测量放大电路的设计

合集下载

测量微弱信号的放大电路设计要点与技巧

测量微弱信号的放大电路设计要点与技巧

测量微弱信号的放大电路设计要点与技巧测量微弱信号是科研领域中常见的实验任务之一,而放大电路设计则是实现这一目标的关键。

在本文中,我将探讨一些测量微弱信号的放大电路设计要点和技巧,希望能为科研工作者提供有益的指导。

首先,了解信号的性质至关重要。

微弱信号通常在低频范围内,并且很容易受到环境干扰。

因此,在设计放大电路时,要考虑选择适当的频率带宽。

一般来说,带宽应该比信号频率的两倍高,这样能够有效地避免高频噪声的干扰。

其次,选择合适的放大器是成功设计放大电路的关键。

低噪声放大器是测量微弱信号的理想选择,因为它们能够增加信号的幅度同时减少噪声的干扰。

常见的低噪声放大器包括运算放大器和差动放大器。

运算放大器广泛应用于各种测量仪器中,而差动放大器则在抵抗共模噪声方面表现出色。

此外,合理设置放大器的增益也是非常重要的。

过高的增益可能会引入更多的噪声,因此需要在信号幅度和噪声干扰之间寻找一个平衡点。

经验表明,设置适当的增益可以确保信号得到放大,同时保持噪声干扰的最低程度。

在设计放大电路时,还需要注意地线的布局和连接。

地线是将电路与外界连接的重要通道,不良的地线布局可能导致干扰信号的引入。

因此,要确保地线布线短小粗直,尽量减少环路面积,以减少可能引入的噪声干扰。

此外,选择合适的滤波器也是测量微弱信号的成功关键之一。

滤波器能够消除信号中的杂散噪声,从而提高信噪比。

常见的滤波器类型包括低通滤波器、带通滤波器和带阻滤波器。

不同的信号频率需要不同类型的滤波器,因此在设计放大电路时要仔细选择合适的滤波器。

最后,校准和调整放大电路也是设计过程中的关键环节。

由于不同的器件走线、元件容差等原因,放大电路可能存在一些偏差。

因此,需要通过校准和调整来保证放大电路的准确性和稳定性。

校准过程中需要使用特定的校准仪器和设备,例如示波器和信号发生器。

综上所述,设计测量微弱信号的放大电路需要特别关注信号性质、放大器选择、增益设置、地线布局、滤波器选择和校准调整等方面。

单级放大电路的调试与测量

单级放大电路的调试与测量
通频带
放大电路能够正常工作的频率范围, 通常用下限截止频率和上限截止频率
来表示。
输入电阻和输出电阻
输入电阻表示放大电路对输入信号的 阻碍程度,输出电阻表示放大电路对 输出信号的阻碍程度。
失真
放大电路输出信号与输入信号失真的 程度,包括线性失真和非线性失真。
03
单级放大电路的调试
BIG DATA EMPOWERS TO CREATE A NEW
单级放大电路广泛应用于通信、 音频处理、传感器信号采集、自 动控制系统等领域。
02
单级放大电路的基本原理
BIG DATA EMPOWERS TO CREATE A NEW
ERA
放大电路的基本概念
放大电路是一种电子电路,通过改变 输入信号的幅度和相位,输出一个与 输入信号成比例的信号。
放大电路广泛应用于信号处理、通信 、音频、视频等领域,用于增强微弱 信号或驱动负载。
常见问题的解决方法
放大倍数不足
检查元件参数是否正确,特别是电阻和电容的值是否符 合设计要求。
稳定性问题
通过增加适当的补偿电容或调整元件参数,提高放大电 路的稳定性。
ABCD
噪声和失真
检查电路中是否存在干扰源,如电源纹波、电磁干扰等 。同时,调整元件参数以改善性能。
温漂问题
在放大电路中增加温度补偿元件,减小温度对放大性能 的影响。
在输入端加入测试信号,并测量放大 电路的输入电压和电流,根据欧姆定 律计算输入电阻。
输出电阻的测量
在输出端开路的情况下,测量放大电 路的输出电压和电流,根据欧姆定律 计算输出电阻。
通频带和失真度的测量
通频带的测量
使用扫频信号源,在放大电路的输入端加入不同频率的信号,观察输出信号的 变化,确定通频带的范围。

单级放大电路实验报告

单级放大电路实验报告

单级放大电路实验报告摘要:本实验通过搭建单级放大电路并进行测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。

实验结果表明,单级放大电路在合适的设计和调试下能够实现电压信号的有效放大,但也存在一定的局限性。

引言:放大电路是电子技术中的重要组成部分,能够将弱小的电信号放大为更大的信号,以便后续电路进行处理或驱动。

本实验中,我们研究的是单级放大电路,它是放大电路中最基本的一种,并且具有较为简单的电路结构。

材料与方法:实验所需材料如下:1.1个NPN型晶体管2.2个电阻(分别为R1和R2)3.1个直流电源4.1个信号发生器实验步骤如下:1.按照电路图搭建单级放大电路。

2.调节电阻R1和R2的值,使其满足所需的放大倍数。

3.将信号发生器的输出接入放大电路的输入端。

4.通过示波器观察输出信号,并记录相关数据。

结果与讨论:在本实验中,我们设置放大倍数为20,即输出信号的幅度是输入信号的20倍。

调节电路中的电阻值后,我们成功地获得了期望的输出信号。

我们进一步探讨了输入和输出阻抗对于放大电路性能的影响。

实验结果表明,输入阻抗较大时,放大电路能够更好地接受输入信号,减小了信号源与放大电路之间的负载效应。

而当输出阻抗较小时,放大电路能够更好地推动负载电路,使得输出信号更加稳定。

同时,我们还研究了电压放大倍数与电压源频率的关系。

实验结果显示,当电压源频率较低时,放大倍数较高;而当电压源频率超过一定值后,放大倍数会逐渐减小。

这是因为晶体管的内部电容、电感等因素导致了对高频信号的损耗。

结论:本实验通过搭建单级放大电路并测量,探讨了放大电路的工作原理、电压放大倍数、输入和输出阻抗等参数的影响。

实验结果表明,在合适的设计和调试下,单级放大电路能够实现电压信号的有效放大。

其中,输入和输出阻抗的选择对于放大电路的性能有着重要影响。

此外,电压放大倍数与电压源频率之间存在一定的关联关系,需要根据实际情况进行设计和选择。

放大电路设计与分析实验报告

放大电路设计与分析实验报告

放大电路设计与分析实验报告实验目的:1. 熟悉放大电路的设计和分析方法。

2. 掌握放大电路的参数计算和实验测量方法。

3. 理解各种放大电路的特点和应用场合。

实验原理:放大电路是电子电路的重要组成部分。

它可以将小信号放大到较大幅度,从而实现信号增强、波形整形、滤波等功能。

放大电路一般由一个放大器和其它元器件组成。

放大器的基本功能是将输入信号放大到一定程度,同时不改变其波形和频率。

按照输出信号的特点,放大电路可以分为音频放大电路、射频放大电路、功率放大电路等。

在放大电路中,放大器是核心部件。

一般来说,放大器的增益和频率响应是其最重要的特性。

增益是指输出电压和输入电压之比,通常用分贝(dB)表示。

频率响应是指输出信号的幅度和频率之间的关系。

在一定频率范围内,放大器的增益和频率响应应该保持稳定。

在放大电路设计中,需要注意以下几个方面:1. 输入阻抗和输出阻抗的匹配。

2. 偏置电路的设计,确保放大器的工作状态稳定。

3. 常用的放大电路拓扑结构,如共射放大电路、共基放大电路、共集放大电路等。

实验仪器:1. 双踪示波器。

2. 函数信号发生器。

3. 直流稳压电源。

4. 万用表。

5. 电阻箱、电容箱。

实验步骤:1. 搭建共射放大电路。

将三极管(NPN型)作为放大器核心部件,外加偏置电路和输入、输出电容等元器件。

其中,偏置电路应该满足三极管工作状态的要求,即基极电压为正,发射级和集电级处于正向偏置状态。

输入电容应该滤除输入信号中的直流分量,输出电容应该防止信号向下级传播时对下级线路产生影响。

将电路连接到直流稳压电源、函数信号发生器和示波器上,调整函数信号发生器的幅度和频率,记录电路的输入信号与输出信号的波形和幅度,计算电路的增益和频率响应曲线。

2. 搭建共基放大电路。

将三极管(PNP型)的基极接到地电平上,集电级接到负电源电平,发射级接到输入电源,外加输出电容和输入电容等元器件。

其中,输出电容应该防止信号向下级传播时对下级线路产生影响,输入电容应该滤除输入信号中的直流分量。

微弱光信号的光电探测放大电路的设计

微弱光信号的光电探测放大电路的设计

微弱光信号的光电探测放大电路的设计对于各种微弱的被测量,例如弱光、弱磁、弱声、小位移、小电容、微流量、微压力、微振动和微温差等,一般都是通过相应的传感器将其转换为微电流或低电压,再经放大器放大其幅值以反映被测量的大小。

但是,由于被测量的信号很微弱,传感器的本底噪声、放大电路及测量仪器的固有噪声以及外界的干扰往往比有用信号的幅值大的多,同时,放大被测信号的过程也放大了噪声,而且必然还会附加一些额外的噪声,例如放大器的内部固有噪声和外部干扰的影响,因此,只有在有效地抑制噪声的条件下增大微弱信号的幅值,才能提取出有用信号。

本文针对检测微弱光信号的光电二极管放大电路,综合分析了其电路噪声、信号带宽及电路稳定性,在此基础上设计了一种低噪声光电信号放大电路,并给出电路参数选择方法。

1 基本电路光电二极管作为光探测器有两种应用模式如图1所示。

(1)光伏模式,如图1 (a)。

此时,光电二极管处于零偏置状态,不存在暗电流,低噪声,线性度好,因而适于精密领域。

本文就是以这种模式为例进行分析,实际应用中,这个电路一般还需在Rf上并联一个小电容Cs,从而使电路稳定。

(2)光导模式,如图1(b)。

这种模式需要给光电二极管加反向偏置电压,因而存在暗电流,产生噪声电流,同时因为非线性,一般应用在高速场合。

当光照射到光电二极管时,光电二极管产生一个与照明度成比例的微弱电流Ip,该电流流过跨接在放大器负输入端和输出端的反馈电阻Rf,将运算放大器视为理想放大器,根据理想运算放大器输入端的“虚断”特性,从而有E0=IpRf。

可以看出,光电二极管放大电路实际上是一个I/V转换电路。

这个电路看起来非常简单,只需一个反馈电阻,一个光电二极管和一个放大器便可实现。

从输出电压的线性表达式很容易推出,使反馈电阻Rf增大,将使得输出电压也成比例的增大。

经之前分析时,一般给出其典型值为100MΩ。

在下面的分析我们将看到,反馈电阻不但影响信号的带宽,而且影响整个电路噪声。

晶体管放大倍数β检测电路的设计

晶体管放大倍数β检测电路的设计

晶体管β值数显测量电路实验报告宁波大学科技学院理工分院课题五晶体管β值数显测量电路一、实验目的1、设计任务设计一个低频小功率NPN型硅三极管共射极电流放大倍数β值测量电路。

2、基本要求(1)β值的测量范围为50 ~ 250。

(2)接入晶体管后自动显示被测晶体管的β值,当没有接入晶体管时数码管显示为零。

(3)当接入晶体管的β值不在测量范围时,用发光二极管指示。

(4)测量精度为±5%。

(5)测量响应时间t<1S。

3、扩展要求(1)分档指示功能,当β值为50~100,100~180,180~250时,分别用发光二极管指示。

(2)能测量PNP管的β值。

二、实验原理由设计要求可知只要将被测晶体管的β值转换为对应的电压值,对β值的测量转变为对电压的测量。

将此电压进行比例调整后,进行A/D转换,然后进行译码显示即可。

其原理框图如图2-5-1所示。

三、单元电路设计参考1、β/V转换电路基本思路为:对被测晶体管输入一固定值的基极电流,则其集电极电流Ic=βIb,然后将集电极电流转换为电压即可。

基极电流的设置可以采用如下两种方式。

其一、如图2-5-2所示,选择恰当的基极偏置电阻Rb实现基极电流设置。

其二,利用恒流源实现基极电流的设置,如图2-5-3所示。

这种方式的优点是可以对锗管设置基极电流而不需要改变电路结构或元件参数。

由于要提供很小的基极电流,恒流源可以用如图2-5-4所示的微电流源实现。

微电流源的参考电流与输出电流之间的函数关系为:2、 比例调整电路比例调整电路的主要作用是将β/V 转换电路的输出电压作适当的调整提供给A/D 转换电路,以期得到一个适当的二进制数值,便于译码器显示对应的β值。

常用的比例电路有反相比例电路,同相比例电路,差动放大电路等。

在此介绍一下常用的三运放差动放大电路,电压如图2-5-6所示。

CSC S C b C R I U I I I I ===β10AR I U CC C μβ*==))(21(1220I I PU U R RU -+=6.19)21(255512510)21()21(28322=+=-==⨯+=+-PP C P R R LSB R R U R R 得:由:LM324N芯片引脚图3、A/D转换电路A/D转换电路将模拟量转换为数字量。

集成运放同相放大器的带宽测量(设计与仿真)实验报告

集成运放同相放大器的带宽测量(设计与仿真)实验报告

集成运放同相放大器的带宽测量(设计与仿真)实验报告一、实验目的1、熟悉放大器幅频特性的测量方法。

2、掌握集成运算放大器的带宽与电压放大倍数的关系。

3、了解掌握Proteus 软件的基本操作与应用。

二、实验线路及原理1、实验原理 (1)同相放大器同相放大器又称同相比例运算放大器,其基本形式如图所示。

输入信号U i 经R 2加至集成运放的同相端。

R f 为反馈电阻,输出电压经R f 及R 1组成的分压电路,取R 1上的分压作为反馈信号加至运放的反相输入端,形成了深度的电压串联负反馈。

R 2为平衡电阻,其值为R 2=R 1//R f 。

电压放大倍数为RR UU Afiuf101+==。

输出电压与输入电压相位相同,大小成比例关系。

比例系数(即电压放大倍数)等于1+R f /R 1,与运放本身的参数无关。

图 同相放大器 图 某放大电路的幅频特性(2)基本概念 1)带宽运放的带宽是表示运放能够处理交流小信号的能力。

运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真。

图所示为某放大电路的幅频响应,中间一段是平坦的,即增益保持不变,称为中频区(也称通带区)。

在f L 和f H 两点增益分别下降3dB ,而在低于f L 和高于f H 的两个区域,增益随频率远离这两点而下降。

在输入信号幅值保持不变的条件下,增益下降3dB 的频率点,其输出功率约等于中频区输出功率的一半,通常称为半功率点。

一般把幅频响应的高、低两个半功率点间的频率定义为放大电路的带宽或通频带,即BW=f H -f L 。

式中f H 是频率响应的高端半功率点,也称为上限频率,而f L 则称为下限频率。

通常有f L <<f H ,故有BW≈f H 。

2)单位增益带宽运放的闭环增益为1倍条件下,将一个频率可变恒幅正弦小信号输入到运放的输入端,随着输入信号频率不断变大,输出信号增益将不断减小,当从运放的输出端测得闭环电压增益下降3db (或是相当于运放输入信号的)时,所对应的信号频率乘以闭环放大倍数1所得的增益带宽积。

温度测量放大电路的设计

温度测量放大电路的设计

温度测量放大电路的设计概述:温度测量是工业生产、实验研究和日常生活中常见的一项任务。

温度测量放大电路是用来增强传感器输出信号的弱电流和电压的放大器电路。

本文将对温度测量放大电路的设计进行详细的介绍。

设计目标:设计一个温度测量放大电路,实现以下目标:1.准确测量温度,并将温度信号放大到合适的幅度。

2.提供稳定、可靠的放大功能,同时保持低噪声3.能够适应不同类型的温度传感器4.电路设计简单,成本低廉5.能够工作在较宽的温度范围内温度传感器:温度传感器是测量温度的核心设备。

常见的温度传感器有热电偶、热敏电阻和半导体温度传感器。

本设计将以热敏电阻为例进行介绍。

电路设计:为了准确测量温度,我们需要将热敏电阻的变化转换为电压信号。

热敏电阻的电阻值随温度的变化而改变,这样可以通过将热敏电阻串联在一个已知电阻上,利用电阻分压原理将电阻值转换为电压信号,然后将该信号放大。

在这里,我们选择了运算放大器(Op Amp)作为放大电路的关键元件。

运算放大器具有高放大度、低噪声和稳定性好的特点,非常适合温度测量放大电路的设计。

具体的电路设计步骤如下:1.选择适当的运算放大器:根据设计要求选择适合的运算放大器。

常见的运算放大器有:LM741、LM358、TL071等。

选择时需要考虑输入和输出电压范围、增益带宽积、噪声等参数。

2.确定电源电压:根据运算放大器的工作电压范围确定电源电压。

一般地,运算放大器的电源电压为正负15V,也有一些运算放大器可以在单电源供电下工作。

3.设计电阻分压网络:根据热敏电阻的特性和测量范围选择合适的电阻值。

通过将热敏电阻串联在一个已知电阻上,利用电阻分压原理将电阻值转换为电压信号。

根据设计要求确定电阻值,并进行串联连接。

4.设计反馈电阻:为了放大电路中的信号,需要设计一个反馈电阻。

反馈电阻的值决定了放大倍数。

一般地,反馈电阻的值越大,放大倍数越高。

通过选择合适的反馈电阻可以实现所需要的放大倍数。

5.添加输入和输出保护:为了保护运算放大器和其他部件,可以添加输入和输出保护电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量放大电路的设计
作者:
【摘要】:测量放大器能够将微弱的电信号进行放大,在生活中应用也十分广泛,如在自动控制领域,往往需要用电压信号进行控制,也就必然离不开电压测量放大器,由于测量放大器应用十分广泛,因而现在已经有集成的测量放大器供使用了。

本次设计就是围绕测量放大器展开的,测量放大器主要是通过运用集成运放将所测量的信号进行不失真的放大,并且不对所测量的电路产生影响,这就是需要放大器有高的输入电阻和较高的共模抑制比。

【关键字】:放大电路二阶高通有源滤波器二级低通有源滤波器
一、设计技术与要求:
如图所示,测量放大器由基本测量放大器、二阶高通有源滤波器、二阶
低通有源滤波器三部分组成。

1、性能技术指标:
(1)输入阻抗Ri>1mΩ
(2)电压放大倍数Au≥1000(即输入信号Ui-p=1mv时,输出信号Uop-p>1v
(3)频带宽度B=10〜10KHZ
(4)共模抑制比Kcmr>80dB
二:基本测量放大电路
如下图:放大器电路有两个同相放大器和一个基本差动放大电路组合而成;该电路具有输入阻抗高、电压增益容易调节,输出不包含共模信号等优点。

若不接R时,该电路由于引入了串联负反馈,所以其差模输入电阻Rid和共模输入电阻Ric都很大;当接入电阻R后,由于R很小,则R与Rid(或Ric)并联后,该电路的差模输入电阻Rid≈2R,共模输入电阻Ric≈R/2。

其中RL是负载电阻。

基本放大电路有(前置放大电路组成)下:
图(1)
1其中放大倍数:
Aud1==1+2R2/R1=81 Aud1’==1+2R2/R1=31
2其中放大倍为:
Aud2==Rf/R3=20
由上可知在前置放大电路中,总的放大倍数为:
Aud==Aud1·Aud2=81·20=1620
Aud==Aud1’·Aud2=31·20=620
由以上电路图(2)可观察到,Ri1是一个高输入阻抗的模块的组合放大电路,即输入电阻
Ri1=∞Ω>1MΩ
但由于引入了电阻R,因此,其引入的R达到要求的指标,两个R串联电阻之和2R满足:
R>0.5MΩ
为了有更好显示效果,取标称值R=1.2MΩ。

同时,共模抑制比K
CMR ,由于放大电路由两级放大电路组成,K
CM R1
表示第
一级放大电路的共模抑制比, K
CMR2
表示第二级放大电路的共模抑制比,即该型运放的共模抑制比,则
K
CMR = K
CM R1
·K
CMR2
其中,K
CM R1=Aud1/Auc1,K
CMR2
= Aud2/Auc2。

又Aud1≥1,K
CM R1
≥1,因此有;
Aud1≈1+2R2/R1=81,Aud1==1+2R2/R1=31, Auc1≈1
则有K
CM R1=Aud1/Auc1≈Aud1≈81,K
CM R1
=Aud1/Auc1≈Aud1≈31,
即有
K
CMR Aud1·K
CMR2
由指标要求,K
CMR >80dB,即K
CMR2
≥80dB,即我们采用的运算放大器的
共模抑制比满足以下条件:
K
CMR
≥80dB
三.总的电路图
在做本实验中我们采用了TL084ACD芯片作为放大器,其各种参数如下:四.TL084ACD特点:
1.短路保护输出
2.输入失调电压:典型值=3mV 最大值=6mV(25°)
3.电源电流:典型值=1.4mA 最大值=2.5m A(25°)
4.输入失调电流:典型值=5pA 最大值=100p A(25°)
5.电源电压抑制比:典型值=86dB 最小值=80dB(25°)
6.输入偏置电流:<20pA
7.输入失调电压漂移:10uV/C
8.每一个封装四个放大器
9.高压摆率: 16V/μs(典型值)
10.大信号电压增益:典型值=200mV 最小值=50mV(25°)
11.工作温度范围:Ta=0°~+70°
12.功率最大耗散:680mW
13.运放特点:内部频率补偿运算
14.供电最大电压Vcc、Vee:+18V
15.输入差动电压范围:+32V
16.针脚数:14
17.输入共模电压范围Vicr:-12、+15、+11V
18.封装:DIP-14
19.保存温度范围Tstg:-65~+150
20.工作环境温度范围Ta:-25~+85或0~+70
五、注意事项及心得
◆电路的选择非常关键,还有各种集成放大器电路有各自的专用放大电路,集成放大器与其专用电路对应应用,否则会出现错误,影响实验的进行。

◆带通的选择要合理,本实验用了一个高通和一个低通组合而成,如果直接用带通电路,由于带通电路的带宽过窄,带宽增益过大,很难实现长宽带均等放大。

▲通过本次课程设计,我了解了放大器的各种应用和性质,它不仅有放大作用,还有源滤波等应用。

▲通过本仿真实验,更加地了解Protel 99 SE软件的各种功能及应用。

▲我经过做了本次课程设计花了两周的时间,感觉到以前学的理论和现实有很大的距离,只有通过自己慢慢学习,慢慢琢磨采用减少理论知识与现实的距离。

▲通过课程设计也得到了很大的感触,合作是成功一半阶梯,别人的一小点小观点和小提示,将是你扭转即将面临失败的局面。

相关文档
最新文档