D .2()6x y y -=2.在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A .15x y =-⎧⎨=⎩B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩3.已知方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则()()()()2213313230.951x y x y ⎧-=++⎪⎨-=-+⎪⎩的解是( )A .8.31.2x y =⎧⎨=⎩B .10.32.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩4.已知关于x ,y 的二元一次方程组24,2x y kx y -=⎧⎨+=⎩,的解为2,x y =⎧⎨=♥⎩,其中“♥”是不小心被墨水涂的,则k 的值为( ) A .1B .1-C .2D .2-5.如图,直线y =x +5和直线y =ax +b 相交于点P ,观察其图象可知方程x +5=ax +b 的解( )A .x =15B .x =25C .x =10D .x =206.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( ) A .30B .26C .24D .227.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是( )A .12x =B .1x =C .2x =D .4x =8.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( ) A .1032019xy= B .1032019yx= C .1019320x y -= D .1910320x y -=9.《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如对于方程组323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )A .24,4B .17,4C .24,0D .17,010.如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN ∥PQ ,则点N 的坐标可能是( )A .(2,3)B .(3,3)C .(4,2)D .(5,1)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1212.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩二、填空题13.关于x 、y 的二元一次方程组2354343x y mx y m -=-⎧⎨+=+⎩的解满足55x y +=,则m 的值是______.14.若()225240x y x y +-++=,则x y -的值是________.15.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.16.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限.17.如图点D 、E 分别在ABC 的边AC 、AB 上,2,,3AD AE EB BD DC ==与CE 交于点F ,40ABC S =△,则AEFD S =_______.18.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB上的一点,且位于第二象限,当△OBC 的面积为3时,点C 的坐标为______.三、解答题19.已知点(4,0)A 及在第一象限的动点(,)P x y ,且6x y +=,O 为坐标原点,设OPA 面积为S .(1)求S 关于x 的函数解析式; (2)求x 的取值范围; (3)当6S =时,求P 点坐标.20.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)40 90售价(元/件)60 120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式;(2)若获得的利润恰好为2800元,求该商场购进甲、乙两种商品各多少件?21.如图,一次函数y=x+3的图象1l与x轴交于点B,与过点A(3,0)的一次函数的图象2l交于点C(1,m).(1)求m的值;(2)求一次函数图象2l相应的函数表达式;(3)求ABC的面积.22.已知0k ≠,将关于x 的方程0kx b +=记作方程☆. (1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______; (3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.23.A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ; (2)分别求出,y y 甲乙与x 之间的函数解析式; (3)求出点C 的坐标,并写点C 的实际意义.24.数学乐园:解二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩①②,21b ⨯-⨯①②b 得:()12211221a b a b x c b c b -=-,当12210a b a b -≠时,12211221c b c b x a b a b -=-,同理:12211221a c a c y ab a b -=-;符号a b c d称之为二阶行列式,规定:a b ad bc c d=-,设1122a b D a b =,1122x c b D c b =,1122y a c D a c =,那么方程组的解就是x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩ (1)求二阶行列式3456的值;(2)解不等式:2224x x -≥--;(3)用二阶行列式解方程组3262317x y x y -=⎧⎨+=⎩;(4)若关于x 、y 的二元一次方程组362317x my x y -=⎧⎨+=⎩无解,求m 的值.25.在新年联欢会上,同学们组织了精彩的猜谜活动,为了奖励猜对的同学,老师决定购买笔袋或彩色铅笔作为奖品,已知1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元.(1)求每个笔袋、每筒彩色铅笔的原价各多少元?(2)时逢新年期间,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.如果买m 个笔袋需要1y 元,买n 筒彩色铅笔需要2y 元.请用含m ,n 的代数式分别表示1y 和2y ;(3)如果在(2)的条件下一共购买同一种奖品95件,请分析买哪种奖品省钱.26.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点. ①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.27.小华从家里出发到学校去上学,前15路段小华步行,其余路段小华骑自行车. 已知小华步行的平均速度为60m/min ,骑自行车的平均速度为200m/min ,小华从家里到学校一共用了22min .(1)小红同学提出问题:小华家里离学校有多少m ? 前15路段小华步行所用时间是多少min ? 请你就小红同学提出的问题直接设出未知数列方程组进行解答.(2)请你再根据题目的信息,就小华走的“路程”或“时间”,提出一个能用二元一次方程组解答但与第(1)问不完全相同的问题,并设出未知数、列出方程组。

2022年北师大版八年级上册数学第五章二元一次方程组第7节用二元一次方程组确定一次函数表达式

2022年北师大版八年级上册数学第五章二元一次方程组第7节用二元一次方程组确定一次函数表达式

7 用二元一次方程组确定一次函数表达式用待定系数法求函数表达式的一般步骤(1)写出函数表达式的一般式,其中包括未知的系数;(2)把自变量与函数的对应值代入函数表达式中,得到关于待定系数的方程或方程组; (3)解方程(组)求出待定系数的值,从而写出函数表达式. 判一判:1.一次函数的图象是直线,由无数点组成.( √ ) 2.确定一次函数表达式需要两个坐标.( √ ) 3.过原点和(1,2)的直线是y =3x .( × )1.在平面直角坐标系中,二元一次方程ax +by =c 的图象如图所示,则当x =4时,y 的值为__-1__.【解析】设直线的表达式为y =mx +n , 把(0,1),(2,0)代入得⎩⎨⎧n =1,2m +n =0,解得⎩⎨⎧m =-12,n =1,所以直线的表达式为y =-12 x +1,当x =4时,y =-12×4+1=-1.2.小亮用作图象的方法解二元一次方程组时,在同一平面直角坐标系中作出了相应的两个一次函数图象如图所示,则他解的这个方程组是__⎩⎨⎧y =-2x +2,y =-12x -1__.【解析】设经过点(0,2)与点(2,-2)的直线表达式为y =kx +b , 则⎩⎨⎧b =2,2k +b =-2, 解得⎩⎨⎧k =-2,b =2.∴直线的表达式为y =-2x +2;设经过点(-2,0)与点(2,-2)的直线表达式为y =mx +n , 则⎩⎨⎧-2m +n =0,2m +n =-2,解得⎩⎨⎧m =-12,n =-1.∴直线的表达式为y =-12x -1.故他解的这个方程组是⎩⎨⎧y =-2x +2,y =-12x -1.3.甲超市进行苹果优惠促销活动,苹果的标价为10元/kg ,如果一次购买4 kg 以上的苹果,超过4 kg 的部分按标价的6折售卖.x (单位:kg)表示购买苹果的重量,y (单位:元)表示付款金额. (1)文文购买3 kg 苹果需付款__30__元; 购买5 kg 苹果需付款__46__元;(2)写出付款金额y 关于购买苹果的重量x 的函数表达式: 当0<x ≤4时,__y =10x __; 当x >4时,__y =6x +16__.重点1 二元一次方程组与待定系数法【典例1】已知一次函数y =ax +2与y =kx +b 的图象如图所示,且方程组⎩⎨⎧ax -y =-2,kx -y =-b 的解为⎩⎨⎧x =2,y =1,点B 的坐标为(0,-1).你能确定两个一次函数的表达式吗?【自主解答】∵方程组⎩⎨⎧ax -y =-2,kx -y =-b 的解是⎩⎨⎧x =2,y =1,∴交点A 的坐标为(2,1), ∵点A 在函数y =ax +2的图象上, ∴2a +2=1, ∴a =-12,∵点A (2,1),点B (0,-1)在函数y =kx +b 图象上, ∴⎩⎨⎧2k +b =1,b =-1, 解得⎩⎨⎧k =1,b =-1.∴能.两个一次函数的表达式分别为y =-12x +2,y =x -1.1.如图,已知B 中的实数与A 中的实数之间的对应关系是某个一次函数.若用y 表示B 中的实数,用x 表示A 中的实数,则a =__1__.【解析】设一次函数表达式为y =kx +b (k ≠0),把⎩⎨⎧x =-3,y =-9, ⎩⎨⎧x =-1,y =-5代入可得,⎩⎨⎧-9=-3k +b ,-5=-k +b , ,解得⎩⎨⎧k =2b =-3 ,∴y =2x -3.∴当x =(-2 )2=2时,y =2×2-3=1, ∴a =1.2.直线y =kx +b 经过点A (1,-1)与点B (-1,5),则函数表达式为:__y =-3x +2__. 【加固训练】直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2). (1)求直线AB 所对应的函数表达式;(2)若直线AB 上一点C 在第一象限且点C 的坐标为(a ,2),求△BOC 的面积.【解析】(1)设直线AB 的表达式为y =kx +b (k ≠0), ∵直线AB 过点A (1,0)、点B (0,-2), ∴⎩⎨⎧k +b =0,b =-2, 解得⎩⎨⎧k =2,b =-2,∴直线AB 的表达式为y =2x -2. (2)∵C (a ,2)在直线AB 上, ∴2=2a -2, ∴a =2, ∴C (2,2),∴S △BOC =12×2×2=2.【技法点拨】 待定系数法确定表达式1.设:设出一次函数的表达式y =kx +b .2.代:将已知条件代入上述表达式,得到关于k ,b 的二元一次方程组. 3.解:解方程组,求出k ,b 的值. 4.写:写出一次函数表达式.重点2 二元一次方程组与一次函数的应用【典例2】在一条笔直的公路旁依次有A ,B ,C 三个村庄,甲、乙两人同时分别从A ,B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.设甲、乙两人到C 村的距离y 1,y 2(km)与行驶时间x (h)之间的函数关系如图所示,若乙在行驶过程中与甲相距5 km ,则x 的值为__56 或76 或176__.【解析】设y 1=kx +b ,将(0,120)和(0.5,90)代入得:⎩⎨⎧b =120,0.5k +b =90,解得⎩⎨⎧k =-60,b =120,∴y 1=-60x +120.设y 2=mx +n ,将(0,90)和(3,0)代入得:⎩⎨⎧n =90,3m +n =0,解得⎩⎨⎧m =-30,n =90,∴y 2=-30x +90.乙在行驶过程中距甲5 km 分三种情况: ①甲在乙后5 km ,则y 1-y 2=5,∴(-60x +120)-(-30x +90)=5, 解得x =56,②乙在甲后5 km ,则y 2-y 1=5, ∴(-30x +90)-(-60x +120)=5, 解得x =76,③甲已经到C 村,乙距C 村5 km ,则y 2=5, ∴-30x +90=5, 解得x =176.1.(2022·长沙期中)甲、乙两只气球分别从不同高度同时匀速上升60 min ,气球所在位置距离地面的高度y (单位:m)与气球上升的时间x (单位:min)之间的函数关系如图所示.下列说法正确的是(C )A .甲气球上升过程中y 与x 的函数关系为:y =2x +5B .10 min 时,甲气球在乙气球上方C .两气球高度差为15 m 时,上升时间为50 minD .上升60 min 时,乙气球距离地面高度为40 m【解析】设甲气球上升过程中y 与x 的函数关系为y =kx +b , 则⎩⎨⎧b =5,20k +b =25, 解得⎩⎨⎧k =1,b =5, ∴y =x +5,选项A 不符合题意;由题图可知,10 min 时,甲气球在乙气球下方,选项B 不符合题意;由甲气球上升过程中y 与x 的函数关系为y =x +5,可知甲气球上升速度为1 m/min ,乙气球上升速度为:(25-15)÷20=0.5(m/min),设两气球高度差为15 m 时,上升时间为x min ,根据题意,得:5+x -(15+0.5x )=15, 解得x =50,所以两气球高度差为15 m 时,上升时间为50 min ,选项C 符合题意;上升60 min 时,乙气球距离地面高度为:15+0.5×60=45(m),选项D 不符合题意. 2.如图是某地出租车的乘车里程和所付车费之间的关系图象,分别有线段AB ,BC 和射线CD 组成.张老师乘坐出租车里程是8千米.他应该付车费__20__元.【解析】设线段BC 的函数表达式为:y =kx +b , 把B (3,10),C (10,24)代入得: ⎩⎨⎧3k +b =10,10k +b =24, 解得⎩⎨⎧k =2,b =4,即BC 的函数表达式为:y =2x +4(3≤x ≤10), 由题图可知:x =8,位于函数图象BC 上, 把x =8代入y =2x +4得:y =2×8+4=20, ∴他应该付车费20元. 【加固训练】某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示.其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30时,求y 与x 之间的函数表达式;(2)若小李4月份上网35小时,他应付多少元的上网费用?【解析】(1)设当x ≥30时,y 与x 之间的函数表达式是y =kx +b , ⎩⎨⎧30k +b =60,40k +b =90, 解得⎩⎨⎧k =3,b =-30,即当x ≥30时,y 与x 之间的函数表达式为y =3x -30; (2)当x =35时,y =3×35-30=105-30=75, 即小李4月份上网35小时,他应付75元的上网费用.【技法点拨】用方程与函数解决实际问题1.数学方法:数形结合的方法. 2.基本步骤:(1)分析题意中的等量关系或图象信息. (2)建立函数模型.(3)构造二元一次方程组求解.特别提醒:无论方程还是函数都需要注意“解”的实际意义.将平面直角坐标系中过某一定点且不与x 轴垂直的直线,叫该定点的“友好线”.若点P (1,0),则点P 的“友好线”可记为y =k (x -1).(1)已知点A 的“友好线”可记为y =kx -3k +3 ,则点A 的坐标为________; (2)若点B (3,2)的“友好线”恰好经过点(1,1),求该“友好线”的表达式;(3)已知点M 在点Q 的“友好线”y =k (x +2)-1上,点N 在直线y =-13x +2上,若M (a ,m ),N (a ,n ),且当-3≤a ≤3时,m ≤n ,请直接确定k 的取值范围. 【解析】(1)∵y =kx -3k +3 =k (x -3)+3 , ∴点A 的坐标为(3,3 ).答案:(3,3 )(2)由题意可设点B 所在直线表达式为y =k (x -3)+2, 将(1,1)代入y =k (x -3)+2得1=-2k +2,解得k =12 ,∴该“友好线”的表达式为y =12(x -3)+2.(3)由题意得当-3≤x ≤3时,直线y =k (x +2)-1在直线y =-13 x +2的下方,把x =-3代入y =-13 x +2得y =3,把x =3代入y =-13 x +2得y =1,∴直线y =-13 x +2经过点(-3,3),(3,1),把(-3,3)代入y =k (x +2)-1得-4=k , 把(3,1)代入y =k (x +2)-1得5k -1=1, 解得k =25,∵y =k (x +2)-1经过定点(-2,-1),当k =-4时,如图,当k =25时,如图,∴当-4≤k ≤25且k ≠0时满足题意.。

人教版七年级数学下册二元一次方程组试题(带答案)(二)解析

人教版七年级数学下册二元一次方程组试题(带答案)(二)解析

一、选择题1.甲、乙两人共同解关于x ,y 的方程组532ax by x cy +=⎧⎨+=⎩①②,甲正确地解得21x y =⎧⎨=-⎩乙看错了方程②中的系数c ,解得31x y =⎧⎨=⎩,则2()a b c ++的值为( )A .16B .25C .36D .492.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩3.如图,长方形的宽为a ,长为b ,2a b a <<,第一次分割出一个最大的正方形1M ,第二次在剩下的长方形中再分割出一个最大的正方形2M ,依次下去恰好能把这个长方形分成四个正方形1M ,2M ,3M ,4M ,并且无剩余,则a 与b 应满足的关系是( )A .53b a = B .53b a =或43b a = C .43b a =或54b a = D .53b a =或54b a =4.《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x 斗,斗酒y 斗,可列二元一次方程组为( )A .2105030x y x y +=⎧⎨+=⎩B .2501030x y x y +=⎧⎨+=⎩ C .2301050x y x y +=⎧⎨+=⎩D .2103050x y x y +=⎧⎨+=⎩5.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改成横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是23213219x y x y +=⎧⎨+=⎩.类似地,图2所示的算筹图所对应的二元一次方程组的解为( )A .32x y =⎧⎨=⎩B .61x y =⎧⎨=⎩C .813x y =⎧⎨=⎩D .21x y =⎧⎨=⎩6.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( ) A .3分钟B .4分钟C .5分钟D .6分钟7.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个①当5a =时,方程组的解是1020x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =③不存在一个实数a 使得x y =; ④若23722a y -=,则2a =. A .1B .2C .3D .48.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于( )A .60cmB .65cmC .70cmD .75cm9.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( )A .2B .-2C .1D .-110.关于x ,y 的,二元一次方程()()12520a x a y a -+++-=,当a 取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是( )A.35xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.12xy=⎧⎨=⎩D.31xy=⎧⎨=-⎩二、填空题11.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.12.已知关于x、y的方程组254x yax by+=⎧⎨+=⎩与524bx ayx y+=⎧⎨+=⎩有相同的解,则a b+的值为________.13.若x=2,y=﹣1是关于x,y的二元一次方程2mx+4ny﹣9=3的一个解,则m﹣n的值为__.14.某纸厂要制作如图的甲、乙两种无盖的小长方体盒子.该厂利用边角材料裁出了长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等.现用150张正方形纸片和300张长方形纸片制作这两种小盒,恰好用完.设可做成甲、乙两种盒子各x、y 个,根据题意,可列正确的方程组为 __.15.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k=_____.16.在平面直角坐标系中,将点P向左平移2个单位长度,再向上平移3个单位长度,得到P'(﹣1,3),则点P坐标为___.17.关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,当m______时,是一元一次方程;关于,x y的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,当m______时,它是二元一次方程.18.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A植树点植树,乙、丁两组到B植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A、B两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.19.若2a m+2n b7+a5b n﹣2m+2的运算结果是3a5b7,则2m2+3mn+n2的值是 ___.20.某出租车起步价所包含的路程为02km,超过2km的部分按每千米另收费.小江乘坐这种出租车走了7km,付了16元;小北乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元.根据题意,可列方程组为_________.三、解答题21.对a ,b 定义一种新运算T ,规定:T (a ,b )=(a +2b )(ax +by )(其中x ,y 均为非零实数).例如:T (1,1)=3x +3y .(1)已知T (1,﹣1)=0,T (0,2)=8,求x ,y 的值;(2)已知关于x ,y 的方程组()()113028T a T a ⎧-=-⎪⎨=⎪⎩,,,若a ≥﹣2,求x +y 的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A (x ,y )落在坐标轴上,将线段OA 沿x 轴向右平移2个单位,得线段O ′A ′,坐标轴上有一点B 满足三角形BOA ′的面积为9,请直接写出点B 的坐标. 22.阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x y -=_______,x y +=_______;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=_______.23.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?24.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?25.对于不为0的一位数m 和一个两位数n ,将数m 放置于两位数之前,或者将数m 放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为(),F m n .例如:当1m =,68n =时,可以得到168,618.较大三位数减去较小三位数的差为618168450-=,而4501530÷=,所以()1,6830F =. (1)计算:()2,17F .(2)若a 是一位数,b 是两位数,b 的十位数字为x (18x ≤≤,x 为自然数),个位数字为8,当()()11,509,862F a F b +=时,求出所有可能的a ,b 的值.26.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由. 27.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.28.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.29.某企业用规格是170cm ×40cm 的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a 、b 的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材 张,乙型板材 张; ②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?30.如图,α∠和β∠的度数满足方程组2230320αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)用解方程的方法求α∠和β∠的度数; (2)求C ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值. 【详解】把21x y =⎧⎨=-⎩代入得:2562a b c -=⎧⎨-=⎩,解得:c =4,把31x y =⎧⎨=⎩代入得:3a +b =5,联立得:2535a b a b -=⎧⎨+=⎩,解得:21a b =⎧⎨=-⎩,则(a +b +c )2=(2﹣1+4)2=25. 故选B . 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.C解析:C 【详解】分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得. 详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.3.B解析:B 【分析】根据长方形的宽为a ,长为b 进行分割,第一次分割出边长a 的正方形,第二次分割出边长(b -a )的正方形,并进行分类讨论,画出几何图形,利用边长的关系即可得出a 、b 的关系. 【详解】 解:①如图:∵AB =AE =a ,AD =BC =b , ED =EI =IG =GF =b -a , ∴a =3(b -a ), ∴4a =3b , ∴43b a =②如图:∵AB =AF =BE =a ,AD =BC =b , ∴EI =IC =2a -b , ∴b =a +2a -b +2a -b , ∴53b a = 综上所述:43b a =或53b a =故选:B . 【点睛】本题考查了矩形和正方形边长的关系,准确的画出图形,进行分类讨论是解题的关键.4.B解析:B 【分析】设能买醇酒x 斗,行酒y 斗,利用总价=单价⨯数量,结合用30钱共买2斗酒,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】解:设能买醇酒x 斗,行酒y 斗. 买2斗酒,2x y ∴+=;醇酒1斗,价格50钱;行酒1斗,价格10钱,且共花费30钱,501030x y ∴+=.联立两方程组成方程组2501030x y x y +=⎧⎨+=⎩.故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解题的关键是找准等量关系,正确列出二元一次方程组.5.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10或5,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式,然后化简计算即可. 【详解】解:根据题意可得:第一个方程x 的系数为3,y 的系数为2,相加的结果为8;第二个方程x 的系数为6,y 的系数为1,相加的结果为13,所以可列方程组为328613x y x y +=⎧⎨+=⎩,解之得:21x y =⎧⎨=⎩,故选:D . 【点睛】考查列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.6.D解析:D 【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间. 【详解】解:设8路公交车的速度为x 米/分,小王行走的速度为y 米/分,同向行驶的相邻两车的间距为s 米.每隔12分钟从背后驶过一辆8路公交车,则 1212x y s -=①每隔4分钟从迎面驶来一辆8路公交车,则 44x y s +=②由①+②可得6s x =, 所以6sx=, 即8路公交车总站发车间隔时间是6分钟. 故选:D . 【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.7.B解析:B 【分析】①把a =5代入方程组求出解,即可作出判断;②由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ③若x =y ,代入方程组,变形得关于a 的方程,即可作出判断; ④根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:①把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故①错误;②当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩,整理,得82(3)35(4)x a x a =⎧⎨=-⎩,由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故②正确;③若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∴不存在一个实数a 使得x =y ,故③正确;④352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∴原方程组的解为2515x ay a =-⎧⎨=-⎩,∵23722a y -=, ∴2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故④错误; ∴正确的选项有②③两个.故选:B .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.8.D解析:D【分析】设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意列出方程组求出解即可得出结果.【详解】解:设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意,得9060a x y a y x +-=⎧⎨+-=⎩, 两式相加,得 2a =150,解得 a =75,故选:D .【点睛】本题考查了二元一次方程组的应用.解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程中求解.9.A解析:A【详解】(1)−(2)得:6y=−3a ,∴y=−2a , 代入(1)得:x=2a ,把y=−2a ,x=2a 代入方程3x+2y=10, 得:6a−a=10,即a=2.故选A.10.D解析:D【分析】根据题意可得关于x 、y 的方程组,根据解方程组,可得答案.【详解】解:原方程整理为:(x +y -2)a +(-x +2y +5)=0,由方程的解与a 无关,得:20250x y x y +-⎧⎨-++⎩==, 解得31x y ⎧⎨-⎩==, 故选:D .【点睛】本题考查了二元一次方程组的解,正确理解题意、得出方程组是解题关键.二、填空题11.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】 分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案. 解答:解:把代入, 得,解得,c=-2. 再把代入ax+by=-2, 得, 解得: , 所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.12.3【分析】由题意可知方程组与有相同的解,由可得x +y =3,再由可得a (x +y )+b (x +y )=9,即可求a +b 的值.【详解】解:∵方程组与有相同的解,∴方程组与的解相同,中①+②得,中解析:3【分析】由题意可知方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解,由2524x y x y +=⎧⎨+=⎩可得x +y =3,再由45ax by bx ay +=⎧⎨+=⎩可得a (x +y )+b (x +y )=9,即可求a +b 的值. 【详解】解:∵方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解, ∴方程组2524x y x y +=⎧⎨+=⎩与45ax by bx ay +=⎧⎨+=⎩的解相同, 2524x y x y +=⎧⎨+=⎩①②中①+②得3x y +=, 45ax by bx ay +=⎧⎨+=⎩③④中,③+④ 得a (x +y )+b (x +y )=9, 将3x y +=代入,得339a b +=,∴3a b +=,故答案为:3.【点睛】本题考查二元一次方程组的解,此题采用整体求解的方法较为简便,求出x +y =3是解题的关键.13.3【分析】将x =2,y =﹣1代入方程2mx+4ny ﹣9=3即可得到m ﹣n =3.【详解】∵x =2,y =﹣1是方程2mx+4ny ﹣9=3的一个解,∴4m ﹣4n ﹣9=3,∴m ﹣n =3,故答案解析:3【分析】将x =2,y =﹣1代入方程2mx +4ny ﹣9=3即可得到m ﹣n =3.【详解】∵x =2,y =﹣1是方程2mx +4ny ﹣9=3的一个解,∴4m﹣4n﹣9=3,∴m﹣n=3,故答案为:3【点睛】本题考查二元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.熟练掌握定义是解题关键.14..【分析】根据题意和图示可知,甲种小盒需要一个正方形和4个长方形,乙种小盒需要2个正方形和3个长方形,甲、乙两种小盒需要的正方形总量=150=做成甲种小盒的个数+做成乙种小盒的个数×2,甲、乙两解析:2150 43300x yx y+=⎧⎨+=⎩.【分析】根据题意和图示可知,甲种小盒需要一个正方形和4个长方形,乙种小盒需要2个正方形和3个长方形,甲、乙两种小盒需要的正方形总量=150=做成甲种小盒的个数+做成乙种小盒的个数×2,甲、乙两种小盒需要的长方形总量=300=做成甲种小盒的个数×4+做成乙种小盒的个数×3.根据以上条件可列出方程组.【详解】设可做成甲种小盒x个,乙种小盒y个.根据题意,得2150 43300x yx y+=⎧⎨+=⎩,故答案为:2150 43300x yx y+=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是弄清题意,观察图形,找出合适的等量关系,列出方程组.15.-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组中x的值比y的相反数大2,∴x=﹣y解析:-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k 的值.【详解】解:∵方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2, ∴x =﹣y +2,∴4(﹣y +2)+5y =10,解得:y =2,把y =2代入4x +5y =10中,得:4x +10=10,解得:x =0,则方程组的解是x=0y=2⎧⎨⎩, ∴﹣(k ﹣1)×2=8,解得:k =﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解. 16.(1,0)【分析】根据向左平移,横坐标减,向上平移,纵坐标加的性质进行分析,通过列二元一次方程组并求解,即可得到答案.【详解】设点P 坐标为(x ,y ).将点P 向左平移2个单位长度,再解析:(1,0)【分析】根据向左平移,横坐标减,向上平移,纵坐标加的性质进行分析,通过列二元一次方程组并求解,即可得到答案.【详解】设点P 坐标为(x ,y ).将点P 向左平移2个单位长度,再向上平移3个单位长度,得:()2,3x y -+∴2133x y -=-⎧⎨+=⎩∴10x y =⎧⎨=⎩ ∴点P 坐标为(1,0).故答案为:(1,0).【点睛】本题考查了坐标、平移、二元一次方程组的知识;解题的关键是熟练掌握坐标、平移的性质,从而完成求解.17.=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.解析:=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.【详解】解:∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是一元一次方程,∴m2﹣4=0且m+2=0,且m+1≠0,解得:m=﹣2;∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是二元一次方程,∴m2﹣4=0且m+2≠0,m+1≠0,解得:m=2.故答案为:=﹣2;=2.【点睛】此题主要考查了二元一次方程和一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.18.320【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两解析:320【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量.【详解】解:设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵.根据题意得:0.8xa+(0.8x-2)(50-a )+36(2x-5)=(50+36)x整理得:13x+a=140a=140-13x因为x,0.8x 都是正整数,可得x 是5的倍数,又因为0<a <50,a 是正整数,经试算可得x=10,a=10,所以我校学生一共植树: 0.8xa+(0.8x-2)(50-a )=0.8×10×10+(0.8×10-2)(50-10)=320棵故答案为320.【点睛】本题考查了代数式,多元一次方程,和求二元一次方程的特殊解.题中数量关系比较复杂,难度较大.19.2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵的运算结果是,∴解得:∴故答案为:2.【点睛】本题考查合并同解析:2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵275222m n n m a b a b +-++的运算结果是573a b ,∴25227m n n m +=⎧⎨-+=⎩解得:13m n =-⎧⎨=⎩ ∴2223m mn n ++()()22213133=⨯-+⨯-⨯+299=-+2=故答案为:2.【点睛】本题考查合并同类项,涉及到解二元一次方程组,解题的关键是根据同类项的定义求得m 、n 的值.20.【分析】根据小江乘坐这种出租车走了,付了16元;小北乘坐这种出租车走了,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为元,超过后每千米收费解析:(72)16(132)28x y x y +-=⎧⎨+-=⎩【分析】根据小江乘坐这种出租车走了7km ,付了16元;小北乘坐这种出租车走了13km ,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,由题意得:(72)16(132)28x y x y +-=⎧⎨+-=⎩, 故填:(72)16(132)28x y x y +-=⎧⎨+-=⎩. 【点睛】本题考查由实际问题抽象出二元一次方程组,解题关键是理解题意,找到题目中的等量关系.三、解答题21.(1)x =1,y =1;(2)9x y +≥-;(3)(12,0)或(12,0)-或(0,9)或(0,9)-或(0,18)或(0,18)-【分析】(1)根据新运算T 定义建立方程组,解方程组即可得出答案;(2)应用新运算T 定义建立方程组,解关于x 、y 的方程组可得23x a y a =-⎧⎨=⎩,进而得出(23)33x y a a a +=-+=-,再运用不等式性质即可得出答案;(3)根据题意得(23,)A a a -,由平移可得(21,)A a a '-,根据点(23,)A a a -落在坐标轴上,且2a -,分类讨论即可.【详解】解:(1)根据新运算T 的定义可得:(112)()0(022)(02)8x y x y -⨯⋅-=⎧⎨+⨯⋅⋅+=⎩,解得:11x y =⎧⎨=⎩; (2)由题意得:()3448x y a y a --=-⎧⎨⨯=⎩, 解得:23x a y a=-⎧⎨=⎩, (23)33x y a a a ∴+=-+=-,2a -,36a ∴-,339a ∴--,9x y ∴+-;(3)由(2)知,23x a y a =-⎧⎨=⎩, (23,)A a a ∴-,将线段OA 沿x 轴向右平移2个单位,得线段O A '',(21,)A a a ∴'-,点(23,)A a a -落在坐标轴上,且2a -,230a ∴-=或0a =,32a ∴=或0a =; ①当32a =时,3(2,)2A ', 若点B 在x 轴上,13922BOA S OB ∆'=⨯⨯=,12OB ∴=,(12,0)B ∴或(12,0)-;若点B 在y 轴上,1292BOA S OB ∆'=⨯⨯=, 9OB ∴=,(0,9)B ∴或(0,9)-;②当0a =时,(1,0)A '-;∴点B 只能在y 轴上,1192BOA S OB ∆'=⨯⨯=,18OB ∴=, (0,18)B ∴或(0,18)-;综上所述,点B 的坐标为(12,0)或(12,0)-或(0,9)或(0,9)-或(0,18)或(0,18)-.【点睛】本题考查了新运算T 定义,解二元一次方程组,不等式性质,平移变换的性质,理解并应用新运算T 定义是解题关键.22.(1)1-;5;(2)购买6支水笔、6块橡皮、6本记事本共需48元;(3)11-.【分析】(1)利用①−②可得x -y 的值,利用()13+①②可得出x +y 的值; (2)设铅笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,根据“买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①-②可得m n p ++的值,再乘5即可求得结果;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a b c ++的值,从而可求得结果.【详解】(1)2728x y x y +=⎧⎨+=⎩①② 由①−②可得:x -y =-1,由()13⨯+①②可得x +y =5 故答案为:1-;5.(2)设水笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,依题意,得:203235395362m n p m n p ++=⎧⎨++=⎩①②, 由2⨯-①②可得8m n p ++=,6666848m n p ∴++=⨯=.故购买6支水笔、6块橡皮、6本记事本共需48元.(3)依题意得:35154728a b c a b c ++=⎧⎨++=⎩①② 由3×①−2×②可得:11a b c ++=-即1*111=-故答案为:11-.【点睛】本题考查了二元一次方程组的应用及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x -y ,x +y 的值;(2)(3)找出等量关系,正确列出三元一次方程组. 23.(1)见解析;(2)6元【分析】(1)设单价为20元的书买了x 本,单价为24元的书买了y 本,根据总价=单价×数量,结合购买两种书30本共花费(700−38)元,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,结合x ,y 的值为整数,即可得出小明搞错了;(2)设单价为20元的书买了a 本,则单价为24元的书买了(30−a )本,笔记本的单价为b 元,根据总价=单价×数量,即可得出关于a ,b 的二元一次方程,化简后可得出a =14+24b +,结合0<b <10,且a ,b 均为整数,可得出b =2或6,将b 值代入a =14+24b +中可求出a 值,再结合单价为20元的书多于24元的书,即可确定b 值. 【详解】解:(1)设20元的书买了x 本,24元的书买了y 本,由题意,得30202470038x y x y +=⎧⎨+=-⎩,解得14.515.5x y =⎧⎨=⎩, ∵x ,y 的值为整数,故x ,y 的值不符合题意(只需求出一个即可)∴小明搞错了;(2)设20元的书买了a 本,则24元的书买了()30a -本,笔记本的单价为b 元, 由题意,得:()20243780003a a b +=-+-, 化简得:5821444b b a ++==+ ∵110b ≤<,∴2b =或6.当2b =,15a =,即20元的书买了15本,24元的书买了15本,不合题意舍去 当6b =,16a =,即20元的书买了16本,则24元的书买了14本∴6b =.答:笔记本的价格为6元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程. 24.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则 4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,。

人教五四学制版七年级上册数学第14章 平面直角坐标系含答案

人教五四学制版七年级上册数学第14章 平面直角坐标系含答案

人教五四学制版七年级上册数学第14章平面直角坐标系含答案一、单选题(共15题,共计45分)1、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,···,按照这样的运动规律,点P第17次运动到点()A. B. C. D.2、平面直角坐标系中,P(﹣2a﹣6,a﹣4)在第三象限,则a的取值范围是()A.a>4B.a≥﹣12C.﹣3≤a<4D.﹣3<a<43、如图,已知:ABC为直角三角形,B=90°,AB垂直x轴,M为AC中点。

若A点坐标为(3,4),M点坐标为(-1,1),则B点坐标为()A.(3,-4)B.(3,-3)C.(3,-2)D.(3,-1)4、若点P是第三象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,﹣3)B.(4,﹣3)C.(﹣3,﹣4)D.(3,﹣4)5、如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行6、以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A.第一象限B.第二象限C.第三象限D.第四象限7、在平面直角坐标系中,点先向左平移个单位,再向下平移个单位,得到的()A. B. C. D.8、如图所示,△OAB与△OCD是以点O为位似中心的位似图形,位似比为1:2,∠OCD=90°,CO=CD.若OB=1,则点C的坐标为()A.(﹣1,2)B.(,)C.(﹣1,1)D.(1.﹣1)9、点P(a,b)在第四象限,则点P到x轴的距离是( )A.aB.bC.︱a ︳D.︱b ︳10、点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)11、如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A.(3,7)B.(5,3)C.(7,3)D.(8,2)12、在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f (﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)13、如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)14、下列描述不能确定具体位置的是()A.贵阳横店影城1号厅6排7座B.坐标(3,2)可以确定一个点的位置 C.贵阳市筑城广场北偏东° D.位于北纬28°,东经112°的城市15、如图,在直角坐标系中,卡片盖住的数可能是()A.(2,3)B.(﹣2,1)C.(﹣2,﹣2.5)D.(3,﹣2)二、填空题(共10题,共计30分)16、点P(a,b)关于二四象限的角平分线的对称点表示为________.17、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是________.18、点 M(- 5,-3)到 x轴的距离是________,到 y轴的距离是________ .19、如图,在平面直角坐标系中,△OAB是等腰直角三角形,∠OAB=90°,已知点A(4,3),点B在第四象限,则点B的坐标是________.20、如图,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB, OA上的动点,则△CDE周长的最小值是________.21、如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为________.22、如图,在平面直角坐标系中,将沿轴向右滚动到的位置,再到的位置…依次进行下去,若已知点,,则点的坐标为________.23、在平面直角坐标系中,将点向左平移个单位长度,则平移后对应的点的坐标是 ________.24、如图,在平面直角坐标系中,点,,,…都在轴的正半轴上,,,,….分别以,,,…作等边三角形得△,△,△,….点,,,…都在第四象限内.现有一动点从点出发,以每秒个单位的速度沿折线…运动,经过秒后点的坐标是________.25、如图,点A(a,4)在一次函数y=-3x-5的图象上,图象与y轴的交点为B,那么△AOB的面积为________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

北师大版八年级数学上册第五章《二元一次方程组 》章末复习题含答案解析 (33)

北师大版八年级数学上册第五章《二元一次方程组 》章末复习题含答案解析 (33)

一、选择题1. 如图,直角坐标系 xOy 中,A (0,5),直线 x =−5 与 x 轴交于点 D ,直线 y =38x −398与 x轴及直线 x =−5 分别交于点 C ,E ,点 B ,E 关于 x 轴对称,连接 AB ,下列结论正确的个数是 ( )① C (−13,0),E (−5,−3); ②直线 AB 的解析式为:y =513x +5;③面积的和 S =S △CDE +S 四边形ABDO ,则 S =32;④设直线 CE 与 y 轴相交于点 F ,则 S △COF =S △CDE +S 四边形ABDO .A . 1 个B . 2 个C . 3 个D . 4 个2. 在等腰 △ABC 中,AB =BC ,点 A (0,m ),B (n,12−2n ),C (2m −1,0),0<m <n <6,O 为坐标原点,若 OB 平分 ∠AOC ,则 m +n 的值 ( ) A . 5 B . 7 C . 5 或 7 D . 4 或 53. 天虹商场现销售某种品牌运动套装,上衣和裤子一套售价 500 元.若将上衣价格下调 5%,将裤子价格上调 8%,则这样一套运动套装的售价提高 0.2%.设上衣和裤子在调价前单价分别为 x 元和 y 元,则可列方程组为 ( ) A . {x +y =500,(1+5%)x +(1−8%)y =500×(1+0.2%)B . {x +y =500,(1−5%)x +(1+8%)y =500×0.2%C . {x +y =500,(1−5%)x +(1+8%)y =500×(1+0.2%)D . {x +y =500,5%x +8%y =500×(1+0.2%)4. 已知二元一次方程组 {x −y =−5,x +2y =−2的解为 {x =−4,y =1, 则在同一平面直角坐标系中,两函数 y =x +5 与 y =−12x −1 的图象的交点坐标为 ( ) A . (−4,1)B . (1,−4)C . (4,−1)D . (−1,4)5. 用加减法解方程组 {2x +3y =3,3x −2y =11 时,有下列四种变形,其中正确的是 ( )A . {4x +6y =3,9x −6y =6B . {6x +3y =9,6x −2y =22C . {4x +6y =6,9x −6y =33D . {6x +9y =3,6x −4y =116. 已知直线 l:y =kx +b (k >0) 过点 (−√3,0) 且与 x 轴相交夹角为 30∘,P 为直线 l 上的动点,A(√3,0),B(3√3,0) 为 x 轴上两点,当 PA +PB 时取到最小值时 P 点坐标为 ( ) A . (√3,2)B . (1,√3)C . (√3,3)D . (2,√3)7. 已知实数 x ,y 满足方程组 {3x −2y =1,x +y =2, 则 x 2−2y 2 的值为 ( )A . −1B . 1C . 3D . −38. 已知 a ,b 满足方程组 {a +2b =82a +b =7,则 a −b 的值为 ( )A . −1B . 0C . 1D . 29. 已知 A (x 1,y 1),B (x 2,y 2) 为一次函数 y =2x +1 的图象上的两个不同的点,且 x 1x 2≠0 .若 M =y 1−1x 1,N =y 2−1x 2,则 M 与 N 的大小关系是A .M >NB .M <NC .M =ND .不确定10. 某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少 30个,一个生手工与两个熟手工每天共可制造 180 个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作 x 个零件,一个熟手工每天能制造 y 个零件,根据题意可列方程组为 ( ) A . {y −x =30,x +2y =180B . {x −y =30,x +2y =180C . {y −x =30,2x +y =180D . {x −y =30,2x +y =180二、填空题11. 在平面直角坐标系 xOy 中,函数 y 1=x (x <m ) 的图象与函数 y 2=x 2(x ≥m ) 的图象组成图形 G .对于任意实数 n ,过点 P (0,n ) 且与 x 轴平行的直线总与图形 G 有公共点.写出一个满足条件的实数 m 的值为 (写出一个即可).12. 一次函数 y =kx +b 的图象经过点 (1,2),(−2,6),则 k = .13. “驴友”小明分三次从 M 地出发沿着不同的线路(A 线,B 线,C 线)去 N 地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走 4 小时的路程与攀登 6 小时的路程相等.B 线、 C 线路程相等,都比 A 线路程多 32%,A 线总时间等于 C 线总时间的 12,他用了 3 小时穿越丛林、 2 小时涉水行走和 2 小时攀登走完 A 线,在 B 线中穿越丛林、涉水行走和攀登所用时间分别比 A 线上升了 20%,50%,50%,若他用了 x 小时穿越丛林、 y 小时涉水行走和 z 小时攀登走完 C 线,且 x ,y ,z 都为正整数,则 yx+z = .14. 已知方程组 {5x +y =3,ax +5y =4 和 {x −2y =5,5x +by =1 有相同的解,则 12a 2−2ab +2b 2 的值为 .15. 研究二元一次方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2的解与两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2(其中 6 个常数均不为零)位置关系的联系.(每小题前一个空选填“有一组”“无”或“有无数组”;后一个空选填“相交”“平行”或“重合”)(1)当 a 1a 2≠b1b 2时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .(2)当 a 1a 2=b 1b 2≠c1c 2 时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .(3)当 a 1a 2=b 1b 2=c1c 2时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .16. 若 {x =2−t,y =4−t 2, 则 y 与 x 满足的关系式为 .17. 已知 {2x +y =7,x +2y =8, 则 x−yx+y = .三、解答题18. 解下列方程(组):(1) {2a +b =4,3a −2b =13;(2) 21−x +1=x1+x .19. 解二元一次方程组:{2x −3y =1,x +2y =4.20. 如图 1,在平面直角坐标系中,直线 l 1 与 x 轴、 y 轴交点分别为点 A 和点 B (0,6),与直线l 2:y =x 交于点 C(3√3−3,y 0),点 D 是线段 OB 的中点,点 P ,Q ,M 分别是直线 l 1,x 轴、 y 轴上的动点.(1) 求直线 l 1 的解析式以及线段 OC 的长度.(2) 求当 △DPQ 周长最小时,使得 ∣PM −QM∣∣ 的值最大的点 M 的坐标. (3) 如图 2,将 △BCO 沿直线 BC 翻折,得到点 O 的对应点 Oʹ,再将 △BCOʹ 绕点 Oʹ 旋转,旋转过程中直线 BOʹ 分别与直线 l 1,和直线 l 2,交于点 E 和点 F ,直线 COʹ 分别与直线 l 1 和直线 l 2,交于点 G 和点 H ,是否存在点 Oʹ 与 E ,F ,G ,H 四点中不同时在直线 l 1 或直线 l 2 上的两点组成的三角形是等腰直角三角形,若存在,请直接写出点 E 的坐标,若不存在,请说明理由.21. 在平面直角坐标系 xOy 中,如果点 P (x,y ) 坐标中 x ,y 的值是关于二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解,那么称点 P (x,y ) 为该方程组的解坐标.如 (−1,−2) 是二元一次方程组 {x −y =1,x +y =−3的解坐标,求: (1) 二元一次方程组 {2x +3y =5,x +3y =1的解坐标为 .(2) 已知方程组 {x +y =1,x −y =3 与方程组 {ax +by =1,ax −by =2的解坐标相同,求 a ,b 的值.(3) 当 m ,n 满足什么条件时,关于 x ,y 的二元一次方程组 {2x +y =n −3,mx −2y =2.①不存在解坐标. ②存在无数多个解坐标.22. 学校准备添置一批计算机.方案 1:到商家直接购买,每台需要 7000 元;方案 2:学校买零部件组装,每台需要 6000 元,另外需要支付安装工工资等其它费用合计 3000 元.设学校需要计算机 x 台,方案 1 与方案 2 的费用分别为 y 1,y 2 元. (1) 分别写出 y 1,y 2 的函数关系式.(2) 当学校添置多少台计算机时,两种方案的费用相同? (3) 采用哪一种方案较省钱?说说你的理由.23. 为响应绿色出行号召,越来越多的市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额 y (元)与骑行时间 x (小时)之间的函数关系,根据图象回答下列问题:(1) 求:当 x ≥0.5 时,手机支付金额 y (元)与骑行时间 x (小时)的函数表达式; (2) 李老师经常骑共享单车出行,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.24. 为了积极推进轨道交通建设,某城市计划修建总长度 36 千米的有轨电车.该任务由甲、乙两工程队先后接力完成甲工程队每天修建 0.06 千米,乙工程队每天修建 0.08 千米,两工程队共需修建 500 天.根据题意,小明和小华两名同学分别列出尚不完整的方程组如下:小明:{x +y =⋯,0.06x +0.08y =⋯小华:{x +y =⋯,x 0.06+y 0.08=⋯(1) 根据两名同学所列的方程组,请你分别指出未知数 x 表示的意义.小明:x 表示 ; 小华:x 表示 .(2) 求甲、乙两工程队分别修建有轨电车多少千米?25. 某水果店 11 月份购进甲、乙两种水果共花费 1800 元,其中甲种水果 10 元/千克,乙种水果16 元/千克.12 月份,这两种水果的进价上调为:甲种水果 13 元/千克,乙种水果 18 元/千克.(1) 若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2) 若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3) 在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?答案一、选择题1. 【答案】B【解析】∵在直线y=−38x−398中,令y=0,则有0=−38x−398,∴x=−13,∴C(−13,0),令x=−5,则有y=−38×(−5)−398=−3,∴E(−5,−3),故①正确;∵点B,E关于x轴对称,∴B(−5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴−5k+5=3,∴k=25,∴直线AB的解析式为y=25x+5,故②错误;由①知,E(−5,−3),∴DE=3,∵C(−13,0),∴CD=−5−(−13)=8,∴S△CDE=12CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO =12(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,故③正确;④由③知:S△CDE+S四边形ABDO=32,在y=38x−398中,令x=0,y=−398,∴F(0,−398),∴S △COF =12⋅OF ⋅OC =12×398×12=50716=31.6875.∴ ④错误.综上所述,正确的结论有 2 个.【知识点】坐标平面内图形的面积、一次函数的解析式2. 【答案】C【解析】如图,连接 BA ,BC , ∵OB 平分 ∠AOC , ∴ 点 B 在直线 y =x 上, ∴n =12−2n , ∴n =4, ∴B (4,4),∵AB =BC ,OB =OB ,当 △AOB ≌△COB 时,OA =OC ,则有 m =2m −1,解得 m =1, ∴m +n =5,当 △AOB 与 △COB 不全等时,作 BH ⊥y 轴 于 H , 则有 4−(m −4)=2m −1, 解得 m =3, ∴m +n =7.【知识点】几何问题、一次函数的解析式3. 【答案】C【解析】依题意可列方程为 {x +y =500,(1−5%)x +(1+8%)y =500×(1+0.2%).【知识点】经济问题4. 【答案】A【解析】方程组的解就是两个相应的一次函数图象的交点坐标,故交点坐标为 (−4,1),故选A . 【知识点】一次函数与二元一次方程(组)的关系5. 【答案】C【解析】 {2x +3y =3, ⋯⋯①3x −2y =11. ⋯⋯②① ×2,得 4x +6y =6,故A 错误;① ×3,得 6x +9y =9,故B ,D 错误; ② ×3,得 9x −6y =33,故C 正确. 【知识点】加减消元6. 【答案】A【解析】如图.∵ 直线 l:y =kx +b (k >0) 过点 (−√3,0) 且与 x 轴相交夹角为 30∘, ∴OM =√3, ∴ON =√33OM =1,MN =√32=2,∴ 直线 l 为 y =√33x +1,∵OM =OA =√3, ∴AN =MN =2,过 A 点作直线 l 的垂线,交 y 轴于 Aʹ,则 ∠OAAʹ=60∘, ∴OAʹ=√3OA =3, ∴AʹN =2, ∴AʹN =AN , ∵AʹA ⊥ 直线 l , ∴ 直线 l 平分 AAʹ,∴Aʹ 是点 A 关于直线 l 的对称点,连接 AʹB ,交直线 l 于 P ,此时 PA +PB =AʹB ,PA +PB 时取到最小值, ∵OAʹ=3, ∴Aʹ(0,3),设直线 AʹB 的解析式为 y =mx +n ,把 Aʹ(0,3),B(3√3,0) 代入得 {n =3,3√3m +n =0, 解得 {m =−√33,n =3,∴ 直线 AʹB 的解析式为 y =−√33x +3由 {y =√33x +1,y =−√33x +3解得 {x =√3,y =2,∴P 点的坐标为 (√3,2).【知识点】轴对称之最短路径、一次函数与二元一次方程(组)的关系、一次函数的解析式7. 【答案】A【知识点】加减消元8. 【答案】A【知识点】加减消元9. 【答案】C【解析】因为 y 1=2x 1+1,y 2=2x 2+1,分别代入 M =y 1−1x 1,N =y 2−1x 2,得M =2x 1+1−1x 1=2,N =2x 2+1−1x 2=2.所以 M =N .【知识点】一次函数的解析式10. 【答案】A【解析】设一个生手工每天能制作 x 个零件,一个熟手工每天能制造 y 个零件, 根据题意得:{y −x =30,x +2y =180,故选:A .【知识点】工程问题二、填空题11. 【答案】答案不唯一,如:1(0≤m ≤1)【知识点】二次函数与方程12. 【答案】 −43【知识点】一次函数的解析式13. 【答案】 16【解析】 ∵ 他涉水行走 4 小时的路程与攀登 6 小时的路程相等,∴ 可以假设涉水行走的速度为 3n km/h 与攀登的速度为 2n km/h ,穿越丛林的速度为 m km/h . 由题意:{(3m +6n +4n )×1.32=3.6m +9n +6n,3.6m +9n +6n =mx +3ny +2nz,可得 m =5n ,5x +3y +2z =33, ⋯⋯① ∵x +y +z =14, ⋯⋯②由①②消去 z 得到:3x +y =5, ∵x ,y 是正整数, ∴x =1,y =2,z =11,∴y x+z =212=16.【知识点】二元一次方程(组)的应用14. 【答案】 50【解析】由题意得方程组 {5x +y =3, ⋯⋯①x −2y =5, ⋯⋯② ① ×2+ ②得 11x =11,∴x =1,把 x =1 代入①得 y =−2,∴{5x +y =3,x −2y =5的解为 {x =1,y =−2, 把 {x =1,y =−2 代入 {ax +5y =4,5x +by =1 得 {a −10=4,5−2b =1,解得 {a =14,b =2. ∴12a 2−2ab +2b 2=12(a −2b )2=12×(14−4)2=50.【知识点】加减消元15. 【答案】有一组;相交;无;平行;有无数组;重合【解析】(1)当 a 1a 2≠b 1b 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 相交,∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2有唯一解.故答案为有一组,相交. (2)当 a 1a 2=b 1b 2≠c1c 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 平行, ∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2无解.故答案为无,平行. (3)当 a 1a 2=b 1b 2=c1c 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 重合, ∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2有无数组解.故答案为无数组,重合. 【知识点】一次函数与二元一次方程(组)的关系16. 【答案】 y =−x 2+4x【解析】由 x =2−t ,可得:t =2−x ,把 t =2−x 代入 y =4−t 2,可得:y =−x 2+4x ,故答案为:y =−x 2+4x .【知识点】含参二元一次方程组17. 【答案】 −15 【知识点】加减消元三、解答题18. 【答案】(1) {2a +b =4, ⋯⋯①3a −2b =13. ⋯⋯②① ×2+ ②得:7a =21.解得:a =3.把 a =3 代入①得:b =−2.则方程组的解为{a =3,b =−2.(2) 去分母得:2+2x +1−x 2=x −x 2.解得:x =−3.经检验 x =−3 是分式方程的解.【知识点】去分母解分式方程、加减消元19. 【答案】由方程②得x =4−2y,代入到方程①中得:2(4−2y )−3y =1,解得y =1,x =2,所以方程组的解为{x =2,y =1.【知识点】代入消元20. 【答案】(1) 将 C(3√3−3,y 0) 代入 y =x ,得 C 点坐标为 (3√3−3,3√3−3).依题意可设 l 1:y =kx +6.将 C(3√3−3,3√3−3) 代入 y =kx +6,得 3√3−3=(3√3−3)k +6,解得 k =−√3,∴l 1:y =−√3x +6.OC =√(3√3−3)2+(3√3−3)2=3√6−3√2,∴ 直线 l 1 的解析式为 y =−√3x +6,线段 OC 的长度为 3√6−3√2.(2) 如图 1:作点 D 关于 l 1 的对称点 Dʹ,关于 x 轴的对称点 Dʺ,连接 DʹDʺ,DʹDʺ 交 l 1 于点 P ,交 x 轴于点 Q ,此时 △DPQ 的周长最小,直线 PQ 与 y 轴交于 M 点此时 ∣PM −QM∣∣ 的值最大,此时 M 与 Dʺ 重合, ∴M (0,−3).(3) 当点 E (3√32,32) 或 E (3√3−32,3+3√32) 符合条件.【解析】(3) ① △OʹGF 是等腰直角三角形时,GO =GOʹ,∠FGOʹ=90∘,此时 F 与 O 重合(如备用图②),可求 Oʹ(3√3,3),∵OB =OʹB =OOʹ=6,∴E 是 OOʹ 的中点,∴E (3√32,32). ② △OʹEH 是等腰直角三角形时,EH =EOʹ,∠HEOʹ=90∘,此时 H 与 O 重合(如备用图③),∵OOʹ=6,∴OE =3√2,设 E(m,−√3m +6),∴m =3√3−32, ∴E (3√3−32,3+3√32), ∴ 当点 E (3√32,32) 或 E (3√3−32,3+3√32) 符合条件.【知识点】一次函数的解析式、两点间距离公式、找动点,使距离之和最小、一次函数与三角形的综合21. 【答案】(1) (4,−1)(2) {x +y =1, ⋯⋯④x −y =3. ⋯⋯⑤将④ + ⑤得,2x =4,x =2,将④ − ⑤得,2y =−2,y =−1,将 x =2,y =−1 代入 {ax +by =1,ax −by =2得, {2a −b =1, ⋯⋯⑥2a +b =2. ⋯⋯⑦将⑥ + ⑦得,4a =3,a =34,将⑦ − ⑥得,2b =1,b =12,∴{a =34,b =12.(3) ① {2x +y =n −3,mx −2y =2,若要不存在解坐标,即无解,需要 {m =k ⋅2,−2=k ⋅1,2≠k (n −3),即 {m =−4,n ≠2. ②若要有无数解坐标,即有无数解,需要 {m =k ⋅2,−2=k ⋅1,2=k (n −3),即 {m =−4,n =2. 【解析】(1) {2x +3y =5, ⋯⋯①x +3y =1. ⋯⋯② 将① − ②得 x =4, ⋯⋯③将③代入②得,4+3y =1,y =−1,∴ 方程组解为 {x =4,y =−1,∴ 解坐标为 (4,−1).【知识点】含参二元一次方程组、加减消元22. 【答案】(1) y 1=7000x ,y 2=6000x +3000.(2) 当 y 1=y 2 时 7000x =6000x +3000,解得:x =3,则当学校添置 3 台计算机时,两种方案的费用相同.(3) 7000x >6000x +3000,解得:x <3,则当 x <3 时,选择到商家直接购买省钱; 7000x <6000x +3000,解得:x >3,则当 x >3 时,选择买零部件组装省钱.【知识点】一次函数的应用23. 【答案】(1) 当 x ≥0.5 时,设手机支付金额 y (元)与骑行时间 x (时)的函数关系式是 y =kx +b ,则 {0.5k +b =0,1×k +b =0.5, 解得 {k =1,b =−0.5,即当 x ≥0.5 时,手机支付金额 y (元)与骑行时间 x (时)的函数关系式是 y =x −0.5.(2) 设会员卡支付对应的函数解析式为 y =ax ,则 0.75=a ×1,得 a =0.75,即会员卡支付对应的函数解析式为 y =0.75x (x ≥0),令 0.75x =x −0.5,得 x =2,由图象可知,当 x >2 时,会员卡支付便宜.答:当 0<x <2 时,李老师选择手机支付比较合算;当 x =2 时,李老师选择两种支付一样;当 x >2 时,李老师选择会员卡支付比较合算.【知识点】一次函数的应用24. 【答案】(1) 甲工程队修建的天数;甲工程队修建的长度(2) 设甲工程队修建 x 千米,乙工程队修建 y 千米,由题意得:{x +y =36,x 0.06+y 0.08=500.解得{x =12,y =24.答:甲工程队修建 12 千米,乙工程队修建 24 千米. 【解析】(1) 小明:x 表示甲工程队修建的天数;小华:x 表示甲工程队修建的长度.故答案为:甲工程队修建的天数;甲工程队修建的长度.【知识点】工程问题25. 【答案】(1) 设该店 11 月份购进甲种水果 x 千克,购进乙种水果 y 千克,根据题意得:{10x +16y =1800,13x +18y =1800+400,解得 {x =100,y =50.答:该店 11 月份购进甲种水果 100 千克,购进乙种水果 50 千克.(2) 设购进甲种水果 a 千克,需要支付的货款为 w 元,则购进乙种水果 (130−a ) 千克, 根据题意得:w =10a +20(130−a )=−10a +2600.(3) 根据题意得,a ≤80,由(2)得,w =−10a +2600,因为 −10<0,w 随 a 的增大而减小,所以 a =80 时,w 有最小值 w 最小=−10×80+2600=1600(元).答:12 月份该店需要支付这两种水果的货款最少应是 1600 元.【知识点】其他实际问题、经济问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系,二元一次方程一.选择题(共6小题)1.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣3,2)2.已知点A(3,﹣2)、B(1,﹣2),则直线AB()A.与x轴垂直B.与x轴平行C.与y轴重合D.与x、y轴相交3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2 B.3 C.4 D.54.一个两位数,交换它的十位数字与个位数字所得的两位数是原来两位数的倍,则这样的两位数有()A.1个 B.2个 C.3个 D.4个5.若方程组的解为,则被“☆”、“□”遮住的两个数分别是()A.10,3 B.3,10 C.4,10 D.10,46.由方程组可得到x与y的关系式是()A.x+y=7 B.x+y=3 C.x﹣y=﹣7 D.x﹣y=﹣3二.填空题(共6小题)7.P的坐标是(﹣2,a2+1),则点P一定在第______象限.8.如图,在一次军棋比赛中,若团长所在的位置坐标为(1,﹣4),工兵所在的位置坐标为(0,﹣1),则司令所在的位置坐标是_______.9.若线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点C(2,6),则点B(﹣3,1)的对应点D的坐标是__________.10.若(a﹣3)x+y|a|﹣2=1是关于x、y的二元一次方程,则a的值是__________.11.方程组中,则x+y=__________,10x﹣y=__________.12.如图,周长为68cm的长方形ABCD被分成7个相同的小长方形,则长方形ABCD的面积是__________.三.解答题(共11小题)13.在平面直角坐标系中,有点A(﹣2,a+3),B(b,b﹣3).(1)当点A在第二象限的角平分线上时,求a的值;(2)当点B到x轴的距离是它到y轴的距离2倍时,求点B所在的象限位置.14.已知点A(﹣1,2)、B(3,2)、C(1,﹣2).(1)求证:AB∥x轴;(2)求△ABC的面积;(3)若在y轴上有一点P,使S△ABP =S△ABC,求点P的坐标.15.在平面直角坐标系中,有点A(1,2a+1),B(﹣a,a﹣3).(1)当点A在第一象限的角平分线上时,求a的值;(2)当点B在x轴的距离是到y轴的距离2倍时,求点B所在的象限位置;(3)若线段AB∥x轴,求三角形AOB的面积.16.如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过计算的方式说明.17.如图所示,△ABC在平面直角坐标系中,△A1B1C1与△ABC关于y轴对称,将△ABC向右平移m个单位得到△A2B2C2,已知A(﹣3,4),B(﹣6,0),C(﹣2,0).(1)在备用图1中画出△A1B1C1;(2)m为何值时,点A1与A2重合?并说明B2C1=B1C2;(3)m为何值时,△A1B1C1与△A2B2C2一边重合?若A1B1与A2B2并交于P点,请证明PA1=PA2;(4)m为何值时,B2、C2的横坐标是某正数的两个不同的平方根?18.(1)用代入法解方程组(2)用加减法解方程组.19..20.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?21.蔬菜零售业主小李在批发市场上了解到以下信息内容:他共用110元钱从批发市场上批发了辣椒和西红柿两种蔬菜共45千克,然后他到菜市场以建议零售价去卖,当天卖完,请你帮小李算一算他能赚多少钱?辣椒黄瓜西红柿茄子批发价(元•千克) 3.5 1.2 1.60.9建议零售价(元•千克)5 1.4 2.5 1.322.今年“五•一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费129万元,其中一日游每人收费150元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?23.琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.平面直角坐标系,二元一次方程参考答案与试题解析一.选择题(共6小题)1.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣3,2)【分析】根据x轴的上方,y轴的左边,可得第二象限,根据到x的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.【解答】解:由点P位于x轴上方,位于y轴的左边,得点位于第二象限,由距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,得点的坐标为(﹣3,2),故选:D.【点评】本题考查了点的坐标,利用到x的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题关键.2.已知点A(3,﹣2)、B(1,﹣2),则直线AB()A.与x轴垂直B.与x轴平行C.与y轴重合D.与x、y轴相交【分析】由点A、B到x轴的距离相等可求得答案.【解答】解:∵A(2,﹣2)、B(﹣1,﹣2),∴A、B两点到x轴的距离相等且在x轴的下方,∴AB∥x轴,故选:B.【点评】题主要考查坐标与图形的性质,掌握点的坐标到坐标轴的距离是解题的关键.3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.一个两位数,交换它的十位数字与个位数字所得的两位数是原来两位数的倍,则这样的两位数有()A.1个 B.2个 C.3个 D.4个【分析】设个位数为x,十位数为y,则这个两位数为10y+x,个位十位交换后两位数表示为10x+y,根据所得的数比原来的数大9列出方程,再根据未知数的取值确定符合质数的个数即可.【解答】解:设原两位数的个位数为x,十位数为y(x,y为自然数),原两伴数为10y+x,新两位数为10x+y,根据题意得:10x+y=(10y+x),化简得:x=2y,因为x,y为1﹣9内的自然数,故12、24、36、48,共4个.故选:D.【点评】本题考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意不要漏解.5.若方程组的解为,则被“☆”、“□”遮住的两个数分别是()A.10,3 B.3,10 C.4,10 D.10,4【分析】把x=6代入方程组中第二个方程求出y的值,确定出所求两个数即可.【解答】解:把x=6代入2x+y=16得:y=4,把x=6,y=4代入得:x+y=6+4=10,则被“☆”、“□”遮住的两个数分别是10,4,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.由方程组可得到x与y的关系式是()A.x+y=7 B.x+y=3 C.x﹣y=﹣7 D.x﹣y=﹣3【分析】方程组消去m即可得到x与y的关系式.【解答】解:,把②代入①得:x+y﹣2=5,整理得:x+y=7,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二.填空题(共6小题)7.P的坐标是(﹣2,a2+1),则点P一定在第二象限.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:﹣2<0,a2+1>1,的坐标是(﹣2,a2+1),则点P一定在第二象限,故答案为:二.【点评】本题考查了点的坐标,第二象限内点的横坐标小于零,纵坐标大于零.8.如图,在一次军棋比赛中,若团长所在的位置坐标为(1,﹣4),工兵所在的位置坐标为(0,﹣1),则司令所在的位置坐标是(3,﹣1).【分析】根据工兵所在的位置坐标得出原点的位置,进而得出答案.【解答】解:根据题意可建立如图所示的平面直角坐标系:则司令所在的位置坐标是(3,﹣1),故答案为:(3,﹣1).【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.9.若线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点C(2,6),则点B(﹣3,1)的对应点D的坐标是(0,3).【分析】直接利用平移的性质得出平移规律进而得出答案.【解答】解:如图所示:(0,3)即为所求.故答案为:(0,3).【点评】此题主要考查了平移变换,正确得出平移规律是解题关键.10.若(a﹣3)x+y|a|﹣2=1是关于x、y的二元一次方程,则a的值是﹣3.【分析】依据二元一次方程的定义可得到a﹣3≠0,|a|﹣2=1,从而可确定出a 的值.【解答】解:∵(a﹣3)x+y|a|﹣2=1是关于x、y的二元一次方程,∴a﹣3≠0,|a|﹣2=1.解得:a=﹣3.故答案为:﹣3.【点评】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.11.方程组中,则x+y=202,10x﹣y=3210.【分析】用方程②减去方程①可得到22x+22y=4444,然后可解得x+y=202,最后用②﹣①×2可求得10x﹣y的值.【解答】解:②﹣①得;22x+22y=4444,∴22(x+y)=4444.∴x+y=202.②﹣①×2得:10x﹣y=3210.故答案为:202,3210.【点评】本题主要考查的是二元一次方程组的解法,利用加减消元法整体求解是解题的关键.12.如图,周长为68cm的长方形ABCD被分成7个相同的小长方形,则长方形ABCD的面积是280cm2.【分析】设小长方形的长和宽分别为x、ycm,根据周长为68cm可以列出方程4x+7y=68,根据图中信息可以列出方程2x=5y,联立两个方程组成方程组,解方程组即可求出结果.【解答】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,解得:,则长方形ABCD的面积=2x×(x+y)=2×10×(10+4)=280cm2.故答案为:280cm2.【点评】本题考查了二元一次方程组的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组,弄清小长方形的长、宽与大长方形ABCD 长、宽的关系.三.解答题(共11小题)13.在平面直角坐标系中,有点A(﹣2,a+3),B(b,b﹣3).(1)当点A在第二象限的角平分线上时,求a的值;(2)当点B到x轴的距离是它到y轴的距离2倍时,求点B所在的象限位置.【分析】(1)根据第二象限角平分线上的点的横坐标与纵坐标互为相反数列方程求解即可;(2)根据题意列出绝对值方程,求出b的值,再求出点B的坐标,然后根据各象限内点的坐标特征解答.【解答】解:(1)由题意,得a+3=2,解得a=﹣1;(2)由题意,得|b﹣3|=2|b|,解得b=﹣3或b=1,当b=﹣3时,点B(﹣3,﹣6)在第三象限,当b=1时,点B(1,﹣2)在第四象限.【点评】本题考查了点的坐标,主要利用了第二象限角平分线上点的坐标特征以及点到坐标轴的距离的表示.14.已知点A(﹣1,2)、B(3,2)、C(1,﹣2).(1)求证:AB∥x轴;(2)求△ABC的面积;(3)若在y轴上有一点P,使S△ABP =S△ABC,求点P的坐标.【分析】(1)由A、B的纵坐标直接证得;(2)作CD⊥AB,根据题意求得AB和CD的长,然后根据三角形面积公式即可求得;(3)设AB与y轴交于E点,则E(0,2),根据S△ABP =S△ABC,即可求得PE,进而求得P的坐标.【解答】(1)证明:∵A(﹣1,2)、B(3,2),∴A、B的纵坐标相同,∴AB∥x轴;(2)解:如图,作CD⊥AB,∵A(﹣1,2)、B(3,2)、C(1,﹣2).∴AB=1+3=4,CD=2+2=4,∴△ABC的面积==×4×4=8;(3)解:设AB与y轴交于E点,则E(0,2),∵S△ABP =S△ABC,∴PE=CD=2,∴P(0,4)或(0,0).【点评】本题考查了坐标和图形的性质,平行线的判定,三角形面积等,利用数形结合是解题关键.15.在平面直角坐标系中,有点A(1,2a+1),B(﹣a,a﹣3).(1)当点A在第一象限的角平分线上时,求a的值;(2)当点B在x轴的距离是到y轴的距离2倍时,求点B所在的象限位置;(3)若线段AB∥x轴,求三角形AOB的面积.【分析】(1)根据在第一象限的角平分线上时横纵坐标相等求得a值即可;(2)根据题意得到|a﹣3|=2|﹣a|,求得a值后即可确定点B的坐标;(3)根据线段AB∥x轴求得a的值后即可确定点A和点B的坐标,从而求得线段AB的长,利用三角形的面积公式求得三角形的面积即可.【解答】解:(1)由题意,得2a+1=1,解得a=0.(2)由题意,得|a﹣3|=2|﹣a|,解得a=﹣3或a=1.当a=﹣3时,点B(3,﹣6)在第四象限.当a=1时,点B(﹣1,﹣2)在第三象限.(3)∵AB∥x轴,∴2a+1=a﹣3.解得a=﹣4.∴A(1,﹣7),B(4,﹣7).∴AB=3.过点O作OC⊥AB交BA的延长线于点C,则OC=7.∴△ABC的面积为:AB•OC=×3×7=10.5.【点评】本题目考查了点与坐标的对应关系,坐标轴上的点的特征,各个象限的点的特征,第一、三象限的角平分线上的点的特征.16.如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过计算的方式说明.【分析】(1)从题干可知,数对中的两个数,前一个表示放置胡萝卜的数量,后一个数表示放置白菜的数量,据此即可写出C、E所表示的意义;(2)观察图形即可得出路径的条数;先求出走每条路径所吃到的胡萝卜与白菜的数量,再比较即可.【解答】解:(1)点D表示放置2个胡萝卜,2棵小白菜,点E表示放置3个胡萝卜,1棵小白菜,(2)从A到达B,共有3条路径可供选择,其中路径①A吃到11个胡萝卜,7棵小白菜,路径A吃到12个胡萝卜,6棵小白菜,路径③A吃到13个胡萝卜,5棵小白菜,∴走路径③A吃到胡萝卜最多,走路径①A吃到小白菜最多.【点评】本题考查了坐标与图形变换﹣平移,由已知条件正确确定数对所表示的实际意义是解决本题的关键.17.如图所示,△ABC在平面直角坐标系中,△A1B1C1与△ABC关于y轴对称,将△ABC向右平移m个单位得到△A2B2C2,已知A(﹣3,4),B(﹣6,0),C(﹣2,0).(1)在备用图1中画出△A1B1C1;(2)m为何值时,点A1与A2重合?并说明B2C1=B1C2;(3)m为何值时,△A1B1C1与△A2B2C2一边重合?若A1B1与A2B2并交于P点,请证明PA1=PA2;(4)m为何值时,B2、C2的横坐标是某正数的两个不同的平方根?【分析】(1)让各点的横坐标不变,纵坐标互为相反数即可得到A1,B1,C1的坐标,顺从连接即可;(2)让点A1的横坐标减去点A的横坐标即可求得m的值;(3)让点B1的横坐标减去点B的横坐标即可求得m的值;可证得PA1和PA2所在的三角形全等,那么可求得两边相等;(4)B2C2之间相隔4,要想为一个正数的两个平方根,那么B2的横坐标应为﹣2,减去B的横坐标即为m的值.【解答】解:(1)画图如下图:(2)当点A1与点A2重合时,A2(3,4)∵A2(﹣3+m,4)∴m=6(4分)由B2C2=B1C1∴B2C1=B1C2(5分)(3)如右图,当m=8时,△A1B1C1与△A2B2C2一边重合,则B2C2与B1C1重合;(6分)∵△A1B1C1≌△A2B2C2在△A1C1P和△A2C2P中∴△A1C1P≌△A2C2P∴PA1=PA2;(9分)(4)当m=4时,B2、C2的横坐标是正数4的两个不同的平方根.(10分)∵B2(﹣6+m),C2(﹣2+m)∴(﹣6+m)+(﹣2+m)=0∴m=4(12分).【点评】用到的知识点为:图形的平移要归结为对应点的平移;两个点关于y轴对称,纵坐标不变,横坐标互为相反数.18.(1)用代入法解方程组(2)用加减法解方程组.【分析】(1)应用代入法,求出方程组的解是多少即可.(2)应用加减法,求出方程组的解是多少即可.【解答】解:(1)由①,可得:x=2y﹣1③,把③代入②,解得y=1,∴x=2×1﹣1=1,∴原方程组的解是.(2)①+②,可得:4x=12,解得x=3,把x=3代入①,解得y=﹣1,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组问题,要熟练掌握,注意代入法和加减法的应用.19..【分析】①+②能求出x的值,把x的值代入②得到一元一次方程,求出方程的解y即可【解答】解:,①+②得:7x=7,∴x=1,把x=1代入①得:2+3y=5,解得:y=1,∴方程组的解是.【点评】本题主要考查对解一元一次方程,解二元一次方程组等知识点的理解和掌握,能把二元一次方程组转化成一元一次方程是解此题的关键.20.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【分析】本题需先根据题意设出未知数,再根据题目中的等量关系列出方程组,求出结果即可.【解答】解:设A饮料生产了x瓶,B饮料生产了y瓶,由题意得:,解得:,答:A饮料生产了30瓶,B饮料生产了70瓶.【点评】本题主要考查了二元一次方程组的应用,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.21.蔬菜零售业主小李在批发市场上了解到以下信息内容:他共用110元钱从批发市场上批发了辣椒和西红柿两种蔬菜共45千克,然后他到菜市场以建议零售价去卖,当天卖完,请你帮小李算一算他能赚多少钱?辣椒黄瓜西红柿茄子批发价(元•千克) 3.5 1.2 1.60.9建议零售价(元•千克)5 1.4 2.5 1.3【分析】根据题意可知本题的等量关系有:西红柿的重量+辣椒的重量=45;1.6×西红柿的重量+3.5×辣椒的重量=110.根据这两个等量关系,可列出方程组.【解答】解:设小李在市场上批发了红辣椒x千克,西红柿y千克.(1分)根据题意得,(3分)解这个方程组得:,(6分)20×5+25×2.5﹣110=52.5(元)(8分)答:他卖完这些西红柿和红辣椒能赚52.5元.(9分)【点评】本题考查二元一次方程组的应用,解题关键是要弄清题意,找出等量关系,列出方程组.要注意题目给出的表格中的数据,要求小李卖完辣椒和西红柿所赚的钱,就要先求出辣椒和西红柿的重量,再求赚的钱.利润=卖价﹣进价.题目需要用到的数据只是红辣椒和西红柿那两列数据,其他都没有关系.要注意分清哪些数据是对解题有用,哪些没用.22.今年“五•一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费129万元,其中一日游每人收费150元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.本题有包含两个等量关系:一日游旅客人数+三日游旅客人数=1600;一日游收入+三日游的收入=1290000,根据这两个等量关系可列出方程组.【解答】解:设接待1日游旅客x人,接待3日游旅客y,根据题意得解这个方程组得答:该旅行社接待1日游旅客600人,接待3日游旅客1000人.【点评】解题关键是弄清题意,合适的等量关系,一日游旅客人数+三日游旅客人数=1600;一日游收入+三日游的收入=1290000,列出方程组.本题还需注意细节问题;万元和元应统一单位.23.琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.【分析】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据条件可以建立三个方程,从而构成三元一次方程组,求出其解即可.【解答】解:设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,由题意,得,解得:.答:笔记本每本的价格是4元,水笔每支1.5元,练习本0.5元.【点评】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.。

相关文档
最新文档