一个完全非弹性碰撞的实用推论(参照类别)
高中物理:弹性碰撞与完全非弹性碰撞

这是一个二次项系数小于零的二次三项式,显然:当u1=u2= 时,
即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值
Em= m1υ12+ m2υ22-
当m1<m2时,v1'<0(反弹),v2'>0v2′与v1同向;当m1<<m2时,v1'≈-v1,v2'≈0 (乒乓球撞铅球)
讨论(2):被碰球2获最大速度、最大动量、最大动能的条件为
A.初速度v1一定,当m1>>m2时,v2'≈2v1
B.初动量p1一定,由p2'=m2v2'= ,可见,当m1<<m2时,p2'≈2m1v1=2p1
C.初动能EK1一定,当m1=m2时,EK2'=EK1
◆完全非弹性碰撞应满足:
◆一动一静的完全非弹性碰撞(子弹打击木块模型)是高中物理的重点。
特点:碰后有共同速度,或两者的距离最大(最小)或系统的势能最大等等多种说法.
(主动球速度上限,被碰球速度下限)
讨论:
E损可用于克服相对运动时的摩擦力做功转化为内能
高中物理:弹性碰撞与完全非弹性碰撞
◆弹性碰撞:弹性碰撞应同时满足:
(这个结论最好背下来,以后经常要用到。)
讨论: 一动一静且二球质量相等时的弹性正碰:速度交换
大碰小一起向前;质量相等,速度交换;小碰大,向后返。
原来以动量(P)运动的物体,若其获得等大反向的动量时,是导致物体静止或反向运动的临界条件。
E损=fd相= mg·d相= 一 = d相= =
也可转化为弹性势能;
完全非弹性碰撞公式

完全非弹性碰撞公式完全非弹性碰撞公式是描述在碰撞过程中发生完全能量损失的物理现象的数学表达式。
在完全非弹性碰撞中,碰撞物体之间的动能完全转化为其他形式的能量,例如内部变形能、热能等,并且在碰撞结束后,物体之间保持着粘连或结合的状态。
完全非弹性碰撞公式的推导基于动量守恒定律和能量守恒定律。
动量守恒定律指出,在单个碰撞过程中,物体A和物体B的总动量在碰撞前后保持不变。
能量守恒定律则指出,在完全非弹性碰撞中,碰撞物体之间的总能量在碰撞前后也保持不变。
在碰撞系统中,假设物体A的质量为m1,速度为v1,物体B的质量为m2,速度为v2。
根据动量守恒定律,碰撞前后的总动量相等,即m1v1 + m2v2 = (m1 + m2)v',其中v'为碰撞结束后物体A和物体B的共同速度。
根据能量守恒定律,碰撞前的总动能等于碰撞后的内部变形能、热能等其他形式的能量。
完全非弹性碰撞中,碰撞物体的动能被完全转化为这些形式的能量,因此可以得到以下能量守恒公式:(1/2)m1v1² + (1/2)m2v2² = (1/2)(m1 + m2)v'²由以上两个方程可以解得完全非弹性碰撞的公式:v' = (m1v1 +m2v2)/(m1 + m2)该公式描述了完全非弹性碰撞过程中物体的最终共同速度。
根据公式可知,当物体A和物体B的质量相等时,它们的最终速度也会相等;当m1远大于m2或者m2远大于m1时,最终速度趋近于v1或v2。
需要注意的是,完全非弹性碰撞公式仅适用于在碰撞过程中不存在外力的情况下,且假设碰撞物体没有发生旋转。
在实际应用中,根据碰撞物体的特性和碰撞环境的条件,可能需要考虑其他因素的影响,例如碰撞物体的形状、弹性系数等。
最后,完全非弹性碰撞公式在物理学和工程学领域具有广泛应用。
例如,当处理某些碰撞问题时,可以利用该公式来计算碰撞后物体的最终速度,进而分析和预测碰撞后的行为和结果。
37完全弹性碰撞完全非弹性碰撞详解PPT课件

根据动量守恒和能量守恒,可以列出方程组
p_{1}+p_{2}=p_{1}+p_{2}
E_{k1}+E_{k2}=E_{k1}+E_{k2}
解方程组可以得到碰撞后两物体的速度大小分别为
v_{1f}=(m_{1}-m_{2})v_{1i}/(m_{1}+m_{2})+2m_{2}v_{2i}/(m_{1}+m_{2})
其中,m1和m2分别为两个物体的质量,v1和v2分别为两个物体的速度,v为碰撞后两个物体的共同速度。
碰撞后速度的推导
两种碰撞的对比
03
完全弹性碰撞
能量守恒,动量守恒,但动能不守恒。
完全非弹性碰撞
能量守恒,动量守恒,动能也不守恒。
能量守恒和动量守恒的对比
由于没有能量损失,碰撞后两物体的速度方向相反,大小与碰撞前相同。
完全弹性碰撞
由于能量损失最大,碰撞后两物体的速度相同,大小与碰撞前两物体速度的平均值。
完全非弹性碰撞
碰撞后速度的对比
例如两个小球发生弹性碰撞,碰撞后两个小球的速度方向相反,大小不变。
例如两个小球发生粘性碰撞,碰撞后两个小球的速度相同,大小为两个小球碰撞前速度的平均值。
完全弹性碰撞
完全非弹性碰撞
实例分析
数学模型的建立
04
VS
在碰撞过程中,物体的动量之和保持不变,即 $\sum_{i=1}^{n}p_{i} = \sum_{i=1}^{n}p_{i}^{\prime}$。
碰撞前后动能守恒
在完全弹性碰撞中,碰撞前后物体的动能之和也保持不变,即 $\sum_{i=1}^{n}\frac{p_{i}^{2}}{2m_{i}} = \sum_{i=1}^{n}\frac{p_{i}^{\prime 2}}{2m_{i}}$。
碰撞过程中四个有用推论

碰撞过程中四个有用推论无锡一中国际部(无锡国际学校高中部):张为宏 214028弹性碰撞作为碰撞过程的一个特例,它是所有碰撞过程的一种极端的情况:形变能够完全恢复;机械能丝毫没有损失。
弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征,设两物体质量分别为m 1、m 2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u 1、u 2,即有 :m 1υ1+m 2υ2=m 1u 1+m 1u 221m 1υ12+21m 2υ22=21m 1u 12+21m 1u 22 由此即可把弹性碰撞碰后的速度u 1和u 2表示为: u 1=2121m m m m +-υ1+2122m m m +υ2 u 2=2112m m m +υ1+2112m m m m +-υ2 推论一:如对弹性碰撞的速度表达式进行分析,还会发现:弹性碰撞前、后,碰撞双方的相对速度大小相等,即}: u 2-u 1=υ1-υ 2例1:如图1所示,在光滑的水平面上放一质量为M 的木箱,在箱子左壁有一质量为m (m <M 的小滑块(可视为质点),箱的内壁光滑,左右两壁的距离为L ,当箱子以速度υ向左运动时,小滑块会与箱子右壁相碰,碰撞过程中无机械能损失,从滑块与右壁相碰,到再与左壁相碰,所经历的时间t=_____________。
分析:此系统两物体的作用属于弹性碰撞,据推论一,碰撞前后双方的相对速度大小相等,而每次碰撞完毕到下次碰撞前的瞬间,双方的相对位移总等于木箱两壁距离L ,所以:常数相相===vL v s t 推论二:如对弹性碰撞的速度表达式进一步探讨,当m 1=m 2时,代入上式得:1221,v u v u ==。
即当质量相等的两物体发生弹性正碰时,速度互换。
例2:一个光滑的带有弧形槽的小车质量为m ,处于静止状态,另有质量也为m 的铁块以速度V 沿轨道向上滑去,至某一高度后再向下返回.如图2所示,则当铁块回到右端时,铁块将( )(A )作速度为V 的平抛运动 (B )静止于小车右端与小车一起运动(C )作速度小于V 的平抛运动 (D )作自由落体运动分析:此系统水平方向不受外力,而系统又没有机械能损失,属于弹性碰撞,所以根据推论二,两物体作用完毕,速度交换,小车以速度V 向前运动,而铁块速度为0。
一个完全非弹性碰撞的实用推论(参照类别)

一个完全非弹性碰撞的实用推论一、在动量守恒模块的学习中,高中阶段主要分为完全弹性碰撞和完全非弹性碰撞这两种基本题型,解题用到的规律是动量守恒和能量守恒,完全弹性碰撞中,对于运动物体碰静止物体的模型,我们可以把v 1=2121m m m m +-v 0 v 2=2112m m m +v 0, 作为推论,由此避免动量守恒和能量守恒方程组的联立,从而减小了运算量,那么在完全非弹性碰撞中,我们是否也能导出一个结论性的推论从而避免联立方程组,简化计算呢?二、结论推导在处理可以等效成“完全非弹性碰撞”模型的问题时,我们发现:动能的损失是连接已知量和待求量的桥梁。
如果通过动量守恒和能量守恒这两大基本规律推导出动能损失的一般表达式,作为处理完全非弹性碰撞模型的一个实用推论,那么此推论便可以对我们的解题有所帮助。
推导过程如下:在光滑水平面上,滑块A 、B 发生完全非弹性碰撞,滑块A 质量为m 1,速度为v 1,滑块B质量为m 2,速度为v 2, v 1 v 2方向相同且在一条直线上,v1>v2 。
动量守恒:m 1 v 1 +m 2 v 2= (m 1+ m 2)v ① 能量守恒:21m 1 v 12 +21m 2 v 22=21 (m 1+ m 2)v 2+ΔE ② 将①式代入②式ΔE=21m 1 v 12 +21m 2 v 22-)(2)(21221m m m m v ++ 上式合并同类项得(读者可自行推导)ΔE=)2()(22122212121v v v v m m m m -++动能损失ΔE=2212121)()(2v v m m m m -+上式中,“v 1-v 2”表示碰前两滑块的相对速度,2121m m m m +是两质量的调合平均值,我们把它叫做折合质量。
三、结论应用 从此结论中可以看出,当两物体发生完全非弹性碰撞时,动能的损失可以写成ΔE=212121m m m m +u 2, 其中u 2是两滑块相对速度绝对值的平方。
物理课件2.3完全弹性碰撞完全非弹性碰撞

结论:完全弹性碰撞是理想化的 模型,实际中很难发生
03
完全非弹性碰撞
定义与特点
定义:完全非 弹性碰撞是指 两个物体碰撞 后速度均为0, 能量完全损失
的碰撞。
特点:两物体 碰撞后速度均 为0,没有动能 损失,也没有 形变和发热。
能量不守恒原理
完全非弹性碰撞 的定义
完全非弹性碰撞 的过程
完全非弹性碰撞 的能量损失
讨论:对实验结果进行深入 分析和讨论,探讨可能存在
的误差和改进方法。
结论与展望:总结实验结论, 并提出未来研究方向和展望。
06
习题与思考题
基础习题
判断完全弹性碰撞与非弹性碰撞的区别 计算完全弹性碰撞后的速度 描述完全非弹性碰撞后的现象 解释完全弹性碰撞与完全非弹性碰撞的物理意义
拓展思考题
什么是完全弹性碰撞?请举一个生活中的例子。 完全非弹性碰撞会产生什么样的后果?请举一个生活中的例子。 在完全弹性碰撞中,动能和动量是如何守恒的? 在完全非弹性碰撞中,动能和动量是如何守恒的?
答案解析与讨论
答案解析:对题 目答案进行详细 的解释和说明, 帮助学生理解答 案的思路和解题 过程。
讨论:针对题目 涉及的知识点、 解题方法等进行 深入的探讨和讨 论,引导学生思 考和拓展。
注意事项:提醒 学生在解题过程 中需要注意的事 项和易犯的错误, 避免出现不必要 的失误。
总结与反思:对 题目进行总结和 反思,帮助学生 巩固所学知识和 提高解题能力。
数据记录与处理
实验数据记录:准确记录实验 过程中的各项数据
数据处理方法:采用适当的统 计方法对实验数据进行处理
数据可视化:将处理后的数据 以图表形式进行展示
误差分析:对实验误差进行分 析,提高实验的准确性和可靠 性
3-7完全弹性碰撞-完全非弹性碰撞资料

碰前
m1
v10
m2
v20
1 2
m1v120
1 2
m2v220
1 2
m1v12
1 2
m2v22
m1(v120 - v12 ) m2 (v22 v220 )
解得
AB 碰后
v1 v2
AB
v1
(m1
m2 )v10 2m2v20 m1 m2
,
E0
m2
3–7完全弹性碰撞 完全非弹性碰撞 第三章动量守恒定律和能量守恒定律
例 1 在宇宙中有密度为 的尘埃, 这些尘埃相对
惯性参考系是静止的 .
初飞速船的v0速穿度过发宇生宙改尘变埃.,
有一质量为m0 的宇宙飞船以
由于尘埃粘贴到飞船上, 致使 求飞船的速度与其在尘埃中飞
行时间的关系 . (设想飞船的外形是面积为S的圆柱体)
对于正碰:
解 取速度方向为正向,由动 量守恒定律得
m1v10 m2v20 m1v1 m2v2
3–7完全弹性碰撞 完全非弹性碰撞 第三章动量守恒定律和能量守恒定律
解得
v1
v10
(1
e)m2 (v10 m1 m2
v20 )
,v2
v20
(1
e)m1(v10 m1 m2
v20 )
1.完全弹性碰撞 e 1
解得
v1
(m1
m2 )v10 2m2v20 m1 m2
,
v2
(m2
m1)v20 m1 m2
2m1v10
3–7完全弹性碰撞 完全非弹性碰撞 第三章动量守恒定律和能量守恒定律
v1
(m1
m2 )v10 2m2v20 m1 m2
高中物理:弹性碰撞与完全非弹性碰撞

解得:v1'= (主动球速度下限)v2'= (被碰球速度上限)
讨论(1):
当m1>m2时,v1'>0,v2'>0 v1′与v1方向一致;当m1>>m2时,v1'≈v1,v2'≈2v1(高射炮打蚊子)
当m1=m2时,v1'=0,v2'=v1即m1与m2交换速度
C.初动能EK1一定,当m1=m2时,EK2'=EK1
◆完全非弹性碰撞应满足:
◆一动一静的完全非弹性碰撞(子弹打击木块模型)是高中物理的重点。
特点:碰后有共同速度,或两者的距离最大(最小)或系统的势能最大等等多种说法.
(主动球速度上限,被碰球速度下限)
讨论:
E损可用于克服相对运动时的摩擦力做功转化为内能
代入上式可将机械能的损失△E表为u1的函数为:
△E=- u12- u1+[( m1υ12+ m2υ22)- ( m1υ1+m2υ2)2]
这是一个二次项系数小于零的二次三项式,显然:当u1=u2= 时,
即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值
Em= m1υ12+ m2υ22-
E损=fd相= mg·d相= 一 = d相= =
也可转化为弹性势能;
转化为电势能、电能发热等等;(通过电场力或安培力做功)
由上可讨论主动球、被碰球的速度取值范围
“碰撞过程”中四个有用推论
推论一:弹性碰撞前、后,双方的相对速度大小相等,即:换。
高中物理:弹性碰撞与完全非弹性碰撞
◆弹性碰撞:弹性碰撞应同时满足:
(这个结论最好背下来,以后经常要用到。)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个完全非弹性碰撞的实用推论
一、
在动量守恒模块的学习中,高中阶段主要分为完全弹性碰撞和完全非弹性碰撞这两种基本题型,解题用到的规律是动量守恒和能量守恒,完全弹性碰撞中,对于运动物体碰静止物体的模型,我们可以把v 1=2121m m m m +-v 0 v 2=2
112m m m +v 0, 作为推论,由此避免动量守恒和能量守恒方程组的联立,从而减小了运算量,那么在完全非弹性碰撞中,我们是否也能导出一个结论性的推论从而避免联立方程组,简化计算呢?
二、结论推导
在处理可以等效成“完全非弹性碰撞”模型的问题时,我们发现:动能的损失是连接已知量和待求量的桥梁。
如果通过动量守恒和能量守恒这两大基本规律推导出动能损失的一般表达式,作为处理完全非弹性碰撞模型的一个实用推论,那么此推论便可以对我们的解题有所帮助。
推导过程如下:
在光滑水平面上,滑块A 、B 发生完全非弹性碰撞,滑块A 质量为m 1,速度为v 1,滑块B质量为m 2,速度为v 2, v 1 v 2方向相同且在一条直线上,v1>v2 。
动量守恒:m 1 v 1 +m 2 v 2= (m 1+ m 2)v ① 能量守恒:21m 1 v 12 +21m 2 v 22=2
1 (m 1+ m 2)v 2+ΔE ② 将①式代入②式ΔE=
21m 1 v 12 +21m 2 v 22-)(2)(21221m m m m v ++ 上式合并同类项得(读者可自行推导)
ΔE=)2()(2212221212
1v v v v m m m m -++
动能损失ΔE=221212
1)()(2v v m m m m -+
上式中,“v 1-v 2”表示碰前两滑块的相对速度,
212
1m m m m +是两质量的调合平均值,我们把它
叫做折合质量。
三、结论应用 从此结论中可以看出,当两物体发生完全非弹性碰撞时,动能的损失可以写成ΔE=21
212
1m m m m +u 2, 其中u 2
是两滑块相对速度绝对值的平方。
这个损失的动能可以转化为焦耳热,也可以转化为弹性势能,重力势能。
当题目可以等效成“完全非弹性碰撞”模型(当题目中出现“弹簧达到最大压缩量时” “求物块上升的最大高度” “物块恰好不从木板上掉下”,“两物体恰好共速”“两物块粘连在一起运动”时一般等效成完全非弹性碰撞模型)时,一般可利用此结论求解或者简化运算。
例一、结论的简单应用
物块A 以初速度v 滑到小车B 上运动,A 质量为m 1,B 质量为m 2,
两者的动摩擦因数为u ,水平面光滑,问B 至少多长才能使A 物块不从B 上滑落?
解:不滑落的临界情况是A 相对静止在B 的最右侧,未状态AB 共速,可以看成完全非弹性碰撞应用结论。
212121m m m m +v 相2=umgl ⇒ l=ug
m m v m )(22122+ 此时的相对速度就是A 的初速度v 。
附动量观点的一般解法:
由动量守恒m 1 v 1 = (m 1+ m 2)v
21m 1 v 12 =21(m 1+ m 2)v 2+umgl 两式联立解得l=ug
m m v m )(22122+ 此题也可由运动学公式利用匀变速运动的规律处理,但动量能量的解法与运动学解法相比明显的优势就是思维量小,过程简洁,但计算仍然比繁琐,如果应用动能损失的表达式,就可以快速准确的得出答案,简化了计算。
当题目中涉及多个物体时需要注意,真正发生“碰撞”的是哪两个物体,这样才能正确写出折合质量的表达式。
具体分析看下面的例题。
例二、 多过程问题结论的应用方法
物块A 和物块B 用轻弹簧相连,它们质量均为m ,初始
时刻A 和B 均以速度v 在光滑水平面上向右匀速运动,质量
为2m 的C 静止在A 、B 的正前方,B 和C 发生完全非弹性碰撞,求此后弹簧的最大弹性势能。
分析:从B 、C 碰撞后的瞬间到A 与BC 共速时,可视为A 与BC 发生了一次完全非弹性碰撞,损失的动能全部转化为弹簧弹性势能。
解:B 和C 碰撞前后由动量守恒, mv=(m+2m) v 1 ⇒ v 1=
31v 此时A 和BC 的相对速度为v v v 3231=- ΔE=21m m m m 33+⨯(v 32)2=18
3mv 2 由ΔEp=ΔE 得最大弹性势能为18
3mv 2。
反思:需要注意此题的折合质量BC A BC A m m m m +∙,是A 和BC 两物块的整体发生了“碰撞”。
而真
正发生完全非弹性碰撞的B 碰C 过程我们却没有研究。
因而能否正确选定应用结论的过程并表示其相对速度和折合质量是能否正确解决问题的关键。
如果题目已知最大压缩量△x 还可以求劲度系数。
由21k Δx 2=18
3mv 2 ⇒k=2293x mv ∆从这里就可以体会到动能损失是连接已知量和待求量的桥梁。
四、结论拓展
在反冲过程中,分离前两部分是一个整体,换句话说分离前两部分相对静止。
如果我们把反冲看做完全非弹性碰撞的逆过程,那么反冲后两部分的相对速度就是结论中的相对速度,两部分的折合质量也是完全非弹性碰撞中两物体的折合质量。
反冲增加的机械能就可以等效成完全非弹性碰撞里的动能损失。
由此我们将结论拓展到类反冲问题中。
(此类问题一般情况下重力势能或弹性势能是动能增加的来源)
例三、
质量分别为M1和M2的A 和B ,高度相同,放在光滑水平面上,
AB 的倾斜面是光滑的曲面,曲面下端与水平面相切,如图所示,
物块m 位于A 上,距水平面高度h ,物块由静止滑下,然后滑上B ,求物块在B 上达到的最大高度。
分析:m 从A 上滑下的过程可以看成水平方向的反冲,m 的重力势能转化为m 和M1的动能,再利用动量守恒可由相对速度求出m 的脱离速度,m 滑上B 的过程则看成完全非弹性碰撞处理,从而求出上升的最大高度
解:设m 脱离A 时m 和A 的相对速度为u ,m 脱离A 的速度为v 1 mgh=21m m mm +11u 2 得u=gh m m m 21
1+ 由 mv 1+m 1v A =0 及u= v 1 –v A 得 v 1=11m m m +u=gh m m m 21
1+ ① 第二阶段 mgh ’=21m
m mm +22 u ,2② 相对速度u ,=m 脱离速度v 1将①代入②得h ’=h m m v m m m m )
()(121+++ 反思:结合此方法不仅避免了两次直接求解方程组的繁琐,其得出答案的过程更形象,更直观,从不同的角度得出答案有助于我们真正理解物理规律。
五、小结
我们可以发现此结论比完全弹性碰撞的运动碰静止的推论拥有了更广泛的适用性。
不但可以用于处理完全非弹性碰撞问题,对于多种可以转化为完全非弹性碰撞的模型及反冲模型都有普遍适用性。
因此当我们掌握了此类方法的实质并灵活的进行应用时,不仅仅能够提高解题速度,也伴随着我们的物理素养更上一层楼。