勾股定理的逆定理4PPT课件
合集下载
勾股定理数学优秀ppt课件

实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
勾股定理的逆定理-完整版课件

一、探究勾股定理的逆定理:
2、实验探究: (1)画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数 为边长画出三角形(单位:cm),它们是直角三角形吗? ① 2.5,6,6.5; ② 6,8,10. (2)量一量:用量角器分别测量上述各三角形的最大角的度数. (3)想一想:请判断这些三角形的形状,并提出猜想.
PQ=16×1.5=24,PR=12×1.5=18,QR=30. ∵24²+18²=30², 即PQ²+PR²=QR², ∴△PQR为直角三角形,即∠QPR=90°. ∵∠1=45°, ∴∠2=45°,即“海天”号沿西北方向航行.
练习4、如图,如图,南北向MN为我国领域,即MN以西为我国领海,以东 为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的 速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知 A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得离C艇 的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?
2
2
∴BE= AB•BC60.
B
AC 13
.
在Rt△BCE中,由勾股定理得,
N
∴CE= BC 2BE 2 12 2(60 )2144
13 13
∴最早进入时间≈0.85小时=51分钟.
.
9时50分+51分=10时41分.
答:走私艇最早在10时41分进入我国领海.
五、课堂小结:
1、利用勾股定理的逆定理判定是否为直角三角形的一般步骤: ①确定最大边长c; ②计算a2+b2和c2的值, 若a2+b2=c2,则此三角形是直角三角形; 若a2+b2<c2,则此三角形是钝角三角形; 若a2+b2>c2,则此三角形是锐角三角形. 2、互逆命题表明两个命题在形式上的关系,将一个命题的题设和结论互换 即可得到它的逆命题,当原命题成立时,它的逆命题不一定成立,即互逆 的两个命题不一定同真或同假. 3、已知一三角形的三边的长度时,首先应对该三角形进行判断,判断最长 边的平方是否等于其余两边的平方和,如何满足这一条件则此三角形为直 角三角形.
勾股定理的逆定理ppt课件

数学 八年级上册 SK
第
勾股定理
3
章
3.2 勾股定理的逆定理
-
3.2 勾股定理的逆定理
探究与应用
探 活动1 探索并应用勾股定理的逆定理,体会“数”与
究
“形”的内在联系
与
应 [思考探究]
用 1.写出“直角三角形两条直角边的平方和等于斜边的平方”
的逆命题.
解:如果一个三角形的两条边的平方和等于第三边的平方,那么
是钝角三角形;如果a2+b2>c2,那么这个三角形是锐角三角形.
探 究
[概括新知]
与 勾股定理的逆定理:如果三角形的三边长分别为a,b,c,且a2+
应
用 b2=c2,那么这个三角形是直角三角形.
探 归纳 勾股定理与勾股定理的逆定理的联系与区别
究
与
勾股定理
勾股定理的逆定理
应 用
在Rt△ABC中,∠C=90°, 在△ABC中,BC=a,AC=b, 条件
例2 C [解析] A项,82+52≠172,不能构成直角三角形,故不 是勾股数,不符合题意; B项,1.5,2,2.5不都是正整数,故不是勾股数,不符合题意; C项,52+122=132,且5,12,13都是正整数,故是勾股数,符合题 意; D项,32+42≠62,不能构成直角三角形,故不是勾股数,不符合 题意. 故选C.
根据勾股定理,可得A'B'2=a2+b2.
因为AB2=a2+b2,
所以A'B'2=AB2,所以A'B'=AB.
根据“SSS”,可证△ABC≌△A'B'C'.
于是,∠C=∠C'=90°,
第
勾股定理
3
章
3.2 勾股定理的逆定理
-
3.2 勾股定理的逆定理
探究与应用
探 活动1 探索并应用勾股定理的逆定理,体会“数”与
究
“形”的内在联系
与
应 [思考探究]
用 1.写出“直角三角形两条直角边的平方和等于斜边的平方”
的逆命题.
解:如果一个三角形的两条边的平方和等于第三边的平方,那么
是钝角三角形;如果a2+b2>c2,那么这个三角形是锐角三角形.
探 究
[概括新知]
与 勾股定理的逆定理:如果三角形的三边长分别为a,b,c,且a2+
应
用 b2=c2,那么这个三角形是直角三角形.
探 归纳 勾股定理与勾股定理的逆定理的联系与区别
究
与
勾股定理
勾股定理的逆定理
应 用
在Rt△ABC中,∠C=90°, 在△ABC中,BC=a,AC=b, 条件
例2 C [解析] A项,82+52≠172,不能构成直角三角形,故不 是勾股数,不符合题意; B项,1.5,2,2.5不都是正整数,故不是勾股数,不符合题意; C项,52+122=132,且5,12,13都是正整数,故是勾股数,符合题 意; D项,32+42≠62,不能构成直角三角形,故不是勾股数,不符合 题意. 故选C.
根据勾股定理,可得A'B'2=a2+b2.
因为AB2=a2+b2,
所以A'B'2=AB2,所以A'B'=AB.
根据“SSS”,可证△ABC≌△A'B'C'.
于是,∠C=∠C'=90°,
《勾股定理的逆定理》勾股定理PPT精品课件

问题3 古埃及人用来画直角的三边满足这个等式吗?
∵32+42=52,∴满足.
猜想:
命题2:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直
角三角形。
这个命题和前面学的命题1(勾股定理)之间有什么关系吗?
1.题设和结论正好相反的两个命题,叫做互逆命题。
2.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
勾股定理的逆定理
1、理解勾股定理的逆定理。
2、了解逆命题的概念,知道原命题为真命题,它的逆命题不一
定为真命题。
3、应用勾股定理的逆定理解决实际问题。
学习目标
学习目标
1.理解勾股定理的逆定理及证明过程。
2.能简单的运用勾股定理的逆定理判定直角三角形。
3.利用勾股定理逆定理解决实际问题
重点
运用勾股定理的逆定理判定直角三角形。
命题2是正确的吗?你能试着证明吗?
利用勾股定理逆定理判断直角三角形
下面以a,b,c为边长的三角形是不是直角三角形?
1)a=15 ,b=8 ,c=17
2)a=13 ,b=14 ,c=15
解:∵152+82=289,172=289,
∴152+82=172,
根据勾股定理的逆定理,这个三角形是直角三角形。
∴∠QPR=90°。
P
由“远航”号沿东北方向航行可知,∠QPS=45°。 ∴∠RPS=45°,
即“海天”号沿西北方向航行。
E
利用勾股定理逆定理判断直角三角形
满足下列条件的△ABC不是直角三角形的是(
A.BC=1,AC=2,AB=
C.BC:AC:AB=3:4:5
)
B.BC=1,AC=2,AB=
∵32+42=52,∴满足.
猜想:
命题2:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直
角三角形。
这个命题和前面学的命题1(勾股定理)之间有什么关系吗?
1.题设和结论正好相反的两个命题,叫做互逆命题。
2.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
勾股定理的逆定理
1、理解勾股定理的逆定理。
2、了解逆命题的概念,知道原命题为真命题,它的逆命题不一
定为真命题。
3、应用勾股定理的逆定理解决实际问题。
学习目标
学习目标
1.理解勾股定理的逆定理及证明过程。
2.能简单的运用勾股定理的逆定理判定直角三角形。
3.利用勾股定理逆定理解决实际问题
重点
运用勾股定理的逆定理判定直角三角形。
命题2是正确的吗?你能试着证明吗?
利用勾股定理逆定理判断直角三角形
下面以a,b,c为边长的三角形是不是直角三角形?
1)a=15 ,b=8 ,c=17
2)a=13 ,b=14 ,c=15
解:∵152+82=289,172=289,
∴152+82=172,
根据勾股定理的逆定理,这个三角形是直角三角形。
∴∠QPR=90°。
P
由“远航”号沿东北方向航行可知,∠QPS=45°。 ∴∠RPS=45°,
即“海天”号沿西北方向航行。
E
利用勾股定理逆定理判断直角三角形
满足下列条件的△ABC不是直角三角形的是(
A.BC=1,AC=2,AB=
C.BC:AC:AB=3:4:5
)
B.BC=1,AC=2,AB=
人教版八年级下册数学课件 勾股定理的逆定理

B' a C' B a C
A
cb
B
a
C A'
b B' a C'
证明:画一个△A'B'C',使∠ C'=90°, B'C'=a,C'A'=b. ∵ ∠ C'=90°,∴ A'B'2= a2+b2=c2, ∴ A'B' =c. 在△ABC和△A'B'C'中 BC=a=B'C',CA=b=C'A',AB=c=A'B'.
∴△BCD为直角三角形,∠DBC=90°.
S四边形ABCD
S Rt ABD
S Rt BCD
1 ·AD·AB 2
1 ·BD·BC 2
1 4 3 1 512 36 dm2 .
2
2
课堂小结
勾股定理 的逆定理
逆命题和逆定理 勾股定理的逆定理 勾股数
提问 用量角器量一量,它们是什么三角形? 直角三角形 由前面几个例子,我们可以作出什么猜想? 如果三角形ABC的三边长a,b,c满足a2+b2 =c2,那么这个三角形是直角三角形.
题设
命题1 如果直角三角形两直角边长分别为a, b,斜边长为c,那么a2+b2=c2.结论
命题2 如果三角形ABC的三边长a,b,c满足
拓展练习
6.一个零件的形状如图所示,工人 师傅量得这个零件各边尺寸如下 (单位:dm):AB=3,AD=4, BC=12,CD=13.且∠DAB=90°.你 能求出这个零件的面积吗?
解:如图,连接BD.在Rt△ABD中,
第十七章05节 勾股定理勾股定理的逆定理

learn about different formats and writing methods of
s a m pl e e s s a ys , pl e a s e s t a y t une d!
目录
01
学习目标
LEARNING OBJECTIVES
1.理解勾股定理的逆定理及证明过程。
2.能简单的运用勾股定理的逆定理判定直角三角形。
1、a=15 ,b=8 ,c=17
2、a=13 ,b=14 ,c=15
解:∵152+82=289,172=289,
∴152+82=172,
根据勾股定理的逆定理,这个三角形是直角三角形。
∵132+142=365,152=225,
∴132+142≠152,不符合勾股定理的逆定理,
∴这个三角形不是直角三角形.
第十七章05节 勾股定理
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语
课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,
想了解不同课件格式和写法,敬请下载!
M o r e o v e r, o u r s t o r e p r o v i d e s v a r i o u s t y p e s o f c l a s s i c
3
2.5
1
BC
4
6
1
AC
5
6.25
2
45°
∠A
约36.5°
∠B
∠C
90°
约22.5°
90°
90°
约53.5°
约67.5°
45°
A
如果三角形的三边长a,b,c满足a2+b2=c2,
s a m pl e e s s a ys , pl e a s e s t a y t une d!
目录
01
学习目标
LEARNING OBJECTIVES
1.理解勾股定理的逆定理及证明过程。
2.能简单的运用勾股定理的逆定理判定直角三角形。
1、a=15 ,b=8 ,c=17
2、a=13 ,b=14 ,c=15
解:∵152+82=289,172=289,
∴152+82=172,
根据勾股定理的逆定理,这个三角形是直角三角形。
∵132+142=365,152=225,
∴132+142≠152,不符合勾股定理的逆定理,
∴这个三角形不是直角三角形.
第十七章05节 勾股定理
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语
课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,
想了解不同课件格式和写法,敬请下载!
M o r e o v e r, o u r s t o r e p r o v i d e s v a r i o u s t y p e s o f c l a s s i c
3
2.5
1
BC
4
6
1
AC
5
6.25
2
45°
∠A
约36.5°
∠B
∠C
90°
约22.5°
90°
90°
约53.5°
约67.5°
45°
A
如果三角形的三边长a,b,c满足a2+b2=c2,
《勾股定理的逆定理》PPT课件(第1课时)

的逆定理,这个三角形是直角三角形,且∠C是直角. (2)∵132+142=365,152=225,∴132+142≠152,不符合勾股定
理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
《勾股定理的逆定理》数学教学PPT课件(5篇)

求证:△ ABC是直角三角形
证明:画一个△A′B′C′,
使∠
C′=900,
B′C′= a,
A'
A
B
b
b
a
C
B'
a
C'
在△ ABC和△ A′B′C′中
BC = a = B′C′,
CA = b = C′A′,
AB = c = A ′B′
C′A′=b
∵ ∠ C′=900
∴ A′B′ 2= a2+b2
∵ a2+b2=c2
c
b
C
作用:已知三角形的三边长,判断
这个三角形是否为直角三角形。
a
B
,
自主学习
例1:注意归纳例题的解题步骤和解题技巧!
已知三角形三条边的长度分别是:(1)1,
,
(2)2,3,4;
(3)3n,4n,5n(n > 0), 它们是否分别构成直角三角形?
解
(1)在 1, ,,
中,
)2 ,所以,边长为1,
(
∴S四边形ABCD=S△ABD+S△BCD
B
1
= -AB×AD+
2
1
= -×3×4+
2
1
-BD×CD
2
1
-×5×12
2
= 36
所以四边形ABCD的面积
为36.
C
知识升华
满足
a b的三个正整数,
c
2
称为勾股数组.
2
2
自主检测
1、满足________
勾股数组。
的三个____
__
正整数
如:
证明:画一个△A′B′C′,
使∠
C′=900,
B′C′= a,
A'
A
B
b
b
a
C
B'
a
C'
在△ ABC和△ A′B′C′中
BC = a = B′C′,
CA = b = C′A′,
AB = c = A ′B′
C′A′=b
∵ ∠ C′=900
∴ A′B′ 2= a2+b2
∵ a2+b2=c2
c
b
C
作用:已知三角形的三边长,判断
这个三角形是否为直角三角形。
a
B
,
自主学习
例1:注意归纳例题的解题步骤和解题技巧!
已知三角形三条边的长度分别是:(1)1,
,
(2)2,3,4;
(3)3n,4n,5n(n > 0), 它们是否分别构成直角三角形?
解
(1)在 1, ,,
中,
)2 ,所以,边长为1,
(
∴S四边形ABCD=S△ABD+S△BCD
B
1
= -AB×AD+
2
1
= -×3×4+
2
1
-BD×CD
2
1
-×5×12
2
= 36
所以四边形ABCD的面积
为36.
C
知识升华
满足
a b的三个正整数,
c
2
称为勾股数组.
2
2
自主检测
1、满足________
勾股数组。
的三个____
__
正整数
如:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能知道“海天”号沿哪个方向航行吗?
海天 R
N Q 远航
E P
2020年10月2日
6
例3 如果△ABC的三边长分别为 a,b,c,且 a=m2-n2,b=2mn,c=m2+n2(m>n,m,n是正整数) 则△ABC是直角三角形
解:∵ a=m2-n2,b=2mn,c=m2+n2(m>n,m,n是正整数)
2020年10月2日
2
1. 说出下列命题的逆命题, 它们都是真命题吗? (1). 两条直线平行, 同位角相等. (2). 对顶角相等. (3). 全等三角形的对应角相等.
从上述命题的逆命题的编制中, 我们知道凡是命题, 都可以写出它的逆命题, 也就是说每个命题都有逆命题. 同时我们也发现一个真命题的逆命题不一定是真命题. 如(2). (3).
汇报人:XXX 汇报日期:20XX年10月10日
8
2020年10月2日
1
互逆命题:
两个命题中, 如果第一个命题的题设是第二个命题的 结论, 而第一个命题的结论又是第二个命题的题设,那么 这两个命题叫做互逆命题.
如果把其中一个叫做原命题, 那么另一个叫做它的逆 命题.
互逆定理:
如果一个定理的逆命题经过证明是真命题, 那么它也是 一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一 个的逆定理.
∴a2+b2=(m2-n2)2+(2mn)2
=m4-2m2n2+n4+4m2n2
=m4+2m2n2+n4 =(m2+n2)2
பைடு நூலகம்
=c2 ∴△ABC是直角三角形。
2020年10月2日
7
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
(2)a=5,b=7,c=8
(3)a= 7 ,b= 3 ,c=2
2020(年410月)a2日:b:c=2:3:4
5
例2 .“远航”号、“海天”号轮船同时离开
港口,各自沿一固定方向航行,“远航”号 每小时航行16海里,“海天”号每小时航行 12海里。它们离开港口一个半小时后相距30 海里。如果知道“远航”号沿东北方向航行,
题的逆命题不一定也是真命题, 所以并不是所有的定 理都有逆定理. 4.是非题: 一个定理的题设与结论互换,就得到它的逆定理( )
2020年10月2日
4
例1.根据下列条件,分别判断以a,b,c 为边的三角形是不是直角三角形?
(1)a=7,b=24,c=25;
2
(2)a=
3
2 , b=1,c= 3
.
练一练:根 三 (1据 角)下形a列是=2条不0,件是b=, 直21判 角,c断 三=2下 角9 面 形以 ?a,b,c为边的
2020年10月2日
3
1. 你能举一个互逆的定理吗?
2. 把命题“ 等腰三角形的底角相等” 的逆命题叙述为 “底角相等的三角形是等腰三角形” 是否恰当? 如 果不当, 应怎样叙述?
3. “ 每一个定理不一定都有逆定理, 因为逆定理不一定 正确” 这句话对吗? 如果不对, 应如何改正?
注: 虽然每个命题都有逆命题, 但要注意, 因为一个真命
海天 R
N Q 远航
E P
2020年10月2日
6
例3 如果△ABC的三边长分别为 a,b,c,且 a=m2-n2,b=2mn,c=m2+n2(m>n,m,n是正整数) 则△ABC是直角三角形
解:∵ a=m2-n2,b=2mn,c=m2+n2(m>n,m,n是正整数)
2020年10月2日
2
1. 说出下列命题的逆命题, 它们都是真命题吗? (1). 两条直线平行, 同位角相等. (2). 对顶角相等. (3). 全等三角形的对应角相等.
从上述命题的逆命题的编制中, 我们知道凡是命题, 都可以写出它的逆命题, 也就是说每个命题都有逆命题. 同时我们也发现一个真命题的逆命题不一定是真命题. 如(2). (3).
汇报人:XXX 汇报日期:20XX年10月10日
8
2020年10月2日
1
互逆命题:
两个命题中, 如果第一个命题的题设是第二个命题的 结论, 而第一个命题的结论又是第二个命题的题设,那么 这两个命题叫做互逆命题.
如果把其中一个叫做原命题, 那么另一个叫做它的逆 命题.
互逆定理:
如果一个定理的逆命题经过证明是真命题, 那么它也是 一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一 个的逆定理.
∴a2+b2=(m2-n2)2+(2mn)2
=m4-2m2n2+n4+4m2n2
=m4+2m2n2+n4 =(m2+n2)2
பைடு நூலகம்
=c2 ∴△ABC是直角三角形。
2020年10月2日
7
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
(2)a=5,b=7,c=8
(3)a= 7 ,b= 3 ,c=2
2020(年410月)a2日:b:c=2:3:4
5
例2 .“远航”号、“海天”号轮船同时离开
港口,各自沿一固定方向航行,“远航”号 每小时航行16海里,“海天”号每小时航行 12海里。它们离开港口一个半小时后相距30 海里。如果知道“远航”号沿东北方向航行,
题的逆命题不一定也是真命题, 所以并不是所有的定 理都有逆定理. 4.是非题: 一个定理的题设与结论互换,就得到它的逆定理( )
2020年10月2日
4
例1.根据下列条件,分别判断以a,b,c 为边的三角形是不是直角三角形?
(1)a=7,b=24,c=25;
2
(2)a=
3
2 , b=1,c= 3
.
练一练:根 三 (1据 角)下形a列是=2条不0,件是b=, 直21判 角,c断 三=2下 角9 面 形以 ?a,b,c为边的
2020年10月2日
3
1. 你能举一个互逆的定理吗?
2. 把命题“ 等腰三角形的底角相等” 的逆命题叙述为 “底角相等的三角形是等腰三角形” 是否恰当? 如 果不当, 应怎样叙述?
3. “ 每一个定理不一定都有逆定理, 因为逆定理不一定 正确” 这句话对吗? 如果不对, 应如何改正?
注: 虽然每个命题都有逆命题, 但要注意, 因为一个真命