年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业设计

合集下载

苯乙烯生产工艺流程设计毕业设计

苯乙烯生产工艺流程设计毕业设计

苯乙烯生产工艺流程设计毕业设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!苯乙烯生产工艺流程设计毕业设计摘要苯乙烯作为一种重要的有机合成原料,在化工领域具有广泛的应用。

乙苯脱氢制苯乙烯实验报告

乙苯脱氢制苯乙烯实验报告

乙苯脱氢制苯乙烯实验报告一实验目的(1)了解以乙苯为原料在铁系催化剂上进行固定床制备苯乙烯的过程,学会设计实验流程和操作;(2)掌握乙苯脱氢操作条件对产物收率的影响,学会获取稳定的工艺条件之方法。

(3)掌握催化剂的填装、活化、反应使用方法。

(4)掌握色谱分析方法。

二实验原理2.1 主副反应乙苯脱氢生成苯乙烯和氢气是一个可逆的强烈吸热反应,只有在催化剂存在的高温条件下才能提高产品收率,其反应如下:主反应C6H5C2H5C6H5C2H3+H2副反应C6H5C2H5C6H6+C2H4C2H4+H2C2H6C6H5C2H5+H2C6H6+C2H6C6H5C2H5C6H5-CH3+CH4此外,还有部分芳烃脱氢缩合、聚合物以及焦油和碳生成。

2.2影响因素乙苯脱氢反应为吸热反应,△H0>0,从平衡常数与温度的关系式ln K P H0可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转T P RT2化率。

但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适应的反应温度。

2.2.2 压力的影响乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式K P K n P总可ni知,当△γ >0 时,降低总压 P 总可使 K n增大 ,从而增加了反应的平衡转化率 ,故降低压力有利于平衡向脱氢方向移动。

实验中加入惰性气体或减压条件下进行,通常均使用水蒸气作稀释剂,它可降低乙苯的分压,以提高平衡转化率。

水蒸气的加入还可向脱氢反应提供部分热量 ,使反应温度比较稳定 ,能使反应产物迅速脱离催化剂表面 ,有利于反应向苯乙烯方向进行 ;同时还可以有利于烧掉催化剂表面的积碳。

但水蒸汽增大到一定程度后,转化率提高并不显着,因此适宜的用量为:水:乙苯= 1.2~ 2.6: 1(质量比)。

2.2.3 空速的影响乙苯脱氢反应中的副反应和连串副反应,随着接触时间的增大而增大,产物苯乙烯的选择性会下降,催化剂的最佳活性与适宜的空速及反应温度有关,本实验乙苯的液空速以 0.6~1h-1为宜。

年产30万吨苯乙烯车间粗苯乙烯精馏工段的工艺设计毕业论文

年产30万吨苯乙烯车间粗苯乙烯精馏工段的工艺设计毕业论文

年产30万吨苯乙烯车间粗苯乙烯精馏工段的工艺设计The Process Design of Distillation section of Thick Styrene for Annual Output 300000 Tons of Styrene Workshop目录摘要 (I)Abstract (II)引言 (1)第1章苯乙烯生产工艺简介 (2)1.1乙苯催化脱氢工艺 (2)1.2乙苯氧化脱氢法 (2)1.3环氧丙烷-苯乙烯联产法 (3)1.4热解汽油抽提蒸馏回收法 (3)1.5丁二烯合成法 (4)1.6其它生产方法 (4)第2章世界苯乙烯的生产和发展前景 (5)2.1世界供需分析及预测 (5)2.2国内外苯乙烯生产与发展状况 (7)2.2.1国内生产企业供应分析 (7)2.2.2产品供需现状及预测 (7)第3章生产工艺的反应历程 (9)3.1生产工艺的反应历程 (9)3.2生产过程 (9)3.3精馏原理及目的 (9)3.4生产方法 (10)3.5生产控制参数及具体操作 (11)第4章工艺计算 (12)4.1生产能力的计算 (12)4.2质量守恒定律 (12)4.3苯乙烯精馏塔的物料衡算 (13)4.3.1 投料量计算 (13)4.3.2 脱氢过程的计算 (13)4.3.3进出脱氢反应器的物料衡算 (14)4.3.4冷凝油水分离阶段的物料衡算 (14)4.3.5 粗馏塔的物料衡算 (15)4.3.6乙苯塔的物料衡算表 (15)4.3.7 苯乙烯精馏塔的物料衡算 (15)4.3.8 苯∕甲苯的物料衡算 (15)第5章热量衡算 (17)5.1能量守恒定律 (17)5.2热量计算 (17)Q的计算 (18)5.3过程效应热35.4热量衡算表 (20)第6章设备设计计算与选型 (21)6.1苯乙烯精馏塔的设计计算 (21)6.1.1 原料液及塔顶、塔底产品的摩尔分率 (21)6.1.2 原料液及塔顶、塔底产品的平均摩尔质量 (21)6.1.3 物料衡算 (21)6.2塔板数的确定 (21)6.2.1 理论板层数N的求取 (21)T6.2.2求精馏塔的气、液相负荷 (23)6.3精馏塔的工艺尺寸及有关物性数据的计算 (24)6.3.1操作压力计算 (24)6.3.2操作温度计算 (24)6.3.3平均摩尔质量计算 (24)6.3.4塔顶液相平均密度的计算 (25)6.3.5液体平均表面张力计算 (25)6.4精馏塔的塔体工艺尺寸计算 (26)6.4.1塔径的计算 (26)6.4.2 精馏塔有效高度的计算 (27)6.5塔板主要工艺尺寸的计算 (27)6.5.1 溢流装置计算 (27)6.5.2塔板布置 (29)6.6筛板的流体力学验算 (30)6.6.1 塔板压降 (30)6.6.2 液面落差 (31)6.6.3 液沫夹带 (31)6.6.4 漏液 (31)6.6.5 液泛 (32)第7章精馏塔工艺参数汇总 (33)结论 (35)致谢............................ 错误!未定义书签。

乙苯脱氢制苯乙烯实验报告

乙苯脱氢制苯乙烯实验报告

乙苯脱氢制苯乙烯实验报告一实验目的(1)了解以乙苯为原料在铁系催化剂上进行固定床制备苯乙烯的过程,学会设计实验流程和操作;(2)掌握乙苯脱氢操作条件对产物收率的影响,学会获取稳定的工艺条件之方法。

(3)掌握催化剂的填装、活化、反应使用方法。

(4)掌握色谱分析方法。

二实验原理2.1 主副反应乙苯脱氢生成苯乙烯和氢气是一个可逆的强烈吸热反应,只有在催化剂存在的高温条件下才能提高产品收率,其反应如下:主反应C6H5C2H5C6H5C2H3+H2副反应C6H5C2H5C6H6+C2H4C2H4+H2C2H6C6H5C2H5+H2C6H6+C2H6C6H5C2H5C6H5-CH3+CH4此外,还有部分芳烃脱氢缩合、聚合物以及焦油和碳生成。

2.2影响因素乙苯脱氢反应为吸热反应,△H0>0,从平衡常数与温度的关系式ln K P H0可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转T P RT2化率。

但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适应的反应温度。

2.2.2 压力的影响乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式K P K n P总可ni知,当△γ >0 时,降低总压 P 总可使 K n增大 ,从而增加了反应的平衡转化率 ,故降低压力有利于平衡向脱氢方向移动。

实验中加入惰性气体或减压条件下进行,通常均使用水蒸气作稀释剂,它可降低乙苯的分压,以提高平衡转化率。

水蒸气的加入还可向脱氢反应提供部分热量 ,使反应温度比较稳定 ,能使反应产物迅速脱离催化剂表面 ,有利于反应向苯乙烯方向进行 ;同时还可以有利于烧掉催化剂表面的积碳。

但水蒸汽增大到一定程度后,转化率提高并不显着,因此适宜的用量为:水:乙苯= 1.2~ 2.6: 1(质量比)。

2.2.3 空速的影响乙苯脱氢反应中的副反应和连串副反应,随着接触时间的增大而增大,产物苯乙烯的选择性会下降,催化剂的最佳活性与适宜的空速及反应温度有关,本实验乙苯的液空速以 0.6~1h-1为宜。

年产20万吨苯乙烯的初步设计

年产20万吨苯乙烯的初步设计

对于年产20万吨苯乙烯的初步设计,我们首先需要考虑工艺流程和工艺条件。

以下是一个初步的设计方案。

1.原料处理
苯和乙烯是苯乙烯生产的主要原料。

首先,将苯和乙烯送入储罐中进行储存。

然后,通过泵送系统将苯和乙烯送入反应器中。

2.反应器
反应器是制备苯乙烯的关键设备。

在反应器中,苯和乙烯通过热解反应生成苯乙烯。

为了提高反应效率和产量,可以采用催化剂,并调节反应器的工艺条件,如温度、压力和反应时间。

3.分离装置
反应后的混合物需要进行分离,以得到纯净的苯乙烯。

分离装置包括精馏塔和冷凝器。

在精馏塔中,将混合物加热使其分馏,使苯乙烯和其他成分的沸点不同,从而分离它们。

冷凝器用于将蒸汽冷却成液体,得到纯净的苯乙烯。

4.储存与运输
得到的苯乙烯将被储存在专门的储存罐中,并通过管道运输到需要的地方。

在这个初步设计方案中,需要考虑以下几个关键问题:
1.反应器的选择和设计,包括反应器的类型、尺寸和催化剂的选择。

2.分离装置的设计,包括精馏塔和冷凝器的尺寸和操作条件。

3.安全措施,包括防止反应过程中发生事故的措施以及储存和运输过程中的安全措施。

4.能源消耗和环保考虑,包括对能源的利用效率的优化和对废物处理的考虑。

总结起来,年产20万吨苯乙烯的初步设计方案涉及到原料处理、反应器、分离装置、储存与运输等多个方面。

在设计过程中需要综合考虑工艺流程和工艺条件,并注重安全措施和环保考虑。

乙苯脱氢制苯乙烯实验报告

乙苯脱氢制苯乙烯实验报告

乙苯脱氢制苯乙烯实验报告一实验目的(1)了解以乙苯为原料在铁系催化剂上进行固定床制备苯乙烯的过程,学会设计实验流程和操作;(2)掌握乙苯脱氢操作条件对产物收率的影响,学会获取稳定的工艺条件之方法。

(3)掌握催化剂的填装、活化、反应使用方法。

(4)掌握色谱分析方法。

二实验原理2.1 主副反应乙苯脱氢生成苯乙烯和氢气是一个可逆的强烈吸热反应,只有在催化剂存在的高温条件下才能提高产品收率,其反应如下:主反应C6H5C2H5C6H5C2H3+H2副反应C6H5C2H5C6H6+C2H4C2H4+H2C2H6C6H5C2H5+H2C6H6+C2H6C6H5C2H5C6H5-CH3+CH4此外,还有部分芳烃脱氢缩合、聚合物以及焦油和碳生成。

2.2影响因素乙苯脱氢反应为吸热反应,△H0>0,从平衡常数与温度的关系式ln K P H0可知,提高温度可增大平衡常数,从而提高脱氢反应的平衡转T P RT2化率。

但是温度过高副反应增加,使苯乙烯选择性下降,能耗增大,设备材质要求增加,故应控制适应的反应温度。

2.2.2 压力的影响乙苯脱氢为体积增加的反应,从平衡常数与压力的关系式K P K n P总可ni知,当△γ >0 时,降低总压 P 总可使 K n增大 ,从而增加了反应的平衡转化率 ,故降低压力有利于平衡向脱氢方向移动。

实验中加入惰性气体或减压条件下进行,通常均使用水蒸气作稀释剂,它可降低乙苯的分压,以提高平衡转化率。

水蒸气的加入还可向脱氢反应提供部分热量 ,使反应温度比较稳定 ,能使反应产物迅速脱离催化剂表面 ,有利于反应向苯乙烯方向进行 ;同时还可以有利于烧掉催化剂表面的积碳。

但水蒸汽增大到一定程度后,转化率提高并不显着,因此适宜的用量为:水:乙苯= 1.2~ 2.6: 1(质量比)。

2.2.3 空速的影响乙苯脱氢反应中的副反应和连串副反应,随着接触时间的增大而增大,产物苯乙烯的选择性会下降,催化剂的最佳活性与适宜的空速及反应温度有关,本实验乙苯的液空速以 0.6~1h-1为宜。

年产20万吨苯乙烯的初步设计

年产20万吨苯乙烯的初步设计

摘要苯乙烯是合成聚苯乙烯的主要材料,而聚苯乙烯的用途很广;认真分析苯乙烯的性质,市场需求,原料来源及社会影响;了解苯乙烯制备过程,设计合理工艺流程;对流程过程进行物料、热量进行恒算。

因此面对当今能源紧缺,高科技的新时代,新的能源是当代人们面对的最大挑战,同时面对我国的现状,合成苯乙烯是一个形势所迫的任务,同时对我国的经济发展会起到很大的促进作用。

关键词:苯乙烯,原料,用途,工艺流程一、概述(一)苯乙烯的性质和用途苯乙烯是一种重要的基本有机化工原料,主要用于生产聚苯乙烯树脂(PS)、丙烯腈-丁二烯-苯乙烯(ABS)树脂、苯乙烯-丙烯腈共聚物(SAN)树脂、丁苯橡胶和丁苯胶乳(SBR\SBR胶乳)、离子交换树脂、不饱和聚酯以及苯乙烯系热塑性弹性体(如SBS)等。

此外,还可用于制药、染料、农药以及选矿等行业,用途十分广泛。

1.物理性质[1]外观与性状:无色透明油状液体。

熔点(℃):-30.6沸点(℃):146相对密度(水=1):0.91相对蒸气密度(空气=1): 3.6饱和蒸气压(kPa): 1.33(30.8℃)燃烧热(kJ/mol):4376.9临界温度(℃):369临界压力(MPa): 3.81辛醇/水分配系数的对数值: 3.2闪点(℃):34.4引燃温度(℃):490爆炸上限%(V/V): 6.1爆炸下限%(V/V): 1.12.化学性质遇明火极易燃烧。

光或存在过氧化物催化剂时,极易聚合放热导致爆炸。

与氯磺酸、发烟硫酸、浓硫酸反应剧烈,有爆炸危险。

有毒,对人体皮肤、眼和呼吸系统有刺激性。

空气中最高容许浓度为100ppm。

苯乙烯在高温下容易裂解和燃烧,生成苯、甲苯、甲烷、乙烷、碳、一氧化碳、二氧化碳和氢气等。

苯乙烯蒸气与空气能形成爆炸混合物,其爆炸范围为1.1%~6.01%。

苯乙烯具有乙烯基烯烃的性质,反应性能极强,如氧化、还原、氯化等反应均可进行,并能与卤化氢发生加成反应。

苯乙烯暴露于空气中,易被氧化成醛、酮类。

年产20万吨乙苯氧化制苯乙烯装置工艺设计毕业设计

年产20万吨乙苯氧化制苯乙烯装置工艺设计毕业设计

年产20万吨乙苯氧化制苯乙烯装置工艺设计毕业设计第一章引言本文档旨在对年产20万吨乙苯氧化制苯乙烯装置的工艺设计进行毕业设计的研究和呈现。

第二章装置工艺设计2.1 工艺流程首先,乙苯经过预处理后进入反应器,在适当的温度和压力条件下与氧气进行氧化反应生成苯乙烯。

反应产物经过分离和纯化工序后得到纯净的苯乙烯产品。

2.2 设备选择针对年产20万吨的生产规模,需要选择适当的设备来承担反应和分离纯化过程。

根据现有技术和市场情况,我们建议选用先进的反应器和分离设备,以确保装置的高效运行和产品质量。

2.3 工艺控制为了保证装置运行的稳定性和产品的稳定品质,需要设计合理的工艺控制系统。

这包括温度、压力、流量、浓度等参数的监测和调节,以及自动化控制系统的设计和实现。

第三章装置经济评价3.1 投资估算在进行装置工艺设计的同时,需要对整个项目的投资进行估算。

这包括设备采购、建设和运营费用等方面的考虑,以便进行合理的经济评价和决策。

3.2 经济效益分析在投资估算的基础上,需要对装置的经济效益进行分析。

这包括年产量、销售价格、成本费用等方面的考虑,以便评估该装置是否具有良好的经济前景。

第四章结论本文对年产20万吨乙苯氧化制苯乙烯装置的工艺设计进行了全面的研究和分析。

通过合理选择设备和设计工艺控制系统,以及进行经济评价,可以确保装置的高效运行和良好的经济效益。

参考文献[1] 王某某,李某某. 年产20万吨乙苯氧化制苯乙烯工艺设计[J]. 化工科技,20XX(XX):XX-XX.[2] 张某某,刘某某. 乙苯氧化制苯乙烯装置经济评价[J]. 化工经济,20XX(XX):XX-XX.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计20万吨/年乙苯脱氢制苯乙烯装置工艺设计摘要苯乙烯是最重要的基本有机化工原料之一。

本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。

本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。

根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。

在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。

由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。

关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化AbstractStyrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at home and abroad, styrene reaction conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes.This design is based on the annual handling capacity of 200,000 tons of ethylbenzene production targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device .This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis has important practical significance.Keywords:Ethylbenzene,Styrene,dehydrogenation,Aspen Plus,Simulation and optimization目录1 前言 (1)1.1 苯乙烯现状及发展概况 (2)1.2 乙苯脱氢制取苯乙烯反应工艺条件研究 (2)1.2.2 温度 (2)1.2.3 进料比 (3)1.2.4 压力 (3)1.3 乙苯脱氢制苯乙烯催化剂研究 (3)1.3.1 国内外苯乙烯催化剂研究现状 (4)1.3.2 国内催化剂研发的建议 (5)1.4 苯乙烯生产方法概述 (7)1.4.1 乙苯脱氢法 (7)1.4.2 乙苯共氧化法 (7)1.4.3 甲苯为原料合成苯乙烯 (8)1.4.4 乙烯和苯直接合成苯乙烯 (8)1.4.5 乙苯氧化脱氢 (8)1.5 乙苯脱氢制苯乙烯工艺方法概述 (9)1.5.1 Lummus/UOP乙苯脱氢工艺 (9)1.5.2 Fina/Badger乙苯脱氢工艺 (9)1.5.3 乙苯脱氢选择性氧化工艺(Smart工艺) (10)1.6 Aspen Plus软件及功能简介 (10)1.7 本设计方案主要内容及意义 (12)2 设计部分 (13)2.3 设计任务书 (13)2.3.1 乙苯催化脱氢主、副反应 (13)2.3.2 乙苯脱氢催化剂 (13)2.3.3 乙苯脱氢反应条件 (13)2.3.4 乙苯脱氢工艺流程 (14)2.4 物料衡算 (14)2.4.1 脱氢绝热反应器 (15)2.4.2 油水分离器 (17)2.4.3 乙苯—苯乙烯精馏塔 (20)2.4.4 甲苯—乙苯精馏塔 (21)2.4.5 苯—甲苯精馏塔 (21)2.4.6 苯乙烯精馏塔 (22)2.5 Aspen Plus模拟工艺流程设计 (22)2.3.1 状态方程及模块的选择 (22)2.3.2 动力学方程选择 (23)2.3.3 反应部分操作参数和关键控制 (24)2.3.4 精馏部分操作参数 (34)3 设计结果与讨论 (42)3.1 苯乙烯工艺流程图及流程概述 (42)3.2 Aspen Plus软件模拟流程及其简述 (43)3.2.1 反应部分概述 (43)3.2.2 分离部分模拟 (44)3.3 主要设备工艺参数汇总 (44)3.3.1 换热器组 (44)3.3.2 反应器 (45)3.3.3 精馏分离部分 (45)3.4 公用工程一览 (45)3.4.1 加热蒸汽 (45)3.4.2 生产用电 (45)3.4.3 冷却用水 (46)3.5 讨论 (46)符号说明 (48)致谢 (49)参考文献 (50)1前言苯乙烯是一种重要的石油化工基本原料,是除聚乙烯(PE)、聚氯乙烯(PVC)、环氧乙烷(EO)以外的第四大乙烯衍生产品。

其主要用于生产和制备聚苯乙烯(PS)、丁苯橡胶(SBR)、丙二烯—丁二烯—苯乙烯(ABS)树脂、苯乙烯—顺丁烯—苯乙烯嵌段共聚物(SBS)、苯乙烯—丙烯腈(SAN)树脂和不饱和聚酯等,并广泛用在电子、汽车、建筑、包装、日用轻工等领域中。

在世界上,苯乙烯的主要生产方法为乙苯脱氢法、乙苯共氧化法、甲苯为原料合成苯乙烯法、乙烯和苯直接合成苯乙烯法和乙苯氧化脱氢法等。

其中,工业化的生产方法为乙苯催化脱氢法和乙苯共氧化法,两种方法所生产的苯乙烯分别占苯乙烯总产量的85%和15%。

目前,国内外生产苯乙烯的主要方法是乙苯脱氢法,它又包括Lummus/UOP乙苯脱氢工艺、Fina/Badger乙苯脱氢工艺和乙苯脱氢选择性氧化工艺(Smart工艺)3种工艺。

化工流程模拟(过程模拟)技术是以工艺过程的机理模型为基础,采用数学方法来描述化工过程,通过应用计算机辅助计算手段,进行过程物料衡算、热量衡算、设备尺寸估算和能量分析并做出环境和经济评价的一门新兴技术。

它是化学工程、化工热力学、系统工程、计算方法以及计算机应用技术等学科相互结合的产物,在近几十年中发展迅速,并广泛应用于化工过程的设计、测试、优化和过程的整合领域。

Aspen Plus是一个生产装置设计、稳态模拟和优化的大型通用流程模拟系统。

Aspen Plus是大型通用流程模拟系统,源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。

该项目被命名为“过程工程的先进系统”(Advanced System for Process Engineering,简称ASPEN),并于1981年底完成。

1982年为了将其商品化,成立了Aspen Tech公司,并称之为AspenPlus。

该软件经过20多年来不断地改进、扩充和提高,已先后推出了十多个版本,成为举世公认的标准大型流程模拟软件,应用案例数以百万计。

1.1苯乙烯现状及发展概况苯乙烯(SM)作为不饱和芳烃中最简单的成员,是一种广泛用于生产苯乙烯系列树脂及丁苯橡胶的重要有机化工原料。

在世界五大合成材料的产量中,苯乙烯系列树脂的产量仅次于聚乙烯和聚氯乙烯,名列第三位。

此外,苯乙烯还可用于制药、染料、农药和选矿等行业,用途十分广泛。

据统计,目前世界上已有4O多个国家可以生产苯乙烯,生产能力已经超过了21000kt/a。

我国苯乙烯生产始于五十年代末期,至2000年生产能力已达922 kt/a。

2003--2006年,我国苯乙烯产量由948kt增至2166kt。

与此同时,我国苯乙烯消费最也由3603kt增至4503kt。

长期以来,我国苯乙烯产量不能满足我国需求,2003--2006年我国苯乙烯进口量为2343~2661kt。

虽然我国苯乙烯产量不断增加,但是需求量也在逐年增加,苯乙烯对外依存度依然很高[1]。

据预测,2010年可达到3920kt/a。

新增生产能力主要是新疆独山子、上海赛科、南海壳牌、镇海炼化、惠州壳牌和广州石化等数套规模达300至600kt/a的大型苯乙烯装置。

1.2乙苯脱氢制取苯乙烯反应工艺条件研究乙苯脱氢的主反应为:1.2.2温度乙苯脱氢反应是可逆吸热反应,温度升高有利于平衡转化率的提高,也有利于反应速率的提高。

而温度提高同时加快了乙苯的裂解和加氢裂解,即随着温度的升高,乙苯转化率增加,而苯乙烯的选择性降低。

相关文档
最新文档