锐角三角函数题型分类总结
锐角三角函数知识点总结大全

锐角三角函数知识点总结大全
1.解直角三角形必备条件:(除直角外)至少知道两条边的
长度或一条边的长度和一个角的度数。
2.近似计算不能用勾股定理求边长,否则误差会很大。
3.解直角三角形解题思路总结:(除直角外)
(1)知一角求另一角题型:已知一个角的度数,用直角三角形中两锐角互余,求出另一角的度数。
(2)知两边求另一边题型:已知两边的边长,用勾股定理求出第三边的长。
(3)锐角三角函数:适用于“知角求边”或“知边求角”
的题型中。
(用sin,cos,tan,cot求出)。
4.仰角和俯角
(1)仰角:视线在水平线上方,与水平线形成的夹角。
(2)俯角:是现在水平线下方,与水平线形成的夹角。
5.锐角三角函数的性质(a为锐角)
(1)正弦的性质:
①取值范围:0<sina<1 ②增减性:a越大,sina越大(2)余弦的性质:
①取值范围:0<cosa<1 ②增减性:a越大,cosa越小联系:sina和cosa互为反函数
(3)正切的性质:
①取值范围:tana可取全体正数②a越大,tana越大
③当a无限接近90度时,tana无穷大。
(4)余切的性质
①取值范围:cota可取全体正数②当a无限接近0度时,cota无穷大③a越大,cota越小
6.锐角三角函数间的关系
(1)平方关系:sina2+cosa2=1
(2)倒数关系:tana=1
cota
(3)比值关系:①tana=sina
cosa ②cota=cosa
sina。
专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)【题型1锐角三角函数的概念】【题型2 锐角三角函数的增减性】【题型3特殊角三角函数值】【题型4 同角三角函数的关系】【题型5 互余两角三角函数的关系】【题型6 三角函数的计算】【题型1锐角三角函数的概念】1.(2022秋•道县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,则tan A 的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,∠C=90°,AC=5,BC=12,∴tan A=.故选:B.2.(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,AB=2BC,则tan B 等于( )A.B.C.D.【答案】D【解答】解:∵∠C=90°,AB=2BC,∴AC===BC,∴tan B===.故选:D.3.(2022秋•路北区校级期末)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.【答案】A【解答】解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.4.(2023•新华区校级模拟)在Rt△ABC中,∠C=90°,若c为斜边,a、b 为直角边,且a=5,b=12,则sin A的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,c===13,sin A=.故选:B.5.(2023•陈仓区模拟)如图,在Rt△ABC中,∠A=90°,AB=8,BC=10,则sin B的值是( )A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,BC=10,∴AC=,∴sin B===,故选:C .6.(2023•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,那么cos A 的值为( )A .B .2C .D .【答案】C【解答】解:在Rt △ABC 中,∠C =90°,AC =1,BC =2,由勾股定理,得AB ==.由锐角的余弦,得cos A ===.故选:C .7.(2023•金山区一模)在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则∠B 的正切值等于( )A .B .C .D .【答案】A【解答】解:∵∠ACB =90°,AC =4,BC =3,∴tan B ==.故选:A .8.(2023•长宁区一模)在△ABC 中,∠C =90°,已知AC =3,AB =5,那么∠A 的余弦值为( )A .B .C .D .【答案】C【解答】解:在Rt △ABC 中,AC =3,AB =5,故选:C.【题型2 锐角三角函数的增减性】9.(2023•未央区校级三模)若tan A=2,则∠A的度数估计在( )A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间【答案】D【解答】解:∵tan45°=1,tan60°=,而tan A=2,∴tan A>tan60°,∴60°<∠A<90°.故选:D.10.(2022秋•惠山区校级期中)已知∠A为锐角,且tan A=3,则∠A的取值范围是( )A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【答案】D【解答】解:tan30°=,tan45°=1,tan60°=,∵tan A=3,∴3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.11.(2021秋•淮北月考)已知角α为△ABC的内角,且cosα=,则α的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【答案】C【解答】解:∵cos60°=,cos45°=,∴cos60°<cosα<cos45°,∴45°<α<60°,故选:C.【题型3特殊角三角函数值】12.(2022秋•嵊州市期末)已知tan A=,∠A是锐角,则∠A的度数为( )A.30°B.45°C.60°D.90°【答案】A【解答】解:∵,且∠A是锐角,∴∠A=30°,故选:A.13.(2023•河西区模拟)计算2cos30°的结果为( )A.B.1C.D.【答案】C【解答】解:∵cos30°=,∴2cos30°=2×=.故选:C.14.(2023•肃州区三模)sin60°的相反数( )A.B.C.D.【答案】C【解答】解:∵sin60°=,∴sin60°的相反数是﹣.故选:C.15.(2023•高州市一模)在Rt△ABC中,∠C=90°,若cos A=,则∠A的大小是( )A.30°B.45°C.60°D.75°【答案】C【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A为锐角,∵cos A=,∴∠A=60°,故选:C.16.(2023•南开区二模)下列三角函数中,结果为的是( )A.cos30°B.tan30°C.sin60°D.cos60°【答案】D【解答】解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.17.(2023•河西区一模)cos60°的值等于( )A.B.C.D.【答案】D【解答】解:cos60°=,故选:D.18.(2023•东莞市校级一模)已知∠A为锐角且tan A=,则∠A=( )A.30°B.45°C.60°D.不能确定【答案】C【解答】解:∵∠A为锐角,tan A=,∴∠A=60°.故选:C.19.(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是( )A.15°B.45°C.30°D.60°【答案】D【解答】解:在Rt△ABC中,∠C=90°,∵tan B===,∴∠B=60°,故选:D.【题型4 同角三角函数的关系】20.(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.【答案】C【解答】解:由勾股定理可得sin2A+cos2A=1,∵,∴()2+cos2A=1,∴cos2A=,∴cos A=或cos A=﹣(舍去),故选:C.21.(2022秋•日照期末)若α为锐角,且sinα=,则tanα为( )A.B.C.D.【答案】D【解答】解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.22.(2022秋•桐柏县期末)已知在Rt△ABC中,∠C=90°.若sin A=,则cos A等于( )A.B.C.D.1【答案】A【解答】解:∵sin2A+cos2A=1,sin A=,∴+cos2A=1,∵∠A为锐角,∴cos A=.故选:A.23.(2022秋•滦州市期中)在Rt△ABC中,∠C=90°,,则cos A=( )A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠C=90°,=,可设BC=4k,则AB=5k,由勾股定理得,AC==3k,∴cos A==,故选:C.24.(2023•钟楼区校级模拟)在Rt△ABC中,∠C=90°,tan A=,则cos A 等于( )A.B.C.D.【答案】D【解答】解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.25.(2023秋•二道区校级月考)在Rt△ABC中,∠C=90°,若cos A=,则sin A的值为 .【答案】.【解答】解:∵sin2A+cos2A=1,又∵,∴,∴sin A=或(舍去),故答案为:.【题型5 互余两角三角函数的关系】26.(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∵∠C=90°,,∴,设BC=12x,则AB=13x,,∴,故选:D.27.(2023•二道区校级模拟)在Rt△ABC中,AC≠BC,∠C=90°,则下列式子成立的是( )A.sin A=sin B B.sin A=cos B C.tan A=tan B D.cos A=tan B 【答案】B【解答】解:A、sin A=,sin B=,sin A≠sin B,故不符合题意;B、sin A=,cos B=,sin A=cos B,故B符合题意;C、tan A=,tan B=,tan A≠tan B,故不符合题意;D、cos A=,tan B=,则cos A≠tan B,故不符合题意;故选:B.28.(2023秋•东阿县校级月考)在Rt△ABC中,∠C=90°,sin A=,则cos B 的值为( )A.B.C.D.【答案】B【解答】解:∵cos B=,sin A==,∴cos B=.故选:B.29.(2022秋•双牌县期末)已知在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=4a,AB=5a,∴AC===3a,∴tan B==,故选:D.30.(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C= .【答案】.【解答】解:如图.∵∠A=90°,tan B=,∴设AC=x,则AB=2x.∴BC==.∴sin C=.故答案为:.31.(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为 .【答案】.【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=3a,AB=5a,∴AC===4a,∴tan B===.故答案为:.【题型6 三角函数的计算】32.(2023春•江岸区校级月考)计算:.【答案】1.【解答】解:==2﹣1=1.33.(2022秋•蜀山区校级期末)计算:sin245°+tan60°•cos30°.【答案】2.【解答】解:原式=()2+×=+=2.34.(2023春•朝阳区校级期末)计算:.【答案】见试题解答内容【解答】解:=2×﹣+1﹣×=﹣+1﹣=.35.(2022秋•武功县期末)计算:sin45°+2cos30°﹣tan60°.【答案】见试题解答内容【解答】解:原式=+2×﹣=+﹣=.36.(2022秋•南通期末)计算:tan45°﹣2sin30°+4cos230°.【答案】3.【解答】解:原式==1﹣1+3=3.37.(2022秋•辛集市期末)计算:sin60°•tan30°+.【答案】1.【解答】解:原式==+=1.。
(完整)锐角三角函数题型分类总结,推荐文档

锐角二角函数•知识点一:钦角三角国数的龙* 一、 锐角三角函数定义:在 RiAABC 中,ZC=90°, ZA 、ZB 、ZC 的对边分别为 a 、b 、c, 则ZA 的正弦可表示为;5imX= _________ ,ZA 的余弦可表示为cosA= __________厶的正切:曲心 __________ ,它们弦称为ZA 的锐角三角函数2、取値范围— <^sinA< co ______________ tanA> _______ 1例如图所示,在RiAlSC 中〉乙C=9Q° .例2.锐角三角函数束值;在Rt2k45C 中,ZC=90',若 a=9, i=l2,则 c= _______________sinJ — ____ , coSu-f — ____ 9 taivl — ____ , 5in^= _____ ; cos5= ______ ; tan^= _____ .例3.已知;如图,RiATL'Af 中,Zni\r =90o …⑷丄ZV 于出点,yy=4, HV=3・ 求:sinZZW?、cosZrW?、tanZniK.典型m :类型一:直角三角形求值3第1题團 ① sin J ( ) 软边 an 5 旳对边( )1 .已知中丿ZC = 90°: tanJ= .5C-12,求・4C\ 和uo£・2. 如朗 0O 的半径OA = 16cm, OC 丄貝B 于C 点,an ^AOC =-.求肋及OC 的长.3・已知:0。
中,OC 丄朋于C 点;16cm ; dnZAOC (1) 求OQ 的半径0A 的长及弦心距 (2) 求 cos/JOC 及 tan^AOC.g4.已知是锐角,sin 」』=一;求cosA tan J 的值17对应ill 练二1. 在 RtA^C 中 7 ZC=90C 7 若BCf A£=应,则 tanJ 的值为5B.巫5C.丄 2D. 22.在t^ABC 中,ZC=90°, 52)I A=- >那么tanA 的值等于().53c 4 小 3 c 4 A.-5 B.— 5 C.- 4 D. 一3类型二利用角度转化求值,2. 如團,直径为10的CU 经过点C(Q ・5)和点O(QO);与轴的正半釉交于点D, $是》轴右侧圆弧上一点〉则代乙OBC 的值为〈)1.已知;如图,C.-3. 如图,角a 的顶点为0,它的一边在工轴的正半轴上,另一边0』上有一点P0 4),则丄如5.如國06>AC =1,则sin5的7\c.£ 知/£=卩 BC=10,A.- C.-57.如图7,在等腰直角三角形43C 中'ZC=90° , JC = 6, Z >为AC ±—点,若 tanZDA.l = -,则的长为()5求Z5的度数B.边BC. AB 的长.类型三 化斜三角形为直角三角形 例 1 如图,在△ABC 中,ZA=30c, ZB=45% AC=2\/3 、求 AB 的长.例2.已知:如團,在AABC 中,ZA4C= 120 °,肿=10,/C=5・对应岷1.如图,在RIA.ABC 中,ZBAC=90=,点D 在BC 边上,且A.4BD 是等边三甬形.若.43=2, 求A.ABC 的周长.〈结果保留根号)2. 已知:如虱 AABC 中「3=9, 3C=6,厶皿?的面枳尊于9丿求血^3. ABC 中,乙4=60 ° , .4-5=6 cm …404 cm,则44BC 的面积是类型四;利用构造直角三角形对应练习:1. ________________________________________________ 如图,4ABC 的顶点都在方格纸的格点上,则sinA= _____________ .2・如團八4、B. C 三点在正方形网络线的交点处,若将\A£C 绕着D. 1.4 羽 cm*D.L2cm :例1如图所示,AABC 的顶点杲正方形网格的格点,则sinA 的值为<10D.3.正方形网格中, 如團放乱则t^ZAOB 的值是(R求:sin 厶3C 的值.点厘逆吋针旋转得到AC8,则tanF 的值为I特殊角的三角函数值锐角a30s45°60。
锐角三角函数单元总结

第二十八章锐角三角函数单元总结【知识要点】知识点一锐角三角形锐角三角函数:如下图,在Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B)定义表达式取值范围关系正弦斜边的对边A A ∠=sin c a A =sin1sin 0<<A (∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A 余弦斜边的邻边A A ∠=cos c b A =cos1cos 0<<A (∠A 为锐角)正切的邻边的对边A tan ∠∠=A A ba A =tan 0tan >A (∠A 为锐角)对边邻边斜边ACBba c 【正弦和余弦注意事项】1.sinA、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。
2.sinA、cosA 是一个比值(数值,无单位)。
3.sinA、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。
0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数30°45°60°αsin 212223αcos 232221αtan 3313正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
正切的增减性:当0°<α<90°时,tan α随α的增大而增大,知识点二解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.直角三角形五元素之间的关系: 1.勾股定理()2.∠A+∠B=90°3.sin A==4.cos A==5.tan A==【考查题型】考查题型一正弦典例1.(2020·陕西西安市·西北工业大学附属中学九年级期中)如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为()A .43B .34C .35D .45变式1-1.(2018·西城区·北京四中九年级期中)如图,在Rt ABC ∆中,90C = ∠,10AB =,8AC =,则sin A 等于()A .35B .45C .34D .43变式1-2.(2019·山东淄博市·九年级期中)如图,在Rt △ABC 中,∠C =90°,sin A =45,AC =6cm ,则BC 的长度为()A .6cmB .7cmC .8cmD .9cm考查题型二余弦典例2.(2020·福建省泉州市培元中学九年级期中)如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于()A .55B .255C 5D .23变式2-1.(2016·辽宁铁岭市·九年级期末)在ABC 中,C 90∠= ,AB 6=,1cosA 3=,则AC 等于()A .18B .2C .12D .118变式2-2.(2019·山东滨州市·九年级期末)如图,在平面直角坐标系中,点M 的坐标为M 52),那么cosα的值是()A B .23C .252D .53考查题型三正切典例3.(2020·广东深圳市·深圳中学八年级期中)如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为()A .12B .1C .33D 变式3-1.(2018·江苏苏州市·九年级期末)如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为().A .2B C D .1变式3-2.(2020·河北唐山市·九年级期末)如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若2tan 5BAC ∠=,则此斜坡的水平距离AC 为()A .75mB .50mC .30mD .12m考查题型四特殊角的三角函数值典例4.(2018·南昌市期末)点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是()A .(32,12)B .(-32,-12)C .(-32,12)D .(-12,-32)变式4-1.(2019·山东淄博市·九年级期中)下列式子错误的是()A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30°变式4-2.(2018·河北唐山市·九年级期末)如果△ABC 中,sin A =cos B =22,则下列最确切的结论是()A .△ABC 是直角三角形B .△ABC 是等腰三角形C .△ABC 是等腰直角三角形D .△ABC 是锐角三角形考查题型五同角的三角函数典例5.(2018·山东潍坊市·九年级期末)在Rt △ABC 中,∠C =90°,sinA=45,则cosB 的值等于()A .35B .45C .34D .55变式5-1.(2018·浙江台州市·九年级期末)在Rt △ABC 中,cosA=12,那么sinA 的值是()A .22B .32C .33D .12变式5-2.(2018·湖南岳阳市·九年级期末)在Rt ABC 中,C 90∠= ,如果4cosA 5=,那么tanA 的值是()A .35B .53C .34D .43考查题型六解直角三角形典例6.(2020·东北师大附中明珠学校九年级期中)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为()A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα变式6-1.(2020·山东枣庄市·九年级期末)如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为()A .102B .3C .4D .104变式6-2.(2019·辽宁沈阳市·九年级期末)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为()A .11米B .(36﹣)米C .D .(36﹣考查题型七利用解直角三角形相关知识解决实际问题典例7.(2019·河南许昌市·九年级期末)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者.在消防车上点A 处测得点B 和点C 的仰角分别是45°和65°,点A 距地面2.5米,点B 距地面10.5米.为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数.参考数据:≈1.4)变式7-1.(2018·江苏无锡市·九年级期末)如图,为了测量出楼房AC的高度,从距离楼底C 处603D(点D与楼底C在同一水平面上)出发,沿斜面坡度为3的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).变式7-2.(2018·山西晋中市期末)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB 的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)。
第7章锐角三角函数(题型分类全解)

第7章锐角三角函数一、知识点梳理--------锐角三角函数【考点1】如图,在Rt △ABC 中,∠C =90°, a 、b 分别是∠A 的对边和邻边,c 是斜边。
1、正切将∠A 的对边a 与邻边b 的比叫做∠A 的正切,记作:tanA . 即:baA A A =∠∠=的邻边的对边tan2、正弦将∠A 的对边a 与斜边c 的比叫做∠A 的正弦,记作:sinA 即:c aA A =∠=斜边的对边sin3、将∠A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作:cosA 即cbA A =∠=斜边的邻边cos【考点2】特殊角三角函数值【考点3】解直角三角形---------构造直角三角形 1、解直角三角形-------已知元素至少有一个是边在直角三角形中,除直角外,由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形。
2、方法点拨(1)涉“斜”选“弦”的策略 ( 2) 无“斜”选“切”的策略3、方位角方位角:首先确定好基准点,然后在基准点做好坐标,规定以南北方向为始边,左右旋转即可得到方位角.4、仰角和俯角5、坡度或破比通常把坡面的铅直高度h和水平宽度l的比hl叫做坡面的坡度或坡比,坡面与水平面的夹角叫做坡角,通常用α表示,即tanα=hl.显然,坡度越大,坡角越大,坡面就越陡.6、利用解直角三角形的知识解决实际问题的过程:.(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据问题中的条件,适当选用锐角三角函数等解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.二、题型分类全解1、在Rt△ABC中,∠C=90°,AB=10,sin A=35,cos A=45,tan A=34,则BC的长为( )A.6B.7.5C.8D.12.52、在Rt△ABC中,∠C=90°,若∠A=60°,AC=20 m,则BC是3、如图,在Rt △ABC 中,∠C =90°,AC =2,BC =6,解这个直角三角形.3、如图,在锐角△ABC 中,AB=10,AC=32,53sin B ,求(1)C tan (2)BC 长4.在△ABC 中,若∠C =90°,sin A =12,AB =2,则△ABC 的周长为__ __.5.在Rt △ABC 中,∠C =90°,有两边长分别为3和4,则sin A 的值为__ _.6.如图28-2-8,在△ABC 中,BD ⊥AC ,AB =6,AC =5 3,∠A =30°. (1)求BD 和AD 的长; (2)求tan C 的值.7、如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,连结CD 与AB 相交于点P ,则tan∠APD 的值是( ) A .2 B .C .D .8、如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为( )A .12B .1CD9、若a ,β是一个三角形的两个锐角,且满足2sin tan 0αβ⎫-+-=⎪⎪⎝⎭,则此三角形是________.10、如图,若直线y =-3x +3与x 轴所形成的锐角为α,求α的正切值.11、如图, 在Rt △ABC 中, ∠A=90°,AB=AC,D 为AC 上的一点,AD=13AC,求tan ∠DBC 的值12、如图,将矩形ABCD沿CE 折叠,点B 恰好落在边AD 上的点F 处,如果AB BC =23.求tan ∠DCF 的值.13、如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC 、BD ,若AC =2,则cosD = .14、如图,⊙O 是△ABC 的外接圆,AB 为直径,OD ∥BC 交⊙O 于点D ,交AC 于点E ,连接AD 、BD 、CD.(1)求证:AD =CD ;(2)若AB =10,cos ∠ABC =35,求tan ∠DBC 的值.15.如图,AB 是⊙O 的直径,CD 与⊙O 相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E. (1)求证:DC =DE ;(2)若tan ∠CAB =12,AB =3,求BD 的长.16、热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m.这栋楼有多高?17、如图,小明想测量河对岸的一幢高楼AB的高度,在河边C处测得楼顶A的仰角是60°,在距C处60米的E处有幢楼房,小明从该楼房距离地面20米的D处测得高楼顶端A的仰角是30°(点B,C,E在同一直线上,且AB,DE均与地面BE垂直),求楼AB的高度.18、如图一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度(精确到0.1米,参考数据:2≈1.414,3≈1.732).19、如图,某建筑物BC上有一旗杆AB,小明在与BC相距12 m的F处,观测到旗杆顶部A的仰角为60°,底部B的仰角为45°,小明的眼睛E与地面的距离EF为1.6 m.(1)求建筑物BC的高度;(2)求旗杆AB的高度.(结果精确到0.1 m,参考数据:2≈1.41,3≈1.73)三、才华展示1、(8分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)2、(3分)如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C 处的俯角为17°.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为 m .(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)4、如图,梯子斜靠在与地面垂直(垂足为O )的墙上,当梯子位于AB 位置时, 它与地面所成的角∠ ABO = 60°;当梯子底端向右滑动1 m (即BD = 1m )到达CD 位置时,它与地面所成的角∠ CDO = 51°18′,求梯子的长. (参考数据:sin 51°18′ ≈ 0.780,cos 51°18′ ≈ 0.625,tan51°18′ ≈ 1.248)。
锐角三角函数分类总结 经典 含答案

锐角三角函数锐角三角函数锐角三角函数值的变化情况锐角三角函数关系互余两角的三角函数关系同角三角函数关系特殊角的三角函数值锐角三角函数的定义一、锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切,统称为锐角∠A 的三角函数。
题型1 锐角三角函数的定义例1 在R ABC t ∆中,∠C=090,AC=15,BC=8,分别求∠A 、∠B 的四个三角函数值。
解:815 A B C例2 已知 在R ABC t ∆中,CD 是斜边AB 上的高,AD=8,BD=4,求A tan 的值。
22 8A BC D 4例3 用正弦函数、余弦函数的定义说明:1cos sin 22=+A A例4、P 是∠α的边OA 上一点,且P 点的坐标为()4,3,求ααtan ,sin 的值。
题型二、锐角三角函数之间的关系例5 设α为锐角,1、已知53sin =α,求αααcot ,tan ,cos 的值。
2、已知43tan =α,求αααcot ,cos ,sin 的值 例6、已知α为锐角,2tan =α,求ααααsin 5cos 4cos sin 3-+的值67-题型三、利用三角函数的变化情况化简例7、已知:在⊿ABC 中,∠C=090,化简A A cos sin 21题型四 锐角三角函数的综合应用例8、已知:在⊿ABC 中,AB=AC ,∠BAC=1200,D 是BC 中点,DE ⊥AB 于E ,试说明EB=3EA AB C D E例9、⊿ABC 中,D 是AB 中点,DC ⊥AC ,且∠BCD=300,求∠CDA 的正弦、余弦、和正切的值。
A BC D E。
锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。
一、 化简或求值例1 (1)已知tan 2cot 1αα-=,且α的值。
(2)化简()()22sin cos cos sin a b a b αααα++-。
分析 (1)由已知可以求出tan α可用1tan cot αα=⋅;(2)先把平方展开,再利用22sin cos 1αα+=化简。
解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得tan 2α=或tan 1α=-。
又α是锐角,∴tan 2α=。
==tan cot αα-。
由tan 2α=,得1cot 2α==tan cot αα-=13222-=。
(2)()()22sin cos cos sin a b a b αααα++-=2222sin 2sin cos cos a ab b αααα+⋅⋅++2222cos 2cos sin sin a ab b αααα-⋅⋅+=()()222222sin cos sin cos a b αααα+++=22a b +。
说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα⋅=等。
二、已知三角函数值,求角例2 在△ABC 中,若223cos sin 022A B ⎛⎫-+-= ⎪ ⎪⎝⎭(),A B ∠∠均为锐角,求C ∠的度数。
分析 几个非负数的和为0,则这几个数均为0。
由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。
解 由题意得2cos 0,23sin 0.2A B ⎧-=⎪⎪⎨⎪-=⎪⎩解得2cos ,23sin .3A B ⎧=⎪⎪⎨⎪=⎪⎩又∵,A B ∠∠均为锐角,∴45A ∠=,60B ∠=。
∴18075C A B ∠=-∠-∠=.说明 解这类问题首先要熟记特殊角的三角函数值,还要掌握一些化简的技巧。
锐角三角函数全章复习

B
D
C
专题二、锐角三角函数的性质
1.锐角三角函数的增减性: (1)当角度在00~900之间变化时, 正弦和正切值随角度的增大而增大; 余弦随角度的增大而减小。 (2)当∠A为锐角时, 0<sinA<1;0<cosA<1; tanA>0 2.互余两角的三角函数之间关系 ∠A为锐角时,sinA=cos(900-∠A) cosA=sin(900-∠A)
• 例4.若∠A为锐角,且 cosA≤0.5,则∠A的范围是( ) A.00<∠A≤600 B.600≤∠A<900 C.00<∠A≤300 D.300≤∠A<900
• 例5.当锐角A>450时,下列不等式 中不成立的是 ( )
2 A. sin A 2 2 B. cos A 2 C. t an A 1 D. t an A 1
• 例6.下列不正确的是(
A. sin 48 37 cos 41 21
0 / 0 / 2
)
B.RtABC中,C=90 ,则sin A sin B 1
0 2
C.RtABC中,C=90 ,则AB=ACsinB
0
1 D.RtABC中,C=90 ,则 sinB cosB tanB
0
专题三、解直角三角形及其应用
1.定义; 2.直角三角形边角关系; 3.解直角三角形的应用 (1)在测量距离方面的应用; (2)在工程建筑、航空、航海等 方面的应用.
• 例7.在△ABC中,
BC 1 3, B 60 ,
0
∠C=450,求AB的长
A
B
C
• 例8.A、B之间有条河,原来从A到B需 过桥CD:A→D→C→B。 A 现建桥EF,可沿直线AB 从A到B.已知 D ∠A=450, C ∠B=300,BC= E 11km,CD∥AB, F 则现在从A到B比 原来少走多少路程?