初中三角函数知识点题型总结+课后练习

合集下载

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案)阳光老师:祝你学业有成一、选择题(本大题共30小题,共150.0分)1.点在函数的图象上,则m等于A. 0B. 1C.D. 2【答案】C【解析】【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值.【解答】解:由题意知,所以,所以.2.用五点法画,的图象时,下列哪个点不是关键点A. B. C. D.【答案】A【解析】【分析】本题考查三角函数图象的作法,属于基础题.熟练掌握五点法作图即可.【解答】解:用“五点法”画,的简图时,横坐标分别为,纵坐标分别为0,1,0,,0,故选A.3.函数y x,x的大致图象是A. B.C. D.【答案】B【解析】【分析】本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案.【解答】解:“五点法”作图:x0010010121故选B.4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关键点的是A. B. C. D.【答案】A【解析】【分析】本题考查三角函数图象的画法以及余弦函数的性质,属于基础题.分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案.【解答】解:,分别令,,,,得,3,4,3,2,所以五个关键点为,,,,,可知A不属于.故选A.5.已知函数的图象与直线恰有四个公共点,,,,其中,则A. B. 0 C. 1 D.【答案】A【解析】【分析】本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题.由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解.【解答】解:由得其图象如图所示,当,,,由图知切点坐标为,切线方程为:,又切线过点,则,即,故选A.6.函数的部分图象可能是A. B.C. D.【答案】A【解析】【分析】本题考查函数的图象的判断,函数奇偶性的运用,属于基础题.先判断出此函数是奇函数,再根据时,函数值为正即可找出可能的图象.【解答】解:函数是奇函数,故其图象关于原点对称,故排除B;又当时,函数值为正,仅有A满足,故它的图象可能是A中的图.故选A.7.函数恰有两个零点,则m的取值范围为A. B. C. D.【答案】C【解析】【分析】本题考查三角函数的图象及函数零点.考查数形结合以及计算能力,属于中档题.将零点个数问题转化为交点问题,即与的交点个数,作出图象,数形结合可得答案.【解答】解:,的零点个数,就是与的交点个数,作出的图象,如图,由图象可知当或时,函数与有两个交点,故当函数恰有两个零点时,m的取值范围为.故选C.8.下列关于函数的表述正确的是A. 函数的最小正周期是B. 当时,函数取得最大值2C. 函数是奇函数D. 函数的值域为【答案】D【解析】【分析】本题主要考查正弦型函数的图象性质,函数的奇偶性、周期性及值域等,属于基础题.利用正弦型函数的性质,可得奇偶性、周期性及函数的值域,逐项分析,可得正确答案.【解答】解:函数的最小正周期是,故A错误;B.当时,函数,故B错误;C.函数是非奇非偶函数,故C错误;D.因为,故函数的值域为,故D正确.故选D.9.下列函数中,周期为,且在上为减函数的是A. B.C. D.【答案】A【解析】【分析】本题考查正余弦函数,以及三角函数单调性和单调区间和周期性,属于基础题,可直接利用相关定义和正余弦函数单调性以及单调区间进行作答.【解答】解:考虑函数周期为,于是对形如的三角函数,必有,因此排除选C、D,又时,有,又因为正弦函数在区间上单调递减,于是选项A符合题意,余弦函数在区间上单调递增,故选项B错误.故本题选项为A.10.若函数与函数在区间上的单调性相同,则的一个值是A. B. C. D.【答案】D【解析】【分析】本题考查了函数的单调性与单调区间、正弦、余弦函数的图象与性质的相关知识,试题难度较易【解答】解:在区间上是单调递减,在上单调递增,在上单调递减,故排除A.在单调递增,在上单调递减,故排除B.在单调递增,在上单调递减,故排除C.在区间上也是单调递减,故选D.11.已知函数图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位后,得到的图象关于y轴对称,那么函数的图象A. 关于点对称B. 关于点对称C. 关于直线对称D. 关于直线对称【答案】A【解析】【分析】本题考查函数的性质及函数图象变换,同时考查诱导公式,利用函数的周期性、函象变换规律、诱导公式,求得的解析式,再利用函数的图象的对称性,得出结论.【解答】解:因为函数图象相邻两条对称轴之间的距离为,所以最小正周期为,所以,则把其图象向左平移个单位后得到函数的图象,因为得到的图象关于y轴对称,所以,,又,所以,所以,当时,函数,所以的图象关于点对称.故选A.12.下列函数既是奇函数又在上是增函数的是A. B. C. D.【答案】D【解析】【分析】本题考查了诱导公式,正弦、余弦函数的图象与性质,函数的定义域与值域,对数函数及其性质,复合函数的单调性,函数的奇偶性和指数函数及其性质.利用诱导公式和正弦的奇偶性对A进行判断,再利用函数的定义域对B进行判断,再利用对数函数的单调性,结合复合函数的单调性对C进行判断,最后利用指数函数的单调性和复合函数的单调性,结合函数的奇偶性对D进行判断,从而得结论.【解答】解:对于A,因为是上的减函数,所以A不符合题目条件对于B,因为函数在没有定义,所以B不符合题目条件对于C,因为是其定义域内的减函数,所以C不符合题目条件对于D,因为函数是奇函数,且在上是增函数,所以D符合题目条件.故选D.13.已知函数的零点依次构成一个公差为的等差数列,把函数的图象沿x轴向右平移个单位,得到函数的图象,则函数A. 在上是增函数B. 其图象关于直线对称C. 函数是偶函数D. 在区间上的值域为【答案】D【解析】【分析】本题考查了三角函数图象的变换、三角函数图象的性质及三角函数的值域,属于中档题.由题意,先得到,根据三角函数图象的变换得到,再逐个分析选项即可得解.【解答】解:,因为函数的零点构成一个公差为的等差数列,所以函数的最小正周期,则,即,把函数的图象沿x轴向右平移个单位,得到函数的图象,则,易得:是在上为减函数,其图象关于直线对称,且函数为奇函数,故选项A,B,C错误,当时,,函数的值域为,故选项D正确,故选:D.14.已知,在这两个实数x,y之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为A. B. C. D.【答案】C【解析】【分析】本题考查等差数列的后三项的最大值的求法,涉及圆的参数方程,三角函数的辅助角公式和三角函数的性质,等差数列的性质等,是中档题.根据题意,设插入的三个数为a、b、c,即构成等差数列的五个数分别为x,a,b,c,y,由等差数列的性质可得b、c的值,分析可得这个等差数列后三项和为,进而根据,设,,解答表示为角的三角函数形式的表达式,利用辅助角公式化简,利用三角函数性质能求出最大值.【解答】解:根据题意,设插入的三个数为a、b、c,即构成等差数列的五个数分别为x,a,b,c,y,则有,则,,则这个等差数列后三项和为,又由,设,,则,即这个等差数列后三项和的最大值为;故选:C.15.已知,的最大值为a,最小值为b,的最大值为c,最小值为d,则A. B. C. D.【答案】A【解析】解:,,,,即,,,,又,.故选:A.本题考查了三角函数的性质的运用和复合函数的值域计算.属于中档题.16.已知直线与函数,其中的相邻两交点间的距离为,则函数的单调递增区间为A. B.C. D.【答案】B【解析】解:与函数,其中的相邻两交点间的距离为,函数的周期,即,得,则,由,,得,,即函数的单调递增区间为,,故选:B.根据最值点之间的关系求出周期和,结合三角函数的单调性进行求解即可.本题主要考查三角函数单调性的应用,根据最值性求出函数的周期和,以及利用三角函数的单调性是解决本题的关键.难度不大.17.已知函数,下列结论中正确的是A. 函数的最小正周期为B. 函数的图象关于直线对称C. 函数的图象关于点对称D. 函数在内是增函数.【答案】D【解析】解:A错,最小正周期为,当时,,B错,当时,,单调递增,D成立,故选:D.利用正弦函数的性质判断即可.考查正弦函数的图象和性质的应用,基础题.18.函数的最小正周期是A. B. C. D.【答案】C【解析】解:对于,,函数是函数轴上方的图象不动将x轴下方的图象向上对折得到的,如图示,故,故选:C.先求出的周期,再由函数是函数轴上方的图象不动将x 轴下方的图象向上对折得到,故其周期是原来的一半,得到答案.本题主要考查三角函数的最小正周期的求法和加绝对值后周期的变化.对于三角函数不仅要会画简单三角函数的图象还要会画加上绝对值后的图象.19.关于函数,给出下列命题:函数在上是增函数;函数的图象关于点对称;为得到函数的图象,只要把函数的图象上所有的点向右平行移动个单位长度.其中正确命题的个数是A. 0B. 1C. 2D. 3【答案】C【解析】【分析】本题主要考查正弦函数的图象和性质,属于基础题.由时,可得,由的单调性即可判断;由可得,,即可判断;根据函数的图象平行移动规则即可判断.【解答】解:对于,时,,在上不是增函数,故错;对于,由可得,,可得函数的图象关于点对称,故正确;对于,函数的图象上所有的点向右平行移动个单位长度可得,故正确;故选:C.20.已知函数是上的增函数,且满足,则的值组成的集合为A. B. C. D.【答案】A【解析】【分析】本题主要考查了正弦函数的性质,解决本题的关键是根据题意得到的值,属于较难题.首先根据函数在上是单调的得到,再结合,函数在上是增函数,从而得到的值,进而求得的值.【解答】解:函数是上的增函数,,,又,或当时,,2,10;当时,,6,.又函数在上是增函数,或,则当时,,当时,,的值组成的集合为故选A.21.函数的定义域为A. B.C. D.【答案】C【解析】【分析】本题考查三角函数的定义域,根据题意列出不等式,利用正弦函数的图象与性质解之即可.【解答】解:,,,.故选C.22.函数的值域为A. B. C. D.【答案】A【解析】解:,,当时,函数取最大值,当时,函数取最小值,.故选:A.由,可得,利用正弦函数的单调性即可得出.本题考查了正弦函数的单调性,考查了推理能力与计算能力,属于基础题.23.函数的值域为A. B. C. D.【答案】A【解析】【分析】本题主要考查三角函数的图象与性质、辅助角公式,属于中档题由题意,令,去绝对值,再利用辅助角化简,结合正弦函数的性质求解即可.【解答】解:由题意,令,则,因为,所以,所以,即,所以,所以函数的值域为.故选A.24.函数在下面哪个区间内是增函数A. B. C. D.【答案】B【解析】【分析】本题考查函数的单调性,属于基础题.求导,利用导函数大于零,解三角不等式,进而求得结果.【解答】解:令,则,可得,结合选项可知B正确,故选B.25.函数的值域是A. B. C. D.【答案】D【解析】【分析】本题考查求余弦函数在给定区间上的值域,属于基础题.【解答】解:因为在递增,递减,且,所以的值域是.故选D.26.下列函数中,最小正周期为的是A. B. C. D.【答案】D【解析】【试题解析】解:由于函数不是周期函数,故排除A;由于函数的周期为,故B不正确;由于函数的周期为,故排除C;由于函数的周期为,故D正确,故选:D.由题意利用三角函数的周期性,得出结论.本题主要考查三角函数的周期性,属于基础题.27.下列函数中,最小正周期是且图象关于直线对称的是A. B.C. D.【答案】B【解析】【分析】本题考查了三角函数的周期与对称性,直接由三角函数的性质求出最小正周期与对称轴即可得到答案.【解答】解:由题意知,当时,y可取得最值,即或.对于A,将代入,可得,故排除A;对于B,将代入,可得,故B正确;对于C,的周期为,故排除C;对于D,将代入,可得,故排除D.故选B.28.函数的图象与直线交点的个数是A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题主要考查了正弦函数的图象,属于基础题利用“五点作图法”作出函数的图象,确定出与直线只有1个交点.【解答】解:由函数的图象如图所示,可知其与直线只有1个交点.故选B.29.函数的定义域为A. B.C. D. R【答案】C【解析】【分析】本题主要考查的是求函数的定义域和余弦函数的图象与性质,属于基础题.要使函数有意义需满足,再结合余弦函数的性质求解即可.【解答】解:要使函数有意义,则,得,所以,.故选C.30.下列不等式正确的是A. B.C. D.【答案】B【解析】【分析】本题考查诱导公式,正余弦函数的图像和性质根据诱导公式化简,再由正余弦函数的性质比较大小.【解答】解:在单调递增,,,故此A选项错误;,,所以B正确;对于C,由结合正切函数的单调性,可得,得C正确对于D,,,,此时余弦函数为减函数,,即,故D错误.故选BC.二、不定项选择题(本大题共7小题,共28.0分)31.关于函数,下列选项正确的是A. 是偶函数B. 在区间单调递增C. 在有4个零点D. 的最大值为2【答案】AD【解析】【分析】本题考查三角函数的性质,根据条件结合三角函数的图象和性质逐项判断即可,属于基函数的性质;在当时,,利用零点定义借助奇偶性即可得到答案;利用最值定义即可判断.【解答】解:,故是偶函数,A对;时,,故在区间单调递减,B错;当时,,令得到或,又在是偶函数,故在有3个零点,分别为,C错;,故,又,故的最大值为2,D对.故选AD.32.函数在一个周期内的图象如图所示,则A. 该函数的解析式为B. 该函数的对称中心为C. 该函数的单调递增区间是D. 把函数的图象上所有点的横坐标变为原来的,纵坐标不变,可得到该函数图象【答案】ACD【解析】【分析】本题考查三角函数的图象与性质,考查正弦函数的图象与性质,属于中档题目.根据函数图象得出函数解析式,再借助正弦函数的图象与性质得出答案即可.【解答】解:由图可知,函数的周期为,故即,代入最高点有.因为故故A正确.对B,的对称中心:故该函数的对称中心为故B错误.对C,单调递增区间为,解得故C正确.对D,把函数的图象上所有点的横坐标变为原来的,纵坐标不变,可得到故D正确.故选ACD.33.下面选项正确的有A. 存在实数x,使B. 若,是锐角的内角,则C. 函数是偶函数D. 函数的图象向右平移个单位长度,得到的图象【答案】ABC【解析】【分析】本题考查辅助角公式,正弦函数的性质,诱导公式的运用,考查余弦函数的性质,函数的图象与性质,属于中档题.将各个选项进行逐一分析求解即可.【解答】解:A选项:,则,又,存在x,使得,可知A正确;B 选项:为锐角三角形,,即,,又且在上单调递增,,可知B正确;C选项:,则,则为偶函数,可知C正确;D 选项:向右平移个单位得:,可知D错误.故选A B C.34.以下关于正弦定理或其变形正确的有A. 在中,若,则B. 在中,C. 在中,若,则,若,则都成立D. 在中,【答案】BCD【解析】【分析】本题主要考查正弦定理及其变形,还考查了理解辨析的能力,属于中档题.A.根据内角的范围,由,得或,再边角转化判断B.在中,根据正弦定理得:,再结合正弦函数的值域判断C.根据判断D.根据正弦定理,由判断.【解答】解:在中,若,则或,所以或,故A错误.B.在中,由正弦定理得:,因为所以,故B正确.C.在中,由正弦定理得,所以是充要条件,故C正确.D.在中,由正弦定理得,所以,故D正确.故选:BCD.35.已知函数,下列结论中正确的是A. 函数的周期为的偶函数B. 函数在区间上是单调减函数C. 若函数的定义域为,则值域为D. 函数的图象与的图象重合【答案】BD【解析】【分析】本题主要考查了余弦函数的图像与性质,函数的奇偶性以及三角函数的定义域及值域,属于中档题.根据三角函数的性质对各选项进行分析,判断正误即可.【解答】解:对于A,由题意可得:,因为,,所以,故A不正确,对于B,当时函数单调减函数,解得,故B正确.对于C,由B可知,是单调增区间,是单调减区间,最大为,下边界为,或者,因为,值域为,故C不正确,对于D,,两图像重合,故D正确,故选BD.36.如图,已知函数其中,,的图象与x轴交于点A,B,与y轴交于点C,,,,则下列说法正确的有.A. 的最小正周期为12B.C. 的最大值为D. 在区间上单调递增【答案】ACD【解析】【分析】本题主要考查由函数的部分图象求解析式,正弦函数的定义域和值域,正弦函数的图象和性质,涉及向量的坐标运算,属于中档题.由函数的图象以及,,,,求出A,BC,D坐标,代入解析式,求出,,A的值,再利用正弦函数的定义域和值域,正弦函数的图象和性质,判断各个选项是否正确,从而得出结论.【解答】解:由题意可得:,,,,,,.,,,,把代入上式可得:,.解得,,可得周期,故A正确.,,解得,故B错误.,,解得.函数,故C正确.时,,,可得:函数在单调递增.综上可得:ACD正确.故选ACD.37.将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,则下列判断正确的是A. 曲线关于直线对称B. 曲线关于点对称C. 函数在上单调递增D. 函数在上单调递减【答案】ABC【解析】【分析】本题考查三角函数的图象的变换,函数的简单性质的应用,是基本知识的考查,属于中档题.利用三角函数的图象变换,结合三角函数的简单性质,判断选项的正误即可.【解答】解:将函数的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得函数的图象,令,得,故曲线关于直线对称,故A正确;令,得,故曲线关于点对称,故B正确;在上,,函数单调递增,故C正确;在上,,函数没有单调性,故D错误,故选:ABC.三、填空题(本大题共7小题,共35.0分)38.设函数,若函数在内恰有4个不同的零点,则实数m的取值范围是__________.【答案】【解析】【分析】本题考查了函数的零点与方程的根的关系,正余弦函数图象的画法.画出函数的图象,问题转化为和在内恰有4个不同的交点,结合图象读出即可.【解答】解:画出函数在的图象,如图示:若函数在内恰有4个不同的零点,即和在内恰有4个不同的交点,结合图象,.故答案为.39.函数的定义域是__________.【答案】【解析】【试题解析】【分析】本题考查了函数的定义域,根据对数函数的性质可得,然后根据正弦函数的性质解不等式可得答案.【解答】解:由题意可得,函数满足,即.由正弦函数的图象知,在上的解集为,所以在R上的解集为,故函数的定义域为.40.设锐角三个内角A,B,C所对的边分别为a,b,c,若,,则c的取值范围为_________.【答案】【解析】【分析】本题主要考查正弦定理,余弦定理以及正弦函数的性质,属于中档题.根据已知及余弦定理化简可得,结合正弦定理与正弦函数的性质可得c的取值范围.【解答】解:由及余弦定理得,,,又为锐角三角形,,由正弦定理得,,由,得,,,的取值范围为,故答案为.41.若在上是减函数,则a的最大值是________.【答案】【解析】【分析】本题考查辅助角公式,正弦函数的单调性,属于基础题.利用辅助角公式化简,再利用正弦函数的单调性求得a的最大值.【解答】解:,当,即时,单调递增,单调递减.函数在上是减函数,,,的最大值为.故答案为.42.四棱锥中,底面ABCD是边长为2的正方形,侧面SAD是以SD为斜边的等腰直角三角形,若,则四棱锥的体积取值范围为______.【答案】【解析】【试题解析】【分析】本题考查棱锥体积的求法,考查了线面垂直、面面垂直的判定及性质定理,考查了运算求解能力,逻辑思维能力,是较难题.由题意可知,平面平面ABCD,过作于,根据线面,面面垂直的判定及性质定理可证平面ABCD,表示出,设,结合勾股定理计算得,通过求解SO的取值范围,从而四棱锥的体积取值范围可求.【解答】解:如图:,,,平面SAB,,则平面平面ABCD,过S作于O,平面SAB,平面平面,则平面ABCD,因为平面ABCD,所以.故,在中,,设,则,,在中,,因此在中,,则有,又,所以,所以,则,四棱锥的体积取值范围为.故答案为.43.如果函数的图象关于点中心对称,那么的最小值为__________.【答案】【解析】【分析】本题主要考查了正弦、余弦函数的图象与性质,属于一般题.由题意知,,解得,当时,.【解答】解:由题意知,,解得,当时,.44.在区间范围内,函数与函数的图象交点有______个.【答案】1【解析】【试题解析】解:因为“”,故与,在内的图象无交点,又它们都是奇函数,从而与,在内的图象也无交点,所以在区间范围内,函数与函数的图象交点的个数为1个,即坐标原点.故答案为:1通过,以及与的奇偶性,分,求解即可.本题是基础题,考查正切函数,正弦函数的图象及性质;可以在同一坐标系中,作出与,在内的图象,容易误认为3个交点.四、解答题(本大题共8小题,共96.0分)45.已知点,是函数图象上的任意两点,角的终边经过点,且当时,的最小值为.求函数的解析式求函数的单调递增区间当时,不等式恒成立,求实数m的取值范围.【答案】解:角的终边经过点,.,.由时,的最小值为,得,即,,令,,得,函数的单调递增区间为,当时,,,恒成立,等价于恒成立,又,实数m的取值范围是【解析】利用三角函数的定义求出的值,由时,的最小值为,可得函数的周期,从而求出,进而可求得函数的解析式,属于中档题.利用正弦函数的单调区间,可求函数的单调区间.当时,不等式恒成立,等价于,由此可求实数m的取值范围.46.设函数,.已知,函数是偶函数,求的值;求函数的值域.【答案】解:由,得,为偶函数,,,或,,,,,函数的值域为:.【解析】本题考查了三角函数的奇偶性和三角函数的图象与性质,关键是熟练掌握三角恒等变换,属中档题.函数是偶函数,则,根据的范围可得结果;化简函数得,然后根据x的范围求值域即可.47.已知函数,.Ⅰ求函数的最小正周期与单调增区间;Ⅱ求函数在上的最大值与最小值.【答案】解:由题意得,,Ⅰ的最小正周期为:,令得,,所以函数的单调增区间是;Ⅱ因为,所以,所以,即,所以,当且仅当时,取最小值,当且仅当时,即时最大值.【解析】根据题意、二倍角的正弦、余弦公式、两角和的正弦公式运算化简,Ⅰ由三角函数的周期公式求出周期,再由正弦函数的单调递增区间求出此函数的增区间;Ⅱ由x的范围求出求出的范围,再由正弦函数的性质求出次函数的最大值、最小值.本题考查正弦函数的单调性、最值,以及三角恒等变换的公式的应用,考查了整体思想的应用.48.设.Ⅰ求的单调区间;Ⅱ在锐角中,角的对边分别为,若,,求面积的最大值.【答案】解:Ⅰ由题意知:.由,,可得,;由,,可得,.所以的单调递增区间是;单调递减区间是.Ⅱ由,得,由题意知角A为锐角,所以.由余弦定理,可得,即,当且仅当时等号成立.因此,所以面积的最大值为.【解析】本题主要考查了三角恒等变形,三角函数的图象与性质,余弦定理,三角形面积公式以及基本不等式的应用,考查运算求解能力,属于中档题.Ⅰ利用二倍角公式和诱导公式化简,再利用三角函数的单调性即可求出单调区间;Ⅱ先求出角A,再利用余弦定理和基本不等式求出bc的最大值,即可求出面积的最大值.49.设函数.求的最小正周期和对称中心;当时,求函数的最值.【答案】解:,的最小正周期是,令,,解得,,可得对称中心为,.当时,,可得,可得函数,即函数的最小值为,最大值为.【解析】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,考查了转化思想和函数思想,属于中档题.利用三角函数恒等变换的应用可求函数解析式,利用三角函数。

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数定义知识点及例题[练习与答案]超强推荐

三角函数的定义专题关键词: 三角函数的定义 终边 弧长公式 扇形面积 同角的基本关系 学习目标: 理解角的概念,掌握同角三角函数基本关系☆ 对角的概念的理解:(1)无界性 R ∈α 或 ),(+∞-∞ (2)周期性(3)终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Zπαπ=+∈;α终边在坐标轴上的角可表示为:,2k k Zπα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。

(答:Zk k ∈+,32ππ)☆ 角与角的位置关系的判断 (1) 终边相同的角 (2) 对称关系的角(3) 满足一些常见关系式的两角例如:若α是第二象限角,则2α是第_____象限角 :一、三)☆ 弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈.例如:已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

(答:22cm )☆ 三角函数的定义:高中阶段对三角函数的定义与初中的定义从本质上讲不同。

但既有联系,又有区别。

定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。

(完整版)初中三角函数知识点总结及典型习题含答案)

(完整版)初中三角函数知识点总结及典型习题含答案)

( 1)2009
3
10. 计算:
2. 原式 = 2
3 3
2
3 1 1=0. 3
依据:①边的关系: a 2 b2 c2 ;②角的关系: A+B=90°;③边角关系:三角函数的定义。 ( 注意:
尽量避免使用中间数据和除法 ) 2、应用举例: (1) 仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
仰角 俯角
水平线
h
i h:l
视线
α
l
(2) 坡面的铅直高度 h 和水平宽度 l 的比叫做坡度 ( 坡比 ) 。用字母 i 表示,即 i 的形式,如 i 1:5 等。
80 .
3
BC CD BD 240 80=160. 答:这栋大楼的高为 160 米.
8. 如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由 45°降为 30°,已知 原滑滑板 AB的长为 4 米,点 D、B、C在同一水平面上.
(1)改善后滑滑板会加长多少米? (2)若滑滑板的正前方能有 3 米长的空地就能保证安全,原滑滑板的前方有 6 米长的空地,像这 样改造是否可行?请说明理由. (参考数据: 2 1.141, 3 1.732 , 6 2.449 ,以上结果均保留到小数点后两位. )
线,∠ ABC=150°, BC的长是 8m,则乘电梯从点 B到点 C上升的高度 h
是( B )
CD
A. 8 3 m
3
B
.4 m
1
h
C. 4 3 m
D
.8 m
A
B
B
4. 河堤横断面如图所示,堤高 BC=5米,迎水坡 AB的坡比是 1: 3 (坡比是坡

《任意角的三角函数》知识点总结及典型例题

《任意角的三角函数》知识点总结及典型例题

任意角的三角函数模块一、角的概念及其推广要点一、角的相关概念 (1)角的概念角可以看成是由平面内一条射线(起始边)绕着端点旋转到一个新的位置(终边)所形成的图形。

(2)角的分类⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角要点二、终边相同角 (1)终边相同角的定义设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{},360|Z k k S ∈︒⋅+==αββ。

集合S 的每一个元素都与α的终边相等,当0=k 时,对应元素为α。

(2)注意①相等的角终边一定相同,但终边相同的角不一定相等;终边相同的角有无数个,它们相差︒360的整数倍。

②角的集合表示形式是不唯一的。

要点三、象限角与轴线角(1)象限角定义:角α顶点与原点重合,角的始边与x 轴非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为: 第二象限角的集合为:第四象限角的集合为:终边落在x 轴正半轴上角的集合: 终边落在x 轴负半轴上角的集合: 终边在x 轴上的角的集合为: 终边落在y 轴正半轴上角的集合: 终边落在y 轴负半轴上角的集合: 终边在y 轴上的角的集合为: 终边落在坐标轴上角的集合:(2)注意:终边落在同一条直线上的角相差︒180的整数倍,终边落在同一条射线上的角相差︒360的整数倍。

要点四、区间角、区域角区间角是介于两个角之间的角的集合,区域角是介于某两角终边之间的角的集合。

区域角是无数个区间角的集合。

注意:锐角都是第一象限角,但第一象限角不都是锐角;小于90°的角不都是锐角,它还包括零角和负角,只有小于90°的正角才是锐角。

考点一、求终边相同的角的集合例1.(1)写出所有与︒-650终边相同的角的集合,并在︒︒360~0范围内,找出与︒-650角终边相同的角。

(2)把︒-2011写成)3600(360︒≤≤︒+⋅ααk 的形式。

初中三角函数知识点总结及典型习题

初中三角函数知识点总结及典型习题

初中三角函数知识点总结及典型习题初中三角函数知识点总结及典型习题一、角度和弧度制1. 角度制:以度(°)作为单位来度量角的大小,一周为360°,一个直角为90°。

2. 弧度制:以弧长等于半径长度的圆心角为一弧度(rad),一周为2π rad,一个直角为π/2 rad。

二、常用三角函数1. 正弦函数(sin):在直角三角形中,正弦值为对边与斜边的比值。

2. 余弦函数(cos):在直角三角形中,余弦值为邻边与斜边的比值。

3. 正切函数(tan):在直角三角形中,正切值为对边与邻边的比值。

三、三角函数的周期性1. 正弦函数与余弦函数的周期均为2π。

2. 正切函数的周期为π。

四、三角函数的基本性质1. 正弦函数和余弦函数的值域为[-1,1],在[-π/2,π/2]内单调递增。

2. 正切函数的值域为(-∞,∞),在每个周期内交替上升和下降。

3. 正弦函数与余弦函数的图像为波形,以坐标原点为对称中心。

4. 正切函数的图像为周期为π的波形。

五、三角函数的正负关系1. 在第一象限,正弦函数、余弦函数和正切函数均为正。

2. 在第二象限,正弦函数为正,余弦函数和正切函数为负。

3. 在第三象限,正弦函数和正切函数为负,余弦函数为正。

4. 在第四象限,正弦函数为负,余弦函数和正切函数为正。

六、三角函数的基本公式1. 正弦函数的基本公式:sin(α±β) = sinαcosβ± cosαsinβ2. 余弦函数的基本公式:cos(α±β) = cosαcosβ∓ sinαsinβ3. 正切函数的基本公式:tan(α±β) = (tanα± tanβ) / (1∓tanαtanβ)七、三角函数之间的倒数关系1. 正弦函数与余弦函数的关系:sin(π/2-θ) = cosθ,cos(π/2-θ) = sinθ2. 正弦函数与正切函数的关系:tanθ = sinθ / cosθ,cotθ = cosθ / sinθ3. 余弦函数与正切函数的关系:tan(π/2-θ) = 1 / tanθ,cot(π/2-θ) = 1 / cotθ八、特殊角的三角函数值1. 30°的正弦值为1/2,余弦值为√3/2,正切值为1/√3。

三角函数第一二节知识点及练习题含答案

三角函数第一二节知识点及练习题含答案

三角函数知识点1.①与α ( 0o < a < 360° )终边一样的角的集合(角 {夕 ∣∕ = Aχ360°+αM ∈z}②终边在X 轴上的角的集合:M∕ = -180°M∈Z } ③终边在y 轴上的角的集合:{夕∕ = "180°+90F ∈z} ④终边在坐标轴上的角的集合:∖β∖β = k×90∖kez} ⑤终边在尸轴上的角的集合:物IP = ZXI800+45°∕ ∈z} ⑥终边在y = -x 轴上的角的集合:MIP = AXI800-45Fez}⑦假设角α与角夕的终边关于X 轴对称,那么角α与角耳的关系:α = 360*-夕 ⑧假设角α与角夕的终边关于y 轴对称,那么角α与角力的关系:α = 3602 + 180°-夕 ⑨假设角α与角夕的终边在一条直线上,那么角α与角夕的关系:α = 180Z +/⑩角。

与角夕的终边互相垂直,那么角α与角〃的关系:α = 360Z +尸土90° 2.角度与弧度的互换关系:360O=2Λ- 180O=Λ- 1O=0.01745 1=57.30O=57O18,注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.弧度与角度互换公式:Irad=竺2°=57° 18' I 0 =,_»0.01745 (rad)π1803、弧长公式:/=|a1r. 扇形面积公式:S 扇形=g∕r = ;IaI •产4、三角函数:设a 是一个任意角,在α的终边上任取(异于原点的)一点P (x, y ) P 与原点的距离为r,那么sina= ~ » CoSa = Mtana =2; cota=-irrXyr ∙ r SeCa =―,・ csca = •X y5、三角函数在各象限的符号:(一全二正弦,三切四余弦)6、三角函数线正弦线:MP;余弦线:OM; 正切线:AT.7.三角函数的定义域:a 与角力的终边重合): SMCoS1.角函数俵大小关系图1、2、3、4表示第一、二、三、四象限•半所在区域8、同角三角函数的根本关系式:包3 = tanα* CoSa SinaIana COta = I CSCa sina = I seca∙cosa = Isin2 a+ cos2a = 1 sec2 a-tan2a -1 csc2 a-cot2a = I任意角1.以下命题中正确的选项是()A.终边在y轴非负半轴上的角是直角B.第二象限角一定是钝角C.第四象限角一定是负角S=a +左∙360° ( λr∈Z),那么a与f终边一样2.终边落在X轴上的角的集合是( )A. { a I a =k ∙ 360° ,K∈Z }B. { a ∣ a=(2k+l)・ 180° ,K∈Z )C. { a I a =k ∙ 180° , K∈Z }D. { a ∣a =k ∙ 180o +90o , K∈Z }3.角a =45°+ k∙ 180o , A ∈ Z 的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限4.设A = {小于90"的角}, 5 = {锐角},C={第一象限的角},。

三角函数第一二节知识点及练习题(含答案)

三角函数第一二节知识点及练习题(含答案)

三角函数第一二节知识点及练习题(含答案)1.①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Zkk∈+=,360|αββο②终边在某轴上的角的集合:{}Zkk∈=,180|οββ③终边在y轴上的角的集合:{}Zkk∈+=,90180|οοββ④终边在坐标轴上的角的集合:{}Zkk∈=,90|οββ⑤终边在y=某轴上的角的集合:{}Zkk∈+=,45180|οοββ⑥终边在某y-=轴上的角的集合:{}Zkk∈-=,45180|οοββ⑦若角α与角β的终边关于某轴对称,则角α与角β的关系:βα-=kο360⑧若角α与角β的终边关于y轴对称,则角α与角β的关系:βα-+=οο180360k⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=kο180⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk2.角度与弧度的互换关系:360°=2π180°=π1°=0.017451=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.弧度与角度互换公式:1rad=π180°≈57.30°=57°18ˊ1°=180π≈0.01745(rad)3、弧长公式:rl=||α.扇形面积公式:211||22lrrα==扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P(某,y)P与原点的距离为r,则ry=αin;r某=αco;某y=αtan;y某=αcot;某r=αec;.yr=αcc.5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP;余弦线:OM;正切线:AT.7.三角函数的定义域:SIN\COS1、2、3、4表示第一、二、三、四象限一半所在区域三角函数定义域=)(某fin某{}R某某∈|=)(某fco某{}R某某∈|=)(某ftan某∈+≠∈Zkk某R某某,21|ππ且=)(某fcot某{}Zkk某R某某∈≠∈,|π且=)(某fec某∈+≠∈Zkk某R某某,21|ππ且=)(某fcc某{}Zkk某R某某∈≠∈,|π且8、同角三角函数的基本关系式:αααtancoin=αααcotinco=1cottan=αα1incc=αα1coec=αα1coin22=+αα1tanec22=-αα1cotcc22=-αα任意角1.下列命题中正确的是()A.终边在y轴非负半轴上的角是直角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°(k∈Z),则α与β终边相同2.终边落在某轴上的角的集合是()Α.{α|α=k·360°,K∈Z}B.{α|α=(2k+1)·180°,K∈Z}C.{α|α=k·180°,K∈Z}D.{α|α=k·180°+90°,K∈Z}3.角α=45°+k·180°,k∈Z的终边落在()A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限4.设o{90A=小于的角},{B=锐角},{C=第一象限的角},00{900}D=小于而不小于的角,那么有().A.BCAB.BACC.D(ACI)D.CDI=B5.将分针拨快10分钟,则分针转过的弧度数是()(A)3π(B)3π-(C)6π(D)6π-6.若2弧度的圆心角所对的弧长4cm,则这个圆心角所夹的扇形的面积是()(A)4cm2(B)2cm2(C)4πcm2(D)2πcm27.如果α与4某π+具有同一条终边,β与4某π也具有同一条终边,那么α与β间的关系是()(A)0αβ+=(B)2παβ-=(C)()2kkZαβπ+=∈(D)()22kkZπαβπ-=+∈8.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧的弧长是()(A)2(B)in2(C)2in1(D)2in19.已知112kθπα=+,222kθπα=-(12,kkZ∈,α是锐角),则1θ与2θ的终边位置关系是()(A)关于某轴对称(B)关于y轴对称(C)关于原点对称(D)重合10.已知扇形的周长是6cm,面积为2cm2,则扇形的中心角的弧度数是()(A)1(B)4(C)1或4(D)2或4三角函数1.有下列命题:①终边相同的角的三角函数值相同;②同名三角函数的值相同的角也相同;③终边不相同,它们的同名三角函数值一定不相同;④不相等的角,同名三角函数值也不相同.其中正确的个数是()A.0B.1C.2D.32.若角α、β的终边关于y轴对称,则下列等式成立的是()A.inα=inβB.coα=coβC.tanα=tanβD.cotα=cotβ3.角α的终边上有一点P(a,a),a∈R,a≠0,则inα的值是()A.22B.-22C.22或-22D.14.若某某in|in|+|co|co某某+某某tan|tan|=-1,则角某一定不是()A.第四象限角B.第三象限角C.第二象限角D.第一象限角5.in2·co3·tan4的值()A.小于0B.大于0C.等于0D.不存在6.若θ是第二象限角,则()A.in2θ>0B.co2θ<0C.tan2θ>0D.cot2θ<07.已知角α的正弦线的长度为单位长度,那么角α的终边() A.在某轴上B.在y轴上C.在直线y=某上D.在直线y=-某上8.如果4π<θ<2π,那么下列各式中正确的是()A.coθ<tanθ<inθB.inθ<coθ<tanθC.tanθ<inθ<coθD.coθ<inθ<tanθ9.若A、B是锐角△ABC的两个内角,则P(coB-inA,inB-coA)在()A.第一象限B.第二象限C.第三象限D.第四象限10.若inαtanα>0,则α的终边在()A.第一象限B.第四象限C.第二或第三象限D.第一或第四象限11.若角α的终边与直线y=3某重合且inα<0,又P(m,n)是角α终边上一点,且|OP|=10,则m-n等于()A.2B.-2C.4D.-412.若角α的终边经过P(-3,b),且coα=-53,则b=_________,inα=_________.13.在(0,2π)内满足某2co=-co某的某的取值范围是_________.14.已知角α的终边在直线y=-3某上,则10inα+3ecα=_________.15.已知点P(tanα,coα)在第三象限,则角α的终边在第_________象限.16.若0≤θ<2π,则使tanθ≤1成立的角θ的取值范围是_________.17.在(0,2π)内使in某>|co某|的某的取值范围是_________.任意角1.D2.C3.A4.D三角函数1.B2.A3.C4.D5.A6.C7.B8.D9.D10.D11.A12.±4±5413.[2π,2π3]14.015.二16.[0,4π]∪(2π,4π]∪(2π3,2π)17.(4π,4π3。

三角函数知识点及简单例题

三角函数知识点及简单例题

三角函数任意角三角函数任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是)0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是yrx r y x x y r x r y ======ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值)可以简记为“一全、二正、三切、四余”为正.三、经典例题导讲 [例1]填入不等号:(1) ;(2) tan3200_______0;(3);(5)。

[例2] 若A 、B 、C 是ABC ∆的三个内角,且)2(π≠<<C C B A ,则下列结论中正确的个数是( )①.C A sin sin < ②.C A cot cot < ③.C A tan tan < ④.C A cos cos < A .1 B.2 C.3 D.4[例3] 若角α满足条件0sin cos ,02sin <-<ααα,则α在第( )象限. [例4]已知角α的终边经过)0)(3,4(≠-a a a P ,求ααααcot ,tan ,cos ,sin 的值.[例5]已知α是第三象限角,化简ααααsin 1sin 1sin 1sin 1+---+三角函数基本关系式与诱导公式平方关系:1cos sin 22=+αα;商数关系:αααcos sin tan =;倒数关系:1cot tan =⋅αα 三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限. [例1]已知=∈=+θπθθθcot 051cos sin ),则,(,__________ [例2]求证:(1)sin (2π3-α)=-cos α; (2)cos (2π3+α)=sin α.[例3]若函数)2cos(2sin )2sin(42cos 1)(x x a x x x f --++=ππ的最大值为2,试确定常数a 的值.[例4]化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.三角函数的恒等变换1.两角和、差、倍、半公式 两角和与差的三角函数公式βαβαβαs i n c o s s i n s i n )s i n (±+=± βαβαβαs i n s i n c o s c o s )c o s ( =±βαβαβαt a n t a n 1t a n t a n )t a n( ±=±二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=半角公式2cos 12sin2αα-=, 2c o s 12c o s 2αα+= , αααcos 1cos 12tan 2+-= αααααsin cos 1cos 1sin 2tan -=+= [例1] 13.已知sincos22θθ+=那么sin θ的值为 ,cos2θ的值为 ; [例2] △ABC 中,已知cosA=135,sinB=53,则cosC 的值为( )A.6516B.6556C.6516或6556D.6516-[例3]求值:213)sin124cos 122︒-︒-[例4]已知函数2()(cos sin cos )f x a x x x b =++ (1)当0a >时,求()f x 的单调递增区间; (2)当0a <且[0,]2x π∈时,()f x 的值域是[3,4],求,a b 的值.三角函数的图像与性质)sin(ϕω+=x A y +)0,0(>≠ωA B 中,ω,,B A 及ϕ,对正弦函数x y sin =图像的影响,应记住图像变换是对自变量而言.x y 2sin =向右平移6π个单位,应得)6(2sin π-=x y ,而不是)62sin(π+=x y 用“五点法”作)sin(ϕω+=x A y )0,0(>≠ωA 图时,将ϕω+x 看作整体,取2,0π,πππ2,23,来求相应的x 值及对应的y 值,再描点作图.)sin(ϕω+=x A y )0,0(>>ωA 单调性的确定,基本方法是将ϕω+x 看作整体,如求增区间可由22ππ-k ≤ϕω+x ≤)(22z k k ∈+ππ解出x 的范围.若x 的系数为负数,通常先通过诱导公式处理.[例1] 为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图像,可以将函数x y 2cos =的图像( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π[例2]要得到y=sin2x 的图像,只需将y=cos(2x-4л)的图像 ( ) A.向右平移8л B.向左平移8л C.向右平移4л D.向左平移4л[例3]下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot(x+4π),其中以点(4π,0)为中心对称的三角函数有()个. A .1 B .2C .3D .4[例4]函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是 ( )A. ]3,0[πB. ]127,12[ππC. ]65,3[ππD. ],65[ππ[例5]已知定义在区间]32,[ππ-上的函数y π]32,6[ππ-∈x 时,函数()sin()(ϕω>+=A x A x f 其图像如图所示. (1)求函数)(x f y =在]32,[ππ- (2)求方程22)(=x f 的解.x解三角形及三角函数的应用解三角形的的常用定理:(1) 内角和定理:π=++C B A 结合诱导公式可减少角的个数.(2) 正弦定理:R C cB b A a 2sin sin sin ===(R 指△ABC 外接圆的半径) )sin 21sin 21sin 21(B ac A bc C ab S ===(3) 余弦定理: 222cos 2c C ab b a =-+及其变形. (4) 勾股定理: 222c b a ABC Rt =+∆中[例1]在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

45、0 锐角三角函数题型训练类型一:直角三角形求值1.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,178sin=A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC=,则tan EFC ∠的值为 ( )A.34 B.43 C.35D.453. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠=,则AD 的长为( )A .2 B .2 C .1 D .224. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316求∠B 的度数及边BC 、AB 的长. 类型三. 化斜三角形为直角三角形例1 (2012?安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.对应训练1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形例1 (2012?内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A .12 B .55 C .1010 D .255对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.特殊角的三角函数值例1.求下列各式的值︒-︒+︒30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0-33tan30°-tan45°= 030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+= ︒-︒+︒60tan 45sin 230cos 2 tan 45sin 301cos 60︒+︒-︒=DABC在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数. 例2.求适合下列条件的锐角??. (1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α(5)已知??为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数. 例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. 已知A 为锐角,且030sin cos <A ,则 ( )A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90° 例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c , ①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B Atan tan 1______. ④直角三角形中成比例的线段(如图所示). 在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.类型一例1.在Rt △ABC 中,∠C =90°.(1)已知:a =35,235=c ,求∠A 、∠B ,b ;(2)已知:32=a ,2=b ,求∠A 、∠B ,c ; (3)已知:32sin =A ,6=c ,求a 、b ;(4)已知:,9,23tan ==b B 求a 、c ; (5)已知:∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .例2.已知:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.例3.已知:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长. 例4.已知:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长. 类型二:解直角三角形的实际应用 仰角与俯角:例1.(2012?福州)如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( ) A . 200米B . 200米C . 220米D . 100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离m 23=DE ,求点B 到地面的垂直距离BC .例3(昌平)19.如图,一风力发电装置竖立在小山顶上,小山的高BD =30m . 从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA =60°, 测得山顶B 的仰角∠DCB =30°,求风力发电装置的高AB 的长.例4 .如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.例5.已知:如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m .现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求山的高度及缆绳AC 的长(答案可带根号).例5.(2012?泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的仰角为60°,则物体AB 的高度为( ) A . 10米B . 10米C . 20米D .米例6.(2012?益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒) 类型四. 坡度与坡角例.(2012?广安)如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503mA BCD ECB A类型五. 方位角1.已知:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,与灯塔M 之间的最短距离是多少?(精确到0.1海里,732.13≈) 综合题:三角函数与四边形:(西城二模)1.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2, tan ∠BDC=63. (1) 求BD 的长; (2) 求AD 的长.(2011东一)2.如图,在平行四边形ABCD 中,过点A 分别作AE ⊥BC 于点E ,AF ⊥CD F . (1)求证:∠BAE =∠DAF ; (2)若AE =4,AF =245,3sin 5BAE ∠=,求CF 的长. 三角函数与圆:1. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos ∠OBC 的值为( )A .12 B .32C .35D .45(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D, (1) 求证:∠AOD=2∠C(2) 若AD=8,tanC=34,求⊙O 的半径。

相关文档
最新文档