三角函数题型分类总结
三角函数高考题型分类总结

三角函数高考题型分类总结根据出现频率和难度程度,三角函数的高考题型可以分为以下几类:1.求解三角函数值:给定某个角度,求其正弦、余弦、正切等函数值。
这是三角函数的基本应用,通常难度较低。
2.证明恒等式:要求学生运用三角函数的基本公式和性质,证明某些三角函数的恒等式。
难度较高。
3.解三角形:给定某些三角形的一些角度或边长,要求学生利用三角函数的基础知识求解其余角度或边长。
难度较高。
4.求解三角方程:给定某些三角函数的式子,要求学生解出该式的解集。
这种题型通常需要学生掌握一定的三角函数公式,难度较高。
5.综合应用:要求学生将三角函数运用到实际问题中,如求解高度、距离等。
考察学生对三角函数的理解和应用能力。
难度较高。
除了以上几种常见的题型,还可能出现一些变形题,需要学生根据题目情况灵活运用三角函数的知识。
总的来说,三角函数在高考中的重要性不言而喻,学生需要扎实掌握相关知识和技能。
6.三角函数的图像与性质:考察三角函数的图像、周期、奇偶性、单调性等性质,需要学生掌握函数图像的绘制和相关概念的理解。
7.复合三角函数:考察学生对三角函数复合的概念和公式的掌握,需要注意不同变换下函数值的变化。
8.三角函数的导数:考察学生对三角函数的导数概念和计算方法的掌握,包括链式法则、求导公式等内容。
9.反三角函数:考察学生对反三角函数的定义、性质和公式的掌握,需要注意定义域、值域和解的判断。
10.三角函数的应用:考察学生将三角函数用于实际问题的解决,如解决三角形、距离等问题。
总的来说,三角函数是高中数学中重要的一部分,掌握好三角函数的知识对于高考的成绩至关重要。
在复习中,学生需要注重基础知识的巩固,深入理解概念和定理,做好练习题和真题的训练,同时灵活应用所学知识解决实际问题。
三角函数十大题型

三角函数十大题型三角函数是数学中的重要概念,与几何图形和三角形的关系密切相关。
在学习三角函数时,有一些常见的题型是必须要熟练掌握的。
下面将介绍三角函数的十大题型以及解题方法。
1. 求角度的正弦、余弦、正切值对于给定的三角函数值,如正弦值sinα=1/2,我们需要求出对应的角度α。
对于求解这类问题,我们可以通过查表法或使用计算器进行近似计算。
2. 求角度的值域与周期对于三角函数中的角度,不同的函数具有不同的值域和周期。
例如,正弦函数的值域是[-1, 1],周期是2π。
需要掌握各个三角函数的值域和周期,以便在解题过程中进行合理的计算和判断。
3. 角度的性质和恒等变换三角函数中的角度具有一些特殊的性质和恒等变换,如正弦函数的奇偶性、余弦函数的周期性等。
掌握这些性质和变换可以简化问题的求解过程。
4. 通过图像求解问题三角函数的图像可以帮助我们理解和解决问题。
例如,通过观察正弦函数的图像,我们可以确定其最大值、最小值、零点等信息,从而解决与角度相关的问题。
5. 解三角函数方程三角函数方程是指包含三角函数的方程,需要求解其中的未知量。
解三角函数方程时,我们可以通过恒等变换、化简和换元等方法,将其转化为简化的方程组或方程,从而求解出未知量的值。
6.求三角函数的导数求三角函数的导数是解决曲线变化问题的基础。
通过计算三角函数的导数,我们可以求解与速度、加速度等相关的问题。
7. 三角函数的图像变换通过对三角函数进行平移、伸缩和翻转等图像变换,可以得到新的三角函数图像。
掌握这些图像变换可以帮助我们更好地理解和运用三角函数。
8. 三角函数的复合运算在三角函数的求解过程中,经常会遇到要求解三角函数的复合运算,如sin(2x)、cos(2x)等。
掌握三角函数的复合运算可以帮助我们简化问题,并得到更简洁的解答。
9. 三角函数与三角恒等式的运用三角函数与三角恒等式是数学中的重要工具,可以帮助我们简化问题,并得到更方便的解答。
掌握三角函数与三角恒等式的运用可以提高解题的效率和准确性。
三角函数求最值五种题型

三角函数求最值五种题型一、最值问题的一般解法:求解三角函数的最值问题可以分为以下五种题型:基本最大、基本最小、最大最小(上下界)、最大、最小。
1.基本最大:即求函数的最大值,通常通过对函数进行求导并令导数为零来求得。
这种情况下,需求导数在给定区间内的零点,并进行极值判断来确定最值。
2.基本最小:与基本最大相反,求函数的最小值,同样需要对函数进行求导并求导数为零,进行极值判断来确定最值。
3.最大最小(上下界):在给定区间内求函数的最大最小值,需将区间的端点以及函数的驻点和不可导点的值进行比较,以确定最大最小值。
4.最大:在给定区间内寻找函数的最大值。
可以通过对函数进行求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最大值。
5.最小:在给定区间内寻找函数的最小值。
同样可以通过求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最小值。
二、详细解答五种题型:以下是对上述五种题型的详细解答:1.基本最大:Example 1: 求函数f(x) = sin(x)的最大值。
解:首先求得导数f'(x) = cos(x),令cos(x) = 0,解得x = π/2 + kπ,其中k为整数。
然后对于x = π/2 + kπ,求得对应的函数值f(x) = sin(π/2 +kπ) = (-1)^k,即奇数项取最大值为1,偶数项取最小值为-1所以函数f(x) = sin(x)的最大值为12.基本最小:Example 2: 求函数f(x) = cos(x)的最小值。
解:同样求导得到f'(x) = -sin(x),令-sin(x) = 0,解得x = kπ,其中k为整数。
然后对于x = kπ,求得对应的函数值f(x) = cos(kπ) = (-1)^k,即奇数项取最小值为-1,偶数项取最大值为1所以函数f(x) = cos(x)的最小值为-13.最大最小(上下界):Example 3: 在区间[0, 2π]内,求函数f(x) = 2sin(x) + cos(x)的最大最小值。
三角函数经典题型总结

三角函数的经典题型主要包括以下几个方面:
1. 三角函数的基本性质和公式应用:
-三角函数的基本关系:sin²θ+ cos²θ= 1,tanθ= sinθ/cos θ等。
-诱导公式:sin(α±β),cos(α±β),tan(α±β)等的公式。
-二倍角公式、半角公式、和差化积、积化和差公式等。
2. 解三角形问题:
-正弦定理:a/sinA = b/sinB = c/sinC。
-余弦定理:a²= b²+ c²- 2bc cosA,同理可得其他边和角的关系。
-利用正弦定理和余弦定理解决边角关系问题。
3. 三角函数图像和性质:
-正弦函数、余弦函数、正切函数的图像及其周期性、奇偶性、单调性、对称性等性质。
-利用图像解三角函数方程和不等式。
4. 三角函数的应用问题:
-在物理中的应用,如振动问题、波动问题、光学问题等。
-在地理学中的应用,如地图上的方位角、距离计算等。
-在工程学中的应用,如结构力学、电路分析等。
5. 三角函数的复合与逆运算:
-复合三角函数的运算,如sin(cosx),cos(sinx)等。
-三角函数的反函数,如arcsin(x),arccos(x),arctan(x)等。
6. 三角恒等式的证明:
-利用三角函数的基本关系和公式进行恒等式的变形和证明。
以上就是三角函数的一些经典题型总结,掌握这些题型的解题方法和技巧,可以有效地提高解决三角函数问题的能力。
高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
高考三角函数题型归纳总结

高考三角函数题型归纳总结
高考解三角函数题型归纳总结
一、函数值的计算
1.由某个函数的定义求指定的函数值
2.由表达式求某个函数的值
3.由一切三角函数的基本等式求某个函数的值
二、函数的延长
1.函数的延长:对某个函数的符号或值作一定重新定义,以推广原函数的定义域,使原值可以成为新函数的值
2.求函数值时把原函数的值替换新定义的函数的值
三、函数的平移
1.对某个函数作一定的平移变换,使其实轴、值轴都做出一定的平移
2.函数按照平移变换规则,将原函数的值按比例地经过初始点再离开
四、函数的综合运用
1.记住一些常见的组合等式,如:sinα±cosα=sincosα、sin α-cosα=-2sinsinα/2
2.按延长或平移变换,用组合等式解决具体问题
3.用其他三角函数的关系转换,把一种函数转换成另一种,如tanα=sinα/cosα。
- 1 -。
三角函数解三角形题型归类

三角函数解三角形题型归类一知识归纳:(一)任意角、弧度制及任意角的三角函数1.角的概念(1)任意角:①定义:角可以看成平面内绕着端点从一个位置旋转到另一个位置所成的;②分类:角按旋转方向分为、和.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S=.(3)象限角:使角的顶点与重合,角的始边与,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个,负角的弧度数是一个负数,零角的弧度数是 .(2)角度制和弧度制的互化:180°=π rad,1°=π180rad ,1rad =⎝ ⎛⎭⎪⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α= ,cos α= ,tan α= .(2)任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=y x(x ≠0)4.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. (二)公式概念1.三角函数诱导公式⎝ ⎛⎭⎪⎫k 2π+α(k ∈Z)的本质奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时把α看成是锐角).2.两角和与差的三角函数公式(1)sin(α±β)=sin αcos β±cos αsin β;(2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.3.二倍角公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α,cos2α=1+cos 2α2,sin2α=1-cos α2;(3)tan 2α=2tan α1-tan2α.(三)正、余弦定理及其变形:1.正弦定理及其变形在△ABC中,asin A=bsin B=csin C=2R(其中R是外接圆的半径);a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a2R,sin B =b2R,sin C =c2R.2.余弦定理及其变形a 2=b 2+c 2-2bc cos A ; cos A =b 2+c 2-a 22bc.b 2= ; cos B = ;c 2= . cos C = .3.三角形面积公式:S △ABC =12ah =12ab sin C =12ac sin B =_________________=abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .2.整体法:求y=A sin(ωx+φ)(ω>0)的单调区间、周期、值域、对称轴(中心)时,将ωx+φ看作一个整体,利用正弦曲线的性质解决.3.换元法:在求三角函数的值域时,有时将sin x(或cos x)看作一个整体,换元后转化为二次函数来解决.4.公式法:y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=A tan(ωx+φ)的最小正周期为π|ω|.(2016年全国卷1)4.△ABC的内角A,B,C的对边分别为a,b,c.已知5a=,2c=,2cos3A=,则b=(A)2(B)3(C)2(D)36.将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为 (A )2sin(2)4y x π=+(B )2sin(2)3y x π=+(C )2sin(2)4y x π=-(D )2sin(2)3y x π=-14.已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-=————————————.(2015年 全国卷1)8. 函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B (II )若90B =o ,且2,a =求ABC ∆的面积.(2014年 全国卷1) 2.若0tan >α,则 A. 0sin >α B. 0cos >α C. 02sin >α D.02cos >α 7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测学科网得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .(2013年 全国卷1)9.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为( )10.已知锐角ABC∆的内角,,A B C的对边分别为,,a b c,223cos cos 20A A +=,7a =,6c =,则b =(A )10 (B )9 (C )8 (D )516.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______.(2012年 全国卷1)9.已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π417.(本小题满分12分)已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,3sin sin c a C c A =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆的面积为3,求b ,c .三、题型归纳题型一、三角函数定义的应用 1.若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y等于( ) A.-33B.33C.-3 D.3变式1.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4 题型二、三角函数值的符号 2.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4变式2.设α是第二象限角,P (x,4)为其终边上的一点,且cosα=15x,则tanα=( )A.43B.34C.-34D.-4 3题型三、同角三角函数关系式的应用3.已知tan θ=2,则sin2θ+sin θcos θ-2cos2θ等于( )A.-43B.54C.-34D.454.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A.-32B.32C.-34D.34变式3.已知sin α-cos α=2,α∈(0,π),则tan α等于( )A.-1 B.-22C.22D.1题型四 诱导公式的应用5.(1)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α=________.(2)sin(-1 200°)cos 1 290°+cos(-1 020°)sin(-1 050°)=______变式4.已知角α终边上一点p(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为题型五、三角函数的图形变换6.(1)要得到函数y =sin ⎝⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位(2)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入部分数据,如下表:(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移π6个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.变式5.已知函数y =2sin ⎝⎛⎭⎪⎫2x +π3.(1)求它的振幅、周期、初相;(2)说明y =2sin ⎝⎛⎭⎪⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.题型六、三角函数的性质问题7.(1)函数y =2sin ⎝ ⎛⎭⎪⎫π3-2x 的单调增区间为________.(2)已知函数f (x )=cos ⎝⎛⎭⎪⎫ωx +φ-π2⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,则y =f ⎝ ⎛⎭⎪⎫x +π6取得最小值时x 的集合为( ) A.⎩⎨⎧⎭⎬⎫x |x =k π-π6,k ∈ZB.⎩⎨⎧⎭⎬⎫x |x =k π-π3,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x =2k π-π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z(3)函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( )A.关于点⎝ ⎛⎭⎪⎫π2,0对称B.关于直线x =5π12对称C.关于点⎝ ⎛⎭⎪⎫5π12,0对称D.关于直线x =π12对称(4)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最小值,则函数y =f ⎝ ⎛⎭⎪⎫3π4-x 是( )A.奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称 B.偶函数且图象关于点(π,0)对称C.奇函数且图象关于直线x =π2对称 D.偶函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称变式6.已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.题型七、最值与值域问题 8.已知函数2()(sinx cosx)cos 2f x x =++。
三角函数高考题型分类总结

三角函数高考题型分类总结
在高考数学中,三角函数是一个重要的考点,通常会涉及到以下几种题型分类:
1. 求特殊角的值:考生需要掌握常见角度(如30°、45°、60°)对应的正弦、余弦、正切值等,以及这些值的简单性质。
2. 求三角函数的基本关系:包括正弦定理、余弦定理、正切的定义等。
考生需要能够根据已知条件利用这些关系式求解各种三角函数的值。
3. 化简与证明:考生需要根据三角函数的性质进行化简或证明,例如利用和差化积、倍角公式、半角公式等来简化复杂的三角函数表达式。
4. 解三角函数方程:要求考生解出满足某个条件的三角函数方程,例如求解sin x = 0、cos x = 1/2等。
解题方法包括利用特殊角的周期性、利用图像、利用性质变形等。
5. 三角函数的图像与性质:要求考生根据给定的函数表达式画出三角函数的图像,并利用图像分析函数的周期性、单调性、奇偶性等性质。
6. 三角函数的应用:考生需要掌握利用三角函数解决实际问题的方法,例如利用正弦定理解决三角形的边长或角度、利用余弦定理解决三角形的边长或角度、利用正切函数解决两点之间的高度差等。
这些是一些常见的三角函数的高考题型分类,通过理解和掌握这些题型,考生可以更好地应对高考数学中的三角函数相关题目。
当然,具体的考题形式还需要根据不同的考试要求和出题风格来进行针对性的准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 三角函数题型分类总结三角函数公式一览表 .................................................................................................................. 错误!未定义书签。
一 求值问题 ........................................................................................................................................................... - 1 -练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 -练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 -练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 -练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 -练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 -练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 -练习 ................................................................................................................................................................. - 9 -一 求值问题类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4sin 5θ=,θ是第二象限角,求cos ,tan θθ类型2 给值求值 例1 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.练习1、sin330︒= tan690° = o585sin =2、(1)α是第四象限角,12cos 13α=,则sin α= (2)若4sin ,tan 05θθ=->,则cos θ= . (3)已知△ABC 中,12cot 5A =-,则cos A = . (4) α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+=3、(1) 已知sin 5α=则44sin cos αα-= .(2)设(0,)2πα∈,若3sin 5α=,则2cos()4πα+= . (3)已知3(,),sin ,25παπα∈=则tan()4πα+= 4、下列各式中,值为23的是( ) (A )2sin15cos15︒︒ (B )︒-︒15sin 15cos 22(C )115sin 22-︒(D )︒+︒15cos 15sin 22 5. (1)sin15cos75cos15sin105+= (2)cos 43cos77sin 43cos167oooo+= 。
6.(1) 若sin θ+cos θ=15,则sin 2θ= (2)已知3sin()45x π-=,则sin 2x 的值为(3) 若2tan =α ,则ααααcos sin cos sin -+=7. 若角α的终边经过点(12)P -,,则αcos ==8.已知3cos()22πϕ+=,且||2πϕ<,则tan ϕ= 9.若cos 22πsin 4αα=⎛⎫- ⎪⎝⎭cos sin αα+= 10.已知53)2cos(=-πα,则αα22cos sin -的值为 ( )A .257B .2516-C .259D .257-11.已知sin θ=-1312,θ∈(-2π,0),则cos (θ-4π)的值为 ( ) A .-2627 B .2627 C .-26217 D .26217二 最值问题 相关公式两角和差公式;二倍角公式;化一公式例 求函数3sin 4cos y x x =+的最大值与最小值 例 求函数23sin 4sin 4y x x =+-的最大值与最小值 例.求函数21sin cos (sin cos )y x x x x =++++的值域。
练习1.函数()sin cos f x x x =最小值是 。
2.函数()(1)cos f x x x =,02x π≤<,则()f x 的最大值为3.函数()cos 22sin f x x x =+的最小值为 最大值为 。
4.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于 5.设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .6.动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1 BCD .27.函数2()sin cos f x x x x=+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1B.12C.32三 单调性问题相关公式:(1) 正余弦函数的单调性; (2)化一公式例 已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求函数()f x 的单调增区间. 练习1.函数]),0[()26sin(2ππ∈-=x x y 为增函数的区间是 ( ).A. ]3,0[πB. ]127,12[ππC. ]65,3[ππ D. ],65[ππ 2.函数sin y x =的一个单调增区间是 ( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.函数()sin ([,0])f x x x x π=∈-的单调递增区间是 ( ) A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 4. 设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间34ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数四.周期性问题相关公式:二倍角公式;化一公式;两角和差公式 公式:(1) 正(余)弦型函数sin()(,0)y A x A ωϕω=+>的最小正周期2T πω=,(2)正切型函数tan()(0)y A x ωφω=+>的最小正周期T πω=, 例1 已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求函数()f x 的最小正周期.例2 函数()|sin |f x x =的周期是 。