基于FPGA的电梯控制器设计

合集下载

基于FPGA的电梯控制系统设计毕设论文

基于FPGA的电梯控制系统设计毕设论文

基于FPGA的电梯控制系统设计毕设论文摘要本毕设论文旨在设计一个基于FPGA的电梯控制系统。

通过采用FPGA芯片作为硬件平台,并结合相应的算法和逻辑设计,实现一个稳定、高效的电梯控制系统。

引言电梯控制系统在现代社会中扮演着重要的角色,它为人们的出行提供了便利。

然而,传统的电梯控制系统存在一些问题,比如效率低下、响应时间长等。

因此,设计一个基于FPGA的电梯控制系统成为了一个迫切的需求。

方法我们采用FPGA作为硬件平台,利用其可编程性和并行性的特点,完成电梯控制系统的设计。

具体的步骤如下:1. 首先,进行电梯控制系统的需求分析,确定系统所需要的功能和性能指标;2. 然后,设计相应的算法和逻辑电路,包括电梯调度算法、楼层按钮输入处理、状态机设计等;3. 接下来,使用FPGA开发平台进行硬件设计和验证,实现电梯控制系统的功能;4. 最后,进行系统性能测试和调优,确保系统的稳定性和高效性。

结果经过实验和测试,我们成功地实现了基于FPGA的电梯控制系统。

该系统具有以下特点:- 响应时间短:通过合理的调度算法和状态机设计,实现了快速响应用户操作的功能;- 稳定性高:通过FPGA的可编程性,能够灵活地根据需求进行调整和优化,提升系统的稳定性;- 高效性好:利用FPGA的并行处理能力,实现了多任务并行处理,提高了系统的处理效率。

结论本毕设论文通过设计一个基于FPGA的电梯控制系统,成功地解决了传统电梯控制系统存在的一些问题。

该系统具有响应时间短、稳定性高和高效性好的优点,能够为用户提供更好的电梯使用体验。

未来可以进一步优化和扩展该系统,使其更加智能化和智能化。

FPGA电梯控制器硬件电路设计

FPGA电梯控制器硬件电路设计

FPGA电梯控制器硬件电路设计FPGA(Field-Programmable Gate Array)是一种集成电路,可以根据用户的需求进行重复配置,实现不同的功能。

在电梯控制器中,FPGA 可以用于控制和管理电梯的各项功能,包括按钮输入、电机控制、门的开关等。

FPGA电梯控制器硬件电路设计需要考虑到电梯的各种功能和安全性要求。

通常,一个电梯系统由以下几个主要部分组成:按钮输入模块、电梯状态控制模块、电机控制模块、门控制模块、安全控制模块等。

下面我们将详细介绍这些模块的设计。

1.按钮输入模块:这个模块主要用于接受乘客在电梯厅内按下的楼层按钮。

在FPGA电梯控制器中,可以使用按键矩阵来实现按钮输入模块。

当乘客按下按钮时,按键矩阵将发送信号到FPGA芯片,FPGA芯片将根据接收到的信号确定乘客要去的楼层。

2.电梯状态控制模块:这个模块主要用于监控电梯当前的状态,包括当前楼层、电梯的移动方向、电梯是否到达目标楼层等。

在FPGA电梯控制器中,可以使用状态机来实现这个模块。

状态机可以根据按钮输入模块传递的信号和电梯当前的状态来确定电梯下一步的动作。

3.电机控制模块:这个模块用于控制电梯的运行,包括启动、停止、速度控制等。

在FPGA电梯控制器中,可以使用PWM(脉冲宽度调制)信号来控制电机的转速。

FPGA芯片可以根据状态控制模块传递的信号生成PWM信号,以实现电机的控制。

4.门控制模块:这个模块主要用于控制电梯门的开关。

在FPGA电梯控制器中,可以使用继电器或者马达来控制电梯门的开关。

FPGA芯片可以根据状态控制模块传递的信号来控制门的开关动作。

5.安全控制模块:这个模块用于确保电梯系统的安全运行,包括紧急停止、超载保护、电梯困人报警等功能。

在FPGA电梯控制器中,可以使用传感器监测电梯的状态,并根据监测结果生成相应的控制信号,确保电梯的安全运行。

总的来说,在设计FPGA电梯控制器硬件电路时需要考虑到电梯的各项功能和安全性要求,合理设计每个模块之间的交互关系,保证电梯系统的稳定运行和用户的安全。

基于FPGA的电梯控制器系统设计

基于FPGA的电梯控制器系统设计

基于FPGA的电梯控制器系统设计本文首先提出了一种基于有限状态机的电梯控制器算法,然后根据该算法设计了一个三层电梯控制器,该电梯控制器的正确性经过了仿真验证和硬件平台的验证。

本文的电梯控制器设计,结合了深圳信息职业技术学院的实际电梯的运行情况,易于学生理解和接受,对于工学结合的教学改革,是一个非常好的实践项目。

另外,本文提出的电梯控制器算法适合于任意楼层,具有很强的适应性和实用性。

电子设计自动化技术是19世纪末21世纪初新兴的技术,其在数字电路设计和日常的控制系统中已经体现了强大的功能和优势。

随着EDA技术的高速发展,电子系统设计技术和工具发生了深刻的变化,大规模可编程逻辑器件FPGA的出现,给设计人员带来了诸多的方便。

HDL(硬件描述语言)是随着可编程逻辑器件(PLD)发展起来的,主要用于描述数字系统的结构、行为、功能和接口,是电子设计自动化(EDA)的关键技术之一。

它通常采用一种自上而下的设计方法,即从系统总体要求出发进行设计。

目前从期刊杂志中看到一些采用FPGA实现电梯控制系统的设计文章,在这些文章中看不到针对任意楼层的控制器算法,而针对任意层数的控制器算法是保证控制器实用性和适用性的关键。

因此,本文尝试采用EDA技术来设计一个N层电梯控制系统,具体思路是:首先给出电梯控制器的算法,然后在硬件平台上实现并验证。

1 电梯控制系统要求电梯控制系统通常包含图1中的功能:电梯升、降、停;电梯门开、关;请求信号显示、楼层显示;超载、故障报警。

其中超载、故障报警需要用到传感器,该控制相对比较简单,因此本文不再展开讨论。

本文着重讨论涉及其他功能的控制器算法。

针对第一教学楼的电梯,其电梯控制器实现了以下功能:(1)电梯内部每层均有相应的STop按钮;电梯外部除顶层外每层都有up按钮,除底层外每层都有down按钮;up按钮被按下表示该层有人要去高层,down按钮被按下表示该层有人要去低层,stop按钮被按下表示该层有人要出电梯。

基于FPGA的电梯控制系统设计.

基于FPGA的电梯控制系统设计.

基于FPGA的电梯控制系统设计摘要:介绍了基于FPGA的四层电梯控制系统的设计。

该系统采用Altera公司的CycloneⅡ系列FPGA芯片EP2C5T144作为主控制芯片,采用Verilog-HDL编程描述,实现对电梯的智能控制,经仿真验证,完成所要求功能。

该设计采用模块化编程,升级可实现任意多层电梯系统,具有很强的适应性和实用性。

关键词:电梯控制;FPGA;Verilog;控制模块0 引言随着社会的发展,电梯的使用越来越普遍,对电梯功能的要求也不断提高,其相应控制方式也在不断发生变化。

电梯的微机化控制主要有:PLC控制、单板机控制、单片机控制、单微机控制、多微机控制和人工智能控制等。

随着专用集成电路ASIC设计技术和EDA技术的发展,可编程逻辑器件的广泛使用,为数字系统设计带来了革命性的变化,改变了传统的电路设计中使用的芯片多、电路复杂、出现问题不易查找、不易进行功能扩展的缺点。

本设计使用FPGA器件作为主控制芯片,采用Verilog-HDL语言设计一个四楼层单个载客箱的电梯控制系统,设计采用模块化设计,便于修改和升级,可稍加改进,实现多层电梯控制。

1 电梯控制系统总体设计1.1 设计任务及要求设计一个四层电梯控制系统,要求如下:(1)各层电梯内部信号:各楼层请求按键、开关门请求按键,所在楼层显示,电梯运行状态显示。

外部信号:上升下降请求按键,所在楼层显示,电梯运行状态显示。

(2)能够存储请求信号,电梯上升(下降)过程中,根据电梯的运行状态,首先按方向优先、循环次序响应各请求。

(3)到达请求楼层后,该层的指示灯亮,电梯门自动打开,开门指示灯亮。

延时等待时间后,电梯门自动关闭(开门指示灯灭),电梯继续运行。

电梯空闲时,停在0层。

(4)具有超载报警功能。

1.2 电梯控制系统硬件结构电梯控制系统硬件结构如图1所示。

如图1所示,该系统主要由FPGA控制器、各输入信号模块、输出驱动模块组成。

FPGA控制模块的输入信号有:电梯内外请求信号、楼层到达信号、重启超载报警等信号;其输出信号分别驱动显示电路、电梯开关门电路、电机驱动电路、以及其他如报警电路等。

基于FPGA的四层电梯控制器设计

基于FPGA的四层电梯控制器设计

基于FPGA的四层电梯控制器设计山东大学 威 海 分 校课 程 设 计 报 告设计题目: _基于FPGA 的四层电梯控制器设计指导教师: 李素梅 郑亚民 董晓舟 ___姓 名:学 号: 20058002089 院 系: 信息工程学院 专 业: 电子信息科学与技术 年 级: 2005级2008年 7月 15 日目录摘要 (1)关键词 (1)1、设计要求 (1)2、总体设计 (1)3、详细设计 (2)3.1中央处理模块 (2)3.2 外部数据采集模块 (3)3.3 信号存储模块 (3)3.3 显示模块 (4)4、仿真 (4)5、结语 (5)附录:源程序 (6)摘要:本文介绍了基于FPGA的电梯控制器的总体设计方案,阐述了其内部功能模块的工作原理,基于状态机的原理,利用VHDL语言对各功能模块进行了编程、编译、仿真,并下载到实验箱上进行了验证。

结果表明,该电梯控制器按进循方向优先的原则可为四个楼层提供载客服务,并具有电梯运行情况指示功能。

文中使用的设计方法不仅简化了电路设计、节约了设计成本,而且提高了控制器的可靠性、稳定性和灵活性。

关键词:VHDL; FPGA; 状态机; 电梯控制1、设计要求(1) 使用VHDL语言与状态机设计思想设计一个4层建筑的电梯控制器;(2) 每层电梯入口设有上下请求开关及电梯内设有到达楼层请求开关;(3) 电梯每5秒钟升(降)一层;(4) 电梯到达有请求的楼层自动开门并定时关门和紧急状态紧急停止运行的功能;(5) 能记忆电梯内外所有请求信号并按照电梯运行规则按顺序响应, 每个请求信号留至执行完后消除;(6) 电梯运行规则———当电梯处于上升模式时, 只响应比电梯所在的位置高的上楼请求信号, 由下而上逐个执行, 直到最后一个上楼请求执行完毕,如果高层有下楼请求,则直接升到有下楼请求的最高楼层, 然后进入下降模式,当电梯处于下降模式时,则与上升模式相反。

2、总体设计根据上述设计要求,可以得到电梯控制器的总体结构如图1所示。

基于FPGA的全自动电梯控制器设计说明

基于FPGA的全自动电梯控制器设计说明

基于FPGA的全自动电梯控制器的设计序言随着科学技术的发展、近年来,我国的电梯生产技术得到了迅速发展.一些电梯厂也在不断改进设计、修改工艺。

电梯主要分为机械系统与控制系统两大部份,随着自动控制理论与微电子技术的发展,电梯的拖动方式与控制手段均发生了很大的变化。

目前电梯控制系统主要有三种控制方式:继电器控制系统(早期安装的电梯多位继电器控制系统)、微机控制系统、FPGA控制系统。

继电器控制系统由于故障率高、可靠性差、控制方式不灵活以与消耗功率大等缺点,目前已逐渐被淘汰。

微机控制系统虽在智能控制方面有较强的功能,但也存在抗扰性差,系统设计复杂,一般维修人员难以掌握其维修技术等缺陷。

而FPGA控制系统由于运行可靠性高,使用维修方便,抗干扰性强,设计和调试周期较短等优点,倍受人们重视等优点,已成为目前在电梯控制系统中使用最多的控制方式,目前也广泛用于传统继电器控制系统的技术改造[1]。

目前国七八十年代安装的许多电梯电气部分用继电器接触器控制系统,线路复杂,接线多,故障率高,维修保养难,许多已处于闲置状态,其拽引系统多采用交流双速电机系统换速,效率低,调速性能指标较差,严重影响电梯运行质量。

由于这些电梯交流调压调速系统,交流双速电机拖动系统性能与乘坐舒适感较差,交流调压调速系统属能耗型调速的机械部分无大问题,为节约资金,大部分老式电梯用户希望对电梯的电气控制系统进行改造,提高电梯的运行性能。

因此对电梯控制技术进行研究,寻找适合我国老式电梯的改造方法具有十分重要的意义 [1][2]。

可编程器件的广泛使用,为数字系统的设计带来了极大的灵活性。

FPGA作为新一代可编程逻辑器件,以其高可靠性和技术先进性,在电梯控制中得到广泛应用,从而使电梯由传统的继电器控制方式发展为计算机控制的一个重要方向,成为当前电梯控制和技术改造的热点之一。

FPGA不仅具有可以满足电子系统小型化、低功耗、高可靠性、开发周期短、开发软件投入少等优点,而且可以通过软件编程对硬件的结构和工作方式进行重构式的硬件的设计,如同软件设计那样的方便快捷[2]。

fpga电梯控制器课程设计

fpga电梯控制器课程设计

fpga电梯控制器课程设计一、课程目标知识目标:1. 掌握FPGA的基本原理和编程方法;2. 学习并理解电梯控制系统的基本组成和工作原理;3. 了解电梯控制系统中各个模块的功能及相互关系;4. 掌握使用FPGA进行电梯控制程序设计的方法。

技能目标:1. 能够运用Verilog HDL或VHDL语言编写简单的FPGA程序;2. 能够分析电梯控制系统的需求,设计出相应的控制策略;3. 能够运用FPGA实现简单的电梯控制功能,如楼层召唤、运行方向控制等;4. 能够通过课程设计,培养实际操作和解决问题的能力。

情感态度价值观目标:1. 培养学生对电子工程及FPGA技术的兴趣,激发学生主动学习和探索的热情;2. 培养学生的团队协作精神和沟通能力,使他们能够在团队中共同解决问题;3. 培养学生的创新意识,鼓励他们勇于尝试新方法,提高电梯控制系统的性能;4. 培养学生关注社会问题,了解电梯安全运行的重要性,提高他们的社会责任感。

本课程旨在通过FPGA电梯控制器课程设计,使学生掌握FPGA编程和电梯控制系统设计的基本方法,培养他们的实际操作和创新能力。

在教学过程中,注重理论与实践相结合,充分调动学生的主观能动性,提高他们的综合素质。

课程目标具体、可衡量,便于教师进行教学设计和评估,同时有助于学生明确学习成果。

二、教学内容1. FPGA基础知识:- FPGA原理与结构;- Verilog HDL或VHDL语言基础;- FPGA开发环境介绍。

2. 电梯控制系统原理:- 电梯控制系统概述;- 电梯控制系统的主要组成部分;- 电梯控制系统的基本工作原理。

3. 电梯控制策略与算法:- 电梯运行模式及控制策略;- 楼层召唤与运行方向控制算法;- 交通分配与优化方法。

4. FPGA在电梯控制系统中的应用:- 基于FPGA的电梯控制程序设计;- 电梯控制模块的划分与实现;- FPGA程序仿真与调试。

5. 课程设计与实践:- FPGA电梯控制器设计任务与要求;- 设计方案的选择与评估;- FPGA程序编写与验证;- 课程设计成果展示与评价。

基于FPGA的电梯控制系统设计

基于FPGA的电梯控制系统设计

36魁科■技2021年•第2期基于FPGA的电梯控制系统设计◊武汉轻工大学电气与电子工程学院陶云轩李素芬张祥武杨文卓使用FPGA器件作为主控制芯片,Quartus II作为编程软件,使用DE10-NAN0作为编程后的硬件板子,设计一个基于DE10-NAN0板的电梯控制系统,便于实现更多层电梯控制,有较强的灵活性。

电梯在生活中随处可见,大型的商城中、高档的酒店内都少不了电梯的身影。

现阶段,电梯控制系统硬件由轿厢操纵盘、厅门信号、PLC、变频器、调速系统构成,变频器只完成调速功能,而逻辑控制部分是由PLC完成的。

PLC负责处理各种信号的逻辑关系,从而向变频器发出起停信号,同时变频器也将本身的工作状态输送给PLC,形成双向联络关系已。

FPGA,其实是一种开发者在短时间内利用个人PC就可以在实现多次重写的廉价设备,是高密度可编程逻辑器件的主流产品葺具有运行效率高,操作简易易于实现大规模系统和二次开发的系统。

Quartus II是Altera公司的综合性CPLD/FPGA开发软件,原理图、VHDL、VerilogHDL以及AHDL(Altera Hardware支持DescriptionLanguage)等多种设计输入形式,内嵌自有的综合器以及仿真器,可以完成从设计输入到硬件配置的完整PLD设计流本研究将使用FPGA器件作为主控制芯片,Quartus n作为编程软件,设计〜基于DE10-NANO板五层电梯控制系统。

1电梯的控制要求冋(1)该电梯五层,除第一、五层,每层都设有上下键,一层设有上键,五层设有下键。

(2)电梯内有防超重系统、紧急呼叫按钮、故障指示灯、报警系统和楼MS®等。

(3)电梯到达指定楼层后,过2秒后电梯门打开,开门4s电梯开始关闭,再经过6s电梯开始上下行。

(4)电梯没有接到指令时,在3楼待命。

2系统设计2.1电梯控制器的模块设计电梯控制器主要由指令请求模块、电梯运行状态模块、显示模块、开关门模块、超重报警模块这五个模块组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐山学院EDA技术课程设计题目基于FPGA的电梯控制器设计系(部) 信息工程系班级姓名学号指导教师2013 年1 月7 日至1 月11 日共 1 周2013年1 月10 日《EDA技术》课程设计任务书课程设计成绩评定表目录1 前言 (1)2 EDA技术介绍 (2)2.1 EDA技术简介 (2)2.2 EDA技术的发展 (2)3 电梯控制器设计 (3)3.1 电梯控制器设计总体框图 (3)3.2 电梯控制器设计思路 (3)3.3 电梯处于各楼层的具体分析 (4)3.4 电梯外部端口具体说明 (6)3.4.1 定义各个端口 (6)3.4.2 引脚锁定 (6)4 仿真结果与说明 (8)5 总结 (10)参考文献 (11)附录程序代码 (12)1 前言当今社会,随着城市建设的不断发展,高层建筑的不断增多,电梯作为高层建筑中垂直运行的交通工具已与人们的日常生活密不可分。

目前电梯控制系统主要有三种控制方式:继电路控制系统(“早期安装的电梯多位继电器控制系统”)、FPGA/CPLD的控制系统、微机控制系统。

继电器控制系统由于故障率高、可靠性差、控制方式不灵活以及消耗功率大等缺点,目前已逐渐被淘汰,微机控制系统虽在智能控制方面有较强的功能,但也存在抗扰性差,系统设计复杂,一般维修人员难以掌握其维修技术等缺陷。

而FPGA/CPLD控制系统由于运行可靠性高,使用维修方便,抗干扰性强,设计和调试周期较短等优点,倍受人们重视等优点,已经成为目前在电梯控制系统中使用最多的控制方式,目前也广泛用于传统继电器控制系统的技术改造。

随着EDA技术的快速发展,电子设计自动化(EDA)逐渐成为重要的设计手段,已经广泛应用于模拟与数字电路系统等许多领域。

采用EDA设计,拥有电子系统小型化、低功耗、高可靠性、开发过程投资小、周期短等优点,而且还可以通过软件编程对硬件结构和工作方式进行重构,使得硬件设计如软件设计那般方便快捷。

本次设计就是应用EDA电子电路技术来设计电梯控制器,从而使用一片芯片就可以实现对电梯的控制的。

2 EDA技术介绍2.1 EDA技术简介EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。

EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言VHDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。

EDA技术是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。

利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出IC版图或PCB版图的整个过程的计算机上自动处理完成。

2.2 EDA技术的发展从目前的EDA技术来看,其发展趋势是政府重视、使用普及、应用广泛、工具多样、软件功能强大。

现在对EDA的概念或范畴用得很宽。

包括在机械、电子、通信、航空航天、化工、矿产、生物、医学、军事等各个领域,都有EDA的应用。

目前EDA技术已在各大公司、企事业单位和科研教学部门广泛使用。

例如在飞机制造过程中,从设计、性能测试及特性分析直到飞行模拟,都可能涉及到EDA技术。

EDA设计可分为系统级、电路级和物理实现级。

在EDA软件开发方面,目前主要集中在美国。

但各国也正在努力开发相应的工具。

日本、韩国都有ASIC设计工具,但不对外开放。

中国华大集成电路设计中心,也提供IC设计软件,但性能不是很强。

相信在不久的将来会有更多更好的设计工具在各地开花并结果。

据最新统计显示,中国和印度正在成为电子设计自动化领域发展最快的两个市场,年夏合增长率分别达到了50%和30%。

3 电梯控制器设计3.1 电梯控制器设计总体框图图 3 – 1 总体框图电梯控制器的功能模块如图所示,包括主控制器、分控制器、楼层选择器、状态显示器、译码器和楼层显示器。

乘客在电梯中选择所要到达的楼层,通过主控制器的处理,电梯开始运行,状态显示器显示电梯的运行状态,电梯所在楼层数通过译码器译码从而在楼层显示器中显示。

分控制器把有效的请求传给主控制器进行处理,同时显示电梯的运行状态和电梯所在楼层数。

由于分控制器相对简单很多,所以主控制器是核心部分。

3.2 电梯控制器设计思路本系统的主要输入有电梯外上下控制按钮Button(其中Button(0)表示一楼电梯外上升请求,Button(1)表示二楼电梯外上升请求,Button(2)表示二楼电梯外下降请求,Button(3)表示三楼电梯外下降请求);电梯内到达楼层控制按钮floor(其中floor(0)表示请求到达一层,floor(1)表示请求到达二层,floor(2)表示请求到达三层)。

系统的输出包括电梯位置标识position,表示电梯当前所在楼层;电梯开门关门显示按钮door(当door=1时表示开门,door=0表示关门);电梯当前运行状态按钮up_down(当up_down=1时表示电梯处于上升状态,当up_down=0时表示电梯处于下降状态)。

系统主要通过当前所在楼层以及运行状态、后续请求判断运行方式。

电梯处在第一层时,当它收到二层电梯外上下楼请求、三层电梯外下楼请求、一层电梯内到达二层和三层请求时,电梯会按照指令上升到相应楼层并开门、关门;若收到一层电梯外上楼请求只做开门响应,随后根据使用者进入电梯后请求进行响应;其他请求不响应。

当电梯处在第二层时,若系统收到二层电梯外上下楼请求只做开门响应;若收到三层电梯外下楼或二层电梯内到达三层请求,则做上楼响应、开门;若收到一层电梯外上楼或二层电梯内到达一层请求,则做下楼楼响应并开门;其他请求不响应。

当电梯处在第三层时,若它收到二层电梯外上下楼请求、一层电梯外上楼请求、电梯内到达二层和一层请求时,电梯会按照指令下降到相应楼层并开门、关门;若收到三层电梯外下楼请求只做开门响应,随后根据使用者进入电梯后请求进行响应;其他请求不响应。

若电梯正处在上升状态中收到外部请求,则只响应比当前所在楼层高的楼层的请求,到达需要到达最高楼层时再响应低层请求。

若电梯正处在下降状态中收到外部请求,则只响应比当前所在楼层低的楼层的请求,到达需要到达最低楼层时再响应高层请求。

3.3 电梯处于各楼层的具体分析处于一楼时,不管是电梯内或电梯外,电梯都只可能接收到上升的请求信号。

此时,电梯就进入预上升状态,准备作上升运行,如果电梯没有接收到请求信号,电梯则在一楼待机。

图 3 - 2 电梯处于一楼处于二楼时,电梯则可能出现三种情况:1.电梯并没有接受到电梯内或电梯外的任何请求信号时,电梯则停留在当前楼层。

2.电梯接收到上升请求信号,进入预上升状态。

3.电梯接收到下降请求信号,进入预下降状态。

处于三楼时,不管电梯内或电梯外电梯都只可能接收到下降的请求信号。

此时,电梯就进入预下降状态,准备作下降运行。

如果电梯没有接收到请求信号,电梯则停留在三楼。

电梯的运行规则确立后,需对整个控制程序的设计做一个流程规范。

对程序进行模块化构思。

根据VHDL 语言的规则,程序必须由最基本的实体和结构体构成。

实体对控制器的端口进行定义,结构体对各端口的行为进行描述。

因此程序运行需经过以下流程:VHDL 库调用:确立控制器的端口及相关的寄存器;根据电梯运行规则,设计相关运行描述;对电梯内信号进行处理。

总流程图如下图3 - 3 电梯处于二楼图 3 - 4 电梯处于三楼图 3 - 5 总流程图3.4 电梯外部端口具体说明3.4.1 定义各个端口1.时钟信号(clk);2.一楼电梯外人的上升请求信号(Button[0]),二楼电梯外人的上升请求信号(Button[1]);二楼电梯外人的下降请求信号(Button[2]),三楼电梯外人的下降请求信号(Button[3]);3.电梯内人请求到达一楼的信号(fllor[0]),电梯内人请求到大二楼的信号(floor[1]),电梯内人请求到大三楼的信号(floor[2]);4.电梯控制复位信号(reset);5.电梯所在楼层显示(position[3..0]);6.电梯开门状态(door);7.电梯上下指示(up-down);3.4.2 引脚锁定表 3 - 1 :输入引脚锁定输入共10个信号,clk为输入脉冲,提供时钟,信号Button[3]为三楼外下降请求信号,Button[2]为二楼外下降请求信号,Button[1]为二楼外上升请求信号,Button[0]为一楼外上升请求信号;floor[2]为电梯内三层请求信号,floor[1]为电梯内二层请求信号,floor[0]为电梯内一层请求信号;reset为复位信号;warm为警告信号。

表 3 - 2 :输出引脚锁定输出信号共7个door为门信号,当door=’1’时表示为门开,当door=’0’时表示门关;position[3]、position[2]、position[1]、position[0],为控制数码管显示的输出引脚;q为警告指示信号,当触发警告warm时q=’1’’则超载,当q=’0’时则没事;up_down为上下楼层显示信号,当up_down=’1’时表示电梯正在向上运行,当up_down=’0’时表示电梯正在向下运行。

4 仿真结果与说明图 4 - 1 从一楼到三楼使用者在一楼给予电梯上升请求信号,即button[0]置1,随后门打开,即door置1,使用者在电梯内给予三楼请求信号,随后门关闭,即door置0,并电梯上升,即up_down置1,最后到达三楼后门打开,door置1。

图 4 - 2 三楼下一楼同时二楼有上升请求使用者在三楼给予电梯一下降请求,即button[3]置1,随后门打开,即door 置1,使用者在电梯内给予一层请求信号,随后门关闭,即door置0,当到达一楼时门打开,即door置1,随后门关闭,door置0,到达二楼后,门打开,door置1.电梯上升过程中可以接收较高楼层的要求。

开始时有人按下一层外上升(Button(0)=1)按钮,电梯开门使用者进入并按下到达三层(floor(2)=1)请求,此时电梯关门并上升。

在电梯上升但未到达二层时,二层外有人按下上楼(Button(1)=1)请求,因此当电梯到达二层(position=2)后停止并开门,待二层使用者进入后再完成第一个使用者的请求到达三层。

当有超载信号时警报指示等亮起,即q 置1,电梯将一直在一楼。

相关文档
最新文档