中考数学压轴题十大类型题目

合集下载

最新陕西中考数学压轴题归类

最新陕西中考数学压轴题归类

《第25题几何压轴题归类》考点:类型一:线段最值问题(从定点入手,利用轴对称思想解决)考点二:利用隐形圆探究满足特殊角的点问题(常见的题目有:求一个固定的角,求最大角,求二倍角等)类型三:等分面积问题(难点是不规则图形的面积等分,有时会牵涉到既等分周长又等分面积)类型四:面积最值问题(利用二次函数思想解决较常见,也有利用极值思想解决的,还有利用圆的知识求解,面积最大周长最小也会考)类型一:线段最值问题1.如图,在△ABC中,AB=AC=5,BC=6,若点P在AC上移动,则PB的最小值是_____.3.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边中点,E是AB上一动点,则EC+ED 的最小值为_____.4.如图,在矩形ABCD中, AB=6,BC=8,连接AC,点M是AC上一动点,点N是BC上的一动点,则BN+MN 的最小值为________.5.如图,在四边形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC-PA|的最大值是______.6.如图①,已知:△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA´B´,连接BB´,则BB´=_______.问题探究:4的等边三角形,以BC为边向外作等边△BCD.P为△ABC 如图②,已知△ABC为边长为3内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q,连接DQ、BP.(1)求证△DCQ≌△BCP;(2)求PA+PB+PC的最小值.实际应用如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A、D为两个出口,现在想在货运场内建一个货物堆放平台P,在BC边上(含B、C两点)开一个货物入口M,并修建三条专用车道PA、PD、PM.若修建每米专用车道的费用为10000元,当M、P建在何处时,修建专用车道的费用最少?最少费用为多少?7.小明在学习轴对称的时候,老师留了这样一道思考题:如图,已知在直线l的同侧有A、B两点,请你在直线l上确定一点P,使得PA+PB的值最小.小明通过独立思考,很快得出了解决这个问题的正确方法,他的作法是这样的:①作点A关于直线l的对称点A′.②连接A′B,交直线l于点P.则点P为所求.请你参考小明的作法解决下列问题:(1)如图1,在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使得△PDE的周长最小.①在图1中作出点P.(三角板、刻度尺作图,保留作图痕迹,不写作法)②请直接写出△PDE周长的最小值______.(2)如图2在矩形ABCD中,AB=4,BC=6,G为边AD的中点,若E、F为边AB上的两个动点,点E在点F左侧,且EF=1,当四边形CGEF的周长最小时,请你在图2中确定点E、F 的位置.(三角板、刻度尺作图,保留作图痕迹,不写作法),并直接写出四边形CGEF周长的最小值______.类型二:利用隐形圆探究满足特殊角的点问题例1.问题探究(1)如图①,在边长为3的正方形ABCD内(含边)画出使∠BPC=90°的一个点P,保留作图痕迹;(2)如图②,在边长为3的正方形ABCD内(含边)画出使∠BPC=60°的所有的点P,保留作图痕迹并简要说明作法;问题解决如图③,已知矩形ABCD,AB=3,BC=4,在矩形ABCD内(含边)画出使∠BPC=60°,且使△BPC的面积最大的所有点P,并求出△BPC的面积的最大值及此时AP的长,保留作图痕迹.练习1.问题探究(1)如图①,在矩形ABCD中,AB=2,BC=4,如果BC边上存在一点P,使△APD为直角三角形,那么请画出满足条件的一个直角三角形,并求出此时AP的长;(2)如图②,在四边形ABCD中,AB∥CD,∠B=90°,AD=10,AB=7,CD=1,点P在边BC 上,且∠APD=90°,求BP的长.问题解决(3)如图③,在平面直角坐标系中,点A、B、C分别是某单位的门房及两个仓库,其中OA=100m,AB=200m,OC=300m,单位负责人想选一点P安装监控装置,用来监控AB,使△APB的面积最大,且∠APB=2∠ACB,是否存在满足条件的点P?若存在,请求出点P的坐标;若不存在,请说明理由.例4.问题探究:(1)如图①,AB为⊙O的弦,点C是⊙O上的一点,在直线AB上方找一个点D,使得∠ADB=∠ACB,画出∠ADB,并说明理由(2)如图②,AB 是⊙O的弦,点C是⊙O上的一个点,在过点C的直线l上找一点P,使得∠APB<∠ACB,画出∠APB,并说明理由问题解决(3)如图③,已知足球门宽AB约为B点C 点(点A 、B 、C 均在球场的底线上),沿与AC 成45°的CD 方向带球.试问,该球员能否在射线CD 上找一点P ,使得点P 最佳射门点(即∠APB 最大)?若能找到,求出这时点P 与点C 的距离;若找不到,请说明理由.练习 问题探究(1)请在图①的正方形ABCD 内,画出使∠APB=90°的一个点P ,并说明理由;(2)请在图②的正方形ABCD 内(含边),画出使∠APB=60°的所有的点P ,并说明理由; 问题解决(3)如图③,现有一块矩形钢板ABCD ,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB 和△CP ′D 钢板,且∠APB=∠CP ′D=60°,请你在图③中画出符合要求的点P 和P ′,并求出△APB 的面积。

中考数学压轴题常考的9种题型

中考数学压轴题常考的9种题型

中考数学压轴题常考的9种题型汇总1、线段、角的计算与证明问题中考的解答题一般是分两到三局部的。

第一局部根本上都是一些简单题或者中档题,目的在于考察根底。

第二局部往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼〞,后面的路子自己就“通〞了。

2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有时机拼高分。

4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比拟高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的'方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

初三数学中考专题:实际应用题压轴题大全

初三数学中考专题:实际应用题压轴题大全

类型一购买、分配问题典例精讲例(2020大理市统考)某中学为打造书香校园,购进甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元①,乙型号书柜共花了18000元②,乙型号书柜比甲型号书柜单价便宜300元③,购买乙型号书柜的数量是甲型号书柜数量的2倍④,求甲、乙型号书柜各购进多少个?【分层分析】设购进甲型号书柜x个,由题干④得购进乙型号书柜________个,由题干①得购进甲型号书柜单价为________元,由题干②得购进乙型号书柜单价为________元,由题干③可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020百色)某玩具生产厂家,A车间原来有30名工人,B车间原来有20名工人,现新增25名工人分配到两车间,使得A车间工人总数是B车间工人总数的2倍.(1)请问新分配到A、B车间各多少人?(2) A车间有生产效率相同的若干条生产线,每条生产线配置5名工人,现制作一批玩具,若A车间用一条生产线单独完成任务需要30天,问A车间新增工人增加生产线后比原来提前几天完成任务?类型二工程、行程问题典例精讲例(2020常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍①,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒②,求该地4G与5G的下载速度分别是每秒多少兆?【分层分析】设4G的下载速度是x兆/秒,由题干①可得5G的下载速度是______兆/秒,则下载一部600兆公益片用5G所用时间为______,用4G所用时间为________,结合题干②可列等量关系式为________________________________________________________________________.【自主作答】针对训练(2020云师大实验模拟)某无人机公司使用无人机(植保机)进行药水喷洒,若甲型无人机工作2 h,乙型无人机工作4 h,一共可以喷洒700亩;若甲型无人机工作3 h,乙型无人机工作2 h,一共可以喷洒650亩.(1)求甲、乙两型无人机每小时各可以喷洒多大面积;(2)近期,该公司无人机喷洒84消毒液进行特定区域消毒的业务量猛增,要让甲、乙两型无人机每天喷洒的面积总量不低于2250亩,它们每天至少要一起工作多少小时?类型三阶梯费用问题典例精讲例(2019潜江)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克①,若一次购买超过5千克,则超过5千克部分的种子价格打8折②.设一次购买量为x千克,付款金额为y元.(1)求y关于x的函数解析式;(2)某农户一次购买玉米种子30千克,需付款多少元?【分层分析】(1)一次购买量为x千克,由题干①可得,若x≤5,则付款金额为________,由题干②可得若x>5,则付款金额为____________;(2)把x=30代入(1)中函数解析式,即可计算.【自主作答】针对训练(2020徐州)本地某快递公司规定:寄件不超过1千克的部分按起步价计费;寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:收费标准实际收费求a、b的值.类型四方案问题典例精讲例(2020荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨①,乙厂的生产量是甲厂的2倍少100吨②,这批防疫物资将运往A地240吨③,B地260吨④,运费如下表(单位:元/吨).(1)求甲、乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200 元,求m的最小值.【分层分析】(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,由题干①可得等量关系式为______,由题干②可得等量关系式为________;(2)由(1)知甲厂生产了200吨,乙厂生产了300吨,∵乙厂运往A地x吨,则运往B地________吨,则由题干③可知甲厂运往A地________吨,由题干④可知甲厂运往B地________吨.再结合总费用=每吨的费用×吨数,即可求得y与x之间的函数关系式;(3)每吨运费降m元,则500吨一共降________元.由题意和(2)中的结果列不等式求解.【自主作答】针对训练褚橙也叫励志橙,是云南有名的特产,以味甜皮薄著称.我省某褚橙产地计划组织40辆货车装运A、B、C三种褚橙共200吨到外地销售,按计划40辆货车都要装满,且每辆货车只能装运同一品种的褚橙,已知装运A、B品种褚橙的车辆数均不少于2辆.下表是A、B、C三种褚橙的货车运载量和利润信息:设装运A品种褚橙的车辆数为x辆,装运B品种褚橙的车辆数为y辆,解答以下问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)设销售利润为W元,求出获利最大的运输方案,并确定W的最大值.类型五销售、利润(含最值)问题典例精讲例云南某地的特产天山雪莲果营养价值丰富.某网店销售盒装天山雪莲果,已知天山雪莲果的成本价为每盒30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,在销售过程中发现:每月的销售量y(盒)与销售单价x(元)之间满足一次函数关系①,当销售单价为55元时,每月的销售量为60盒;当销售单价为40元时,每月的销售量为120盒②.(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)当盒装天山雪莲果的销售单价定为多少元时,月销售利润最大?最大利润是多少元?【分层分析】(1)由题干①可知y与x为一次函数关系,结合题干②,可得一次函数经过两点,分别为__________,利用待定系数法求出一次函数解析式;(2)设网店的月销售利润为w元,由单价×数量=总费用,利润=总费用-成本,可列出月销售利润w=__________,再结合二次函数图象性质求解.【自主作答】针对训练(2020东营改编)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:设甲种型号口罩的产量是y 万只,销售完这些口罩所获利润为w 万元.(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)求w 与y 的函数解析式,并直接写出y 的取值范围;(3)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.参考答案类型一 购买、分配问题典例精讲例 【分层分析】2x ,15000x ,180002x ,15000x -180002x =300解:设购进甲型号书柜x 个,则购进乙型号书柜2x 个, 根据题意得15000x -180002x =300,解得x =20,经检验,x =20是原分式方程的解且符合实际, ∴2x =40.答:购进甲型号书柜20个,购进乙型号书柜40个.针对训练解:(1)设新分配到A 车间x 人,则新分配到B 车间(25-x )人,根据题意得 30+x =2(20+25-x ), 解得x =20, ∴25-x =5(人).答:新分配到A 车间20人,新分配到B 车间5人; (2)∵每条生产线配置5名工人,∴A 车间原来可配置30÷5=6条生产线,新增工人后可配置(30+20)÷5=10条生产线, ∵A 车间用一条生产线单独完成任务要30天, ∴A 车间原来完成任务需要的时间为30÷6=5(天), 新增工人后完成任务需要的时间为30÷10=3(天), ∴A 车间新增工人增加生产线后比原来提前5-3=2(天). 答:A 车间新增工人增加生产线后比原来提前2天完成任务 .类型二 工程、 行程问题典例精讲例 【分层分析】15x ,60015x ,600x ,600x -60015x=140解:设4G 的下载速度是x 兆/秒,则5G 的下载速度是15x 兆/秒, 由题意,得600x -60015x=140,解得x =4,经检验,x =4是原分式方程的解且符合实际, 则15x =60,∴该地4G 的下载速度是4兆/秒,5G 的下载速度是60兆/秒.针对训练解:(1)设甲型无人机每小时喷洒的面积为x 亩,乙型无人机每小时喷洒的面积为y 亩,根据题意,得⎩⎪⎨⎪⎧2x +4y =7003x +2y =650,解得⎩⎪⎨⎪⎧x =150y =100,∴甲型无人机每小时喷洒的面积为150亩,乙型无人机每小时喷洒的面积为100亩; (2)设它们每天要一起工作a 小时, 根据题意,得(150+100)a ≥2250, 解得a ≥9,∴它们每天至少要一起工作9小时.类型三 阶梯费用问题典例精讲例 【分层分析】20x ,100+(x -5)×20×0.8 解:(1)根据题意,得 当0≤x ≤5时,y =20x ;当x >5时,y =20×0.8(x -5)+20×5=16x +20, 则y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x ≤516x +20,x >5; (2)∵30>5,∴将x =30代入y =16x +20, 得y =16×30+20=500.答:一次购买玉米种子30千克,需付款500元.针对训练解:由题意可得,⎩⎪⎨⎪⎧a +(2-1)b =9a +3+(3-1)(b +4)=22, 解得⎩⎪⎨⎪⎧a =7b =2,∴a =7,b =2.类型四 方案问题典例精讲例 【分层分析】(1)a +b =500,2a -b =100;(2)300-x ,240-x ,260-(300-x );(3)500m 解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,则⎩⎪⎨⎪⎧a +b =5002a -b =100, 解得⎩⎪⎨⎪⎧a =200b =300,答:这批防疫物资甲厂生产了200吨,乙厂生产了300吨; (2)如下表,甲、乙两厂调往A ,B 两地的数量如下:∴y =20(240-x )+25(x -40)+15x +24(300-x ) =-4x +11000, ∵⎩⎪⎨⎪⎧x ≥0240-x ≥0300-x ≥0x -40≥0,∴40≤x ≤240. 又∵-4<0,∴y 随x 的增大而减小. ∴当x =240时总运费最小,∴使总运费最少的调运方案是:甲厂的200吨全部运往B 地;乙厂运往A 地240吨,运往B 地60吨;(3)由题意和(2)中的解答得:y =-4x +11000-500m ,当x =240时,y 最小=-4×240+11000-500m =10040-500m , ∴10040-500m ≤5200, 解得m ≥9.68,∵0<m ≤15且m 为整数,∴m 的最小值为10.针对训练解:(1)根据题意,装运A 品种褚橙的车辆数为x 辆,装运B 品种褚橙的车辆数为y 辆,则装运C 品种褚橙的车辆数为(40-x -y )辆,依题意得6x +5y +4(40-x -y )=200,即y =-2x +40(2≤x ≤19,且x 为整数);【解法提示】由⎩⎪⎨⎪⎧x ≥2-2x +40≥2,解得2≤x ≤19,且x 为整数. (2)由(1)知,40-x -y =40-x -(-2x +40)=x ,∴W =6x ·1800+5(-2x +40)×2400+4x ·1500=-7200x +480000.∵-7200<0,∴W 的值随x 的增大而减小.∵2≤x ≤19,且x 为整数,∴当x =2时,利润W 最大,最大利润为W =-7200×2+480000=465600(元).此时运输方案为装运A 品种褚橙的车辆数为2辆,装运B 品种褚橙的车辆数为36辆,装运C 品种褚橙的车辆数为2辆.答:当装运A 品种褚橙的车辆数为2辆,B 品种褚橙的车辆数为36辆,C 品种褚橙的车辆数为2辆时,获利最大,最大利润为465600元.类型五 销售、利润(含最值)问题典例精讲例 【分层分析】(1)(55,60),(40,120);(2)-4(x -50)2+1600解:(1)设y 与x 的函数解析式为y =kx +b (k ≠0),将(55,60)和(40,120)代入,得⎩⎪⎨⎪⎧55k +b =6040k +b =120,解得⎩⎪⎨⎪⎧k =-4b =280, ∴y =-4x +280;∵销售单价不低于成本价且不高于成本价的2倍,∴30≤x ≤60.∴y 与x 的函数关系式为y =-4x +280(30≤x ≤60);(2)设该网店的月销售利润为w 元,由题意得w =(x -30)·y =(x -30)(-4x +280)=-4x 2+400x -8400=-4(x -50)2+1600, ∵-4<0,30≤x ≤60,∴当x =50时,月销售利润w 有最大值,最大值为1600元.答:当盒装天山雪莲果的销售单价定为50元时,月销售利润最大,最大利润是1600元. 针对训练解:(1)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只. 根据题意得:18y +6(20-y )=300,解得y =15,则20-y =20-15=5,答:生产甲种型号的防疫口罩15万只,生产乙种型号的防疫口罩5万只;(2)∵甲种型号口罩的产量是y 万只,则乙种型号口罩的产量是(20-y )万只,∴w =(18-12)y +(6-4)(20-y )=4y +40(0≤y ≤20);(3)根据题意得:12y +4(20-y )≤216,解得:y ≤17.又∵w =4y +40中,4>0,∴w 随y 的增大而增大,即当y =17时,w 最大,此时w =4×17+40=108.答:安排生产甲种型号的口罩17万只,乙种型号的口罩3万只时,该月获得最大利润﹐最大利润为108万元.。

(完整word版)中考数学压轴题十大类型经典题目

(完整word版)中考数学压轴题十大类型经典题目

第一讲 中考压轴题十大类型之动点问题1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E ,AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s,动点P 沿A -B -C -E方向运动,到点E 停止;动点Q 沿B —C —E —D 方向运动,到点D 停止,设运动时间为x s,△PAQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题: (1) 当x =2s 时,y =_____ cm 2;当x =92s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出154y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.2. (2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B出发沿折线段BA -AD —DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t>0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?DCBA (3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(4)△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由.备用图3. (2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF —FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由; (3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.4. (2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂B备用图FE D C BA直于x 轴,与折线O -C —B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t ),△MPQ 的面积为S . (1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围. (3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形?请直接写出t 的值.5. (2011四川重庆)如图,矩形ABCD 中,AB =6,BC =2错误!,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG和矩形ABCD 在射线PA 的同侧,设运动的时间为t 秒(t ≥0). (1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.备用图1 备用图26、(2011山东烟台)如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为41633y x =-+,点A 、D 的坐标分别为(-4,0),(0,4).动点P 自A 点出发,在AB 上匀速运动.动点Q 自点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标; (2)求S 随t 变化的函数关系式;(3)当t 为何值时S 有最大值?并求出最大值.备用图第二讲 中考压轴题十大类型之函数类问题1. (2011浙江温州)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(—4,0),点B 的坐标为(0,b )(b >0).P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为 C ,记点P 关于y 轴的对称点为P ′ (点P ′不在y 轴上),连结P P ′,P ′A ,P ′C ,设点P 的横坐标为a .(1) 当b =3时,① 直线AB 的解析式;② 若点P ′的坐标是(—1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D :DC =1:3时,求a 的值;(3)是否同时存在a ,b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. (2010武汉)如图,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B . (1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ2y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; (3)在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关系;若不能,请说明理由.xyP'DO C BA P备用图3. (2011江苏镇江)在平面直角坐标系xOy 中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数ky x(k >0)的图象过点E 且与直线1l 相交于点F .(1)若点E 与点P 重合,求k 的值;(2)连接OE 、OF 、EF .若k 〉2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标;(3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等?若存在,求E 点坐标;若不存在,请说明理由.4. (2010浙江舟山)△ABC 中,∠A =∠B =30°,AB =23.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转. (1)当点B 6B 的横坐标;(2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:①当a =,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由;②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.5. (湖北黄冈)已知二次函数的图象如图所示.(1)求二次函数的解析式及抛物线顶点M 的坐标;(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ 的长为t ,四边形NQAC 面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).O yxEDCB A6、(2011山东东营)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E .(1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.第三讲 中考压轴题十大类型之面积问题1. (2011辽宁大连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB . (1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,,说明理由.2.(2011湖北十堰)如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,—3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,—1).问在抛物线上是否存在点G(点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.3.(2010天津)在平面直角坐标系中,已知抛物线2y x bx=-+c+与x轴交于点A、B(点A在点B的左侧),与y轴的正半轴交于点C,顶点为E.(Ⅰ)若2b =,3c =,求此时抛物线顶点E 的坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. (2011山东聊城)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2. (1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由.A EGDBABA5. (2011江苏淮安)如图,在Rt△ABC 中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S .(1)当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 . (2)当0<t ≤2时,求S 与t 的函数关系式;(3)直接答出:在整个运动过程中,当t 为何值时,S 最大?最大面积是多少?备用图6、(2010山东东营)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG . (1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值y =-y=-范围,并求出y 的最大值.第四讲 中考压轴题十大类型之三角形存在性问题板块一、等腰三角形存在性1. (2011江苏盐城)如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.BA D E FGC B备用图(1)ACB备用图(2)AC(备用图)2. (2009湖北黄冈)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒) (1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.板块二、直角三角形3. (2009四川眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. (2010广东中山)如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题: (1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.板块三、相似三角形存在性5. (2011湖北天门)在平面直角坐标系中,抛物线2y ax bx =+3+与x 轴的两个交点分别为A (—3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H . (1)直接填写:a = ,b = ,顶点C 的坐标为 ;(2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不M C存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)6、(2009广西钦州)如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为 (-1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作 PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C 的坐标是_____,b =_____,c =_____; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.yxQP B AO第五讲 中考压轴题十大类型之四边形存在性问题1. (2009黑龙江齐齐哈尔)直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. (2010河南)在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.yxOC BA3. (2011黑龙江鸡西)已知直线343y x =+与x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x轴交于点C .(1)试确定直线BC 的解析式;(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围; (3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. (2007河南)如图,对称轴为直线x =27的抛物线经过点A (6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.5. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.7、 (2009辽宁抚顺)已知:如图所示,关于x 的抛物线2=++y ax x c (a ≠0)与x 轴交于点A (—2,0)、点B (6,0),与y 轴交于点C . yxOM B A(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式; (3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.[来源:Zxxk .Com ]第六讲 中考压轴题十大类型之线段之间的关系1. (2010天津)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点.(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;y BDC y B DC温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与x 轴交于点E ,此时△CDE 的周长是最小的.这样,你只需求出OE 的长,就可以确定点E 的坐标了.(Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.2. (2011四川广安)四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.3. (2011四川眉山)如图,在直角坐标系中,已知点A (0,1),B (4-,4),将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B . (1) 求抛物线的解析式和点C 的坐标;(2) 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+; (3) 在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. (2011福建福州)已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B两点(B 在A 点右侧),点H 、B 关于直线3:33l y x =+对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上; (2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. (2009湖南郴州) 如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .lyxK HBOACyBQ A MPx OOxPMAQB y (1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点Q 的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.图1x 图2 [来源:Z xk .Com ]6. (2010江苏苏州)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P ,22228PA PB PM ++>是否总成立?请说明理由.第七讲 中考压轴题十大类型之定值问题1. (2011天津)已知抛物线1C :21112y x x =-+,点F (1,1). (Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.2. (2009湖南株洲)如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. (2008山东济南)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B 两点,(10)A -,.(1)求这条抛物线的解析式;(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断PM PNBE AD+是否为定值? 若是,请求出此定值;若不是,请说明理由;(3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EFPB EG=是否成立.若成立,请给出证明;若不成立,请说明理由.4. (2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题:(1)若测得22OA OB ==(如图1),求a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐..标.; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. (2009湖北武汉)如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.[来源:学.科.网Z .X .X .K ]6、 (2009湖南湘西)在直角坐标系xOy 中,抛物线2y x bx c =++yxOAB C与x 轴交于两点A 、B ,与y 轴交于点C ,其中A 在B 的左侧,B 的坐标是(3,0).将直线y kx =沿y 轴向上平移3个单位长度后恰好经过点B 、C .(1) 求k 的值;(2) 求直线BC 和抛物线的解析式; (3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.第八讲 中考压轴题十大类型之几何三大变换问题1. (2009山西太原)问题解决:如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳:在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN的值等于 ;若1CE CD n =(n 为整数),则AMBN 的值等于 .(用含n 的式子表示)联系拓广: 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压方法指导: 为了求得AMBN的值,可先求BN 、AM 的长,不妨设:AB =2图(2)NABCD EFM图(1)A B CDEFMNαθ4HB 2B 3A 3A 222B 1A 1A 011平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AM BN 的值等于 .(用含m n ,的式子表示)2. (2011陕西)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形"的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形; (2)如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF "的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,图① 图② 图③3. (2010江西南昌)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.(1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;(2)图1-图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n边形A0A1A2…A n-1与正n边形A0B1B2…B n-1重合(其中,A1与B1重合),现将正n边形A0B1B2…B n—1绕顶点A0逆时针旋转α(n1800<<α).(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数;(4)试猜想在n边形且不添加其他辅助线的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.4.(2009山东德州)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)A DEG 图①FA DG图②FAC图③。

中考数学压轴题十大题型(含详细答案)

中考数学压轴题十大题型(含详细答案)

中考数学压轴题十大题型(含详细答案)数学综合压轴题是用来考察考生综合运用知识能力的,它体现了知识和方法的综合性。

其中,函数型综合题和几何型综合题是比较常见的。

函数型综合题要求我们在给定的直角坐标系和几何图形中,先求出函数的解析式,然后研究图形,求出点的坐标或研究图形的某些性质。

求已知函数的解析式的主要方法是待定系数法,关键是求点的坐标。

我们可以通过几何法或代数法来求点的坐标。

几何型综合题则是先给定几何图形,根据已知条件进行计算,然后让动点(或动线段)运动,对应产生线段、面积等的变化,求出对应的(未知)函数的解析式,以及函数的自变量的取值范围。

最后,我们可以根据所求的函数关系进行探索研究。

这种类型的题目涉及到很多内容,比如图形的性质、相似、面积等。

我们需要找到包含自变量和因变量之间等量关系的方程,并将其变形成y=f(x)的形式。

解中考压轴题的技巧包括运用函数与方程思想、分类讨论的思想和转化的数学思想。

我们可以以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。

对问题的条件或结论的多变性进行考察和探究。

由已知向未知,由复杂向简单的转换。

中考压轴题涉及到的知识面广,使用的数学思想方法也较全面。

因此,我们可以将压轴题分解成相对独立而又单一的知识或方法组块来思考和探究。

首先,要全面了解自己的数学研究状况,以便在考试时准确定位重点,避免浪费时间。

要给压轴题或难点设置时间限制,如果超过限制,必须停止并检查前面的题目,确保选择和填空题没有错误,解答题也要认真检查。

其次,在解数学压轴题时,要逐步解决每个小问题。

如果第一小问不会解,不要轻易放弃第二小问。

解题过程要按步骤给分,所以要写清楚、规范,字迹工整,布局合理。

尽量避免无关废话,多用几何知识,少用代数计算,尽可能使用三角函数,少用相似三角形的性质。

最后,解数学压轴题可以分为三个步骤:审题、理解题意和正确解答。

审题要全面考虑条件和要求,掌握试题的特点和结构,以便选择解题方法和设计解题步骤。

中考数学压轴题十大类型题目

中考数学压轴题十大类型题目

中考数学压轴题十大类型目录第一讲中考压轴题十大类型之动点问题1第二讲中考压轴题十大类型之函数类问题7第三讲中考压轴题十大类型之面积问题13第四讲中考压轴题十大类型之三角形存在性问题19第五讲中考压轴题十大类型之四边形存在性问题25第六讲中考压轴题十大类型之线段之间的关系31第七讲中考压轴题十大类型之定值问题38第八讲中考压轴题十大类型之几何三大变换问题44第九讲中考压轴题十大类型之实践操作、问题探究50第十讲中考压轴题十大类型之圆56第十一讲中考压轴题综合训练一62第十二讲中考压轴题综合训练二68第一讲中考压轴题十大类型之动点问题1.〔2021吉林〕如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E方向运动,到点E停止;动点Q沿B-C-E-D方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,〔这里规定:线段是面积为0的三角形〕解答以下问题:(1〕当x=2s时,y=_____cm2;当x=9s时,y=_______cm2.22〕当5≤x≤14时,求y与x之间的函数关系式.〔3〕当动点P在线段BC上运动时,求出y 4S梯形ABCD时x的值.15(4〕直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x..的值.2. 〔2007河北〕如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B 出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒〔t>0〕.〔1〕当点P到达终点C时,求t的值,并指出此时BQ的长;〔2〕当点P运动到AD上时,t为何值能使PQ∥DC〔3〕设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的关系式;〔4〕△PQE能否成为直角三角形假设能,写出t的取值范围;假设不能,请说明理由.A D K A DP EB CB CQ备用图〔2021河北〕如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒〔t 0〕.〔1〕D,F两点间的距离是〔2〕射线QK能否把四边形CDEF ;分成面积相等的两局部假设能,求出t的值.假设不能,说明理由;〔3〕当点P运动到折线EF FC上,且点P又恰好落在射线QK上时,求t的值;(4〕连结PG,当PG∥AB时,请直接写出t的值.4...5.〔2021山西太原〕如图,在平面直角坐标系中,四边形OABC是平行四边形.直线l 经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线4.段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x5.轴,与折线O-C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t0),△MPQ的面积为S.6.1〕点C的坐标为________,直线l的解析式为__________.7.〔2〕试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.8.3〕试求题(2)中当t为何值时,S的值最大,并求出S的最大值.9.4〕随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N.试探究:当t为何值时,△QMN为等腰三角形请直接写出t的值.10.〔2021四川重庆〕如图,矩形ABCD中,AB=6,BC=23,点O是AB的中点,yl点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达CAOB返回;另一动点F从A点后,立即以原速度沿MQPA匀速运动,点E、F同时出发,P点出发,以每秒1个单位长度的速度沿射线当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使OP A x△EFG和矩形ABCD在射线PA的同侧,设运动的时间为t秒〔t≥0〕.1〕当等边△EFG的边FG恰好经过点C时,求运动时间t的值;2〕在整个运动过程中,设等边△EFG和矩形ABCD重叠局部的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;〔3〕设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形假设存在,求出对应的t的值;假设不存在,请说明理由.备用图1备用图2三、测试提高1.〔2021山东烟台〕如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为y4x16,点A、D的坐标分33(别为〔-4,0〕,〔0,4〕.动点P自A点出发,在AB上匀速运动.动点Q自点B出发,在折线BCD上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t〔秒〕时,△OPQ的面积为S〔不能构成△OPQ的动点除外〕.(1〕求出点B、C的坐标;(2〕求S随t变化的函数关系式;(3〕当t为何值时S有最大值并求出最大值.(备用图(第二讲中考压轴题十大类型之函数类问题(〔2021浙江温州〕如图,在平面直角坐标系中,O是坐标原点,点A的坐标为〔-4,0〕,点B的坐标为〔0,b〕(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C,记点P关于y轴的对称点为P′(点P′不在y轴上),连结PP′,P′A,(P′C,设点P的横坐标为a.(1〕当b=3时,(直线AB的解析式;(②假设点P′的坐标是〔-1,m〕,求m的值;(〔2〕假设点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求(的值;(3〕是否同时存在a,b,使△P′CA为等腰直角三角形假设存在,请求出所有满足要求的a,b的值;假设不存在,请说明理由.〔2021武汉〕如y1ax22ax b0〕,C〔2,3〕2交于另一点B.1〕求此抛物线2〕假设抛物线的为线段OB上一重合),点Q在线∠MPQ=45°,设线段y图,抛物线P'P经过A〔-1,两点,与x轴D B的解析式;顶点为M,点PA O C x动点(不与点B段MB上移动,且OP=x,MQ=2y2,求y2与x的函数关系式,并直接写出23.自变量x的取值范围;4.〔3〕在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E,G,与(2)中的函数图象交于点F,H.问四边形EFHG能否为平行四边形假设能,求m,5.之间的数量关系;假设不能,请说明理由.6.备用图7.(2021江苏镇江)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与l2相交于点P.点E为直线l2上一点,反比例函数y k(k>0)的图象过点E且与直线l1相交于点F.x1〕假设点E与点P重合,求k的值;2〕连接OE、OF、EF.假设k>2,且△OEF的面积为△PEF的面积2倍,求点E的坐标;〔3〕是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等假设存在,求E点坐标;假设不存在,请说明理由.〔2021浙江舟山)△ABC中,∠A=∠B=30°,AB=23.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O〔如图〕,△ABC可以绕点O作任意角度的旋转.〔1〕当点B在第一象限,纵坐标是6时,求点B的横坐标;2〔2〕如果抛物线y ax2bx c(a≠0)的对称轴经过点C,请你探究:①当a5,b1,c35时,A,B两点是否都在这条抛物线上并说明理由;4255.②设b=2am,是否存在这样的m值,使A,B两点不可能同时在这条抛物线上假设存在,直接写出m的值;假设不存在,请说明理由.6.〔湖北黄冈〕二次函数的图象如下图.y〔1〕求二次函数的解析式及抛物线顶点M的坐标;B〔2〕假设点N为线段BM上的一点,过点N1作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设OQ的长为t,四边形NQACC面积为S,求S与t之间的函数关系式及自变量t的取值范围;-1O1x〔3〕在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形假设存在,求-1出所有符合条件的点P的坐标;假设不存在,请说明理由;〔4〕将△OAC补成矩形,使得△OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).三、测试提高1.〔2021山东东营〕如下图,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y1x b2交折线OAB于点E.(1)记△ODE的面积为S.求S与b的函数关系式;(2)当点E在线段OA上时,且tan∠DEO=1.假设矩形OABC关于直线DE的对称2图形为四边形O1A1B1C1.试探究四边形O1A1B1C1与矩形OABC的重叠局部的面积是否发生变化,假设不变,求出该重叠局部的面积;假设改变,请说明理由.第三讲中考压轴题十大类型之面积问题〔2021辽宁大连〕如图,抛物线y=ax2+bx+c经过A〔-1,0〕、B〔3,0〕、C〔0,3〕三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.〔1〕求该抛物线的解析式;〔2〕抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,假设存在,求点的坐标;假设不存在,说明理由;〔3〕在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等,假设存在,直接写出点R的坐标;假设不存在,说明理由.〔2021湖北十堰〕如图,己知抛物线y y=x2+bx+c与x轴交于点A〔1,0〕和点B,与y轴交于点C〔0,-3〕.P〔1〕求抛物线的解析式;C〔2〕如图〔1〕,己知点H〔0,-1〕.问在抛物线上是否存在点G〔点G在y轴M的左侧〕,使得S△GHC=S△GHA假设存在,求出点G的坐标,假设不存在,请说明理由:〔3〕如图〔2〕,抛物线上点D在x轴上的正投影为点E〔﹣2,0〕,F是OC的中点,连接DF,P为线段BD上A的一点,假设∠EPF=∠BBDF,求线段PE的长.O x3. 〔2021天津〕在平面直角坐标系中,抛物线y x2bxc与x轴交于点A、B〔点A在点B的左侧〕,与y轴的正半轴交于点C,顶点为.〔Ⅰ〕假设b2,c3,求此时抛物线顶点E的坐标;〔Ⅱ〕将〔Ⅰ〕中的抛物线向下平移,假设平移后,在四边形ABEC中满足S=S,求此时直线BC 的解析式;△BC E △AB C〔Ⅲ〕将〔Ⅰ〕中的抛物线作适当的平移,假设平移后,在四边形ABEC中满足S△BCE△AOC,且顶点E 恰好落在直线y4x3上,求此时抛物线的解析式.=2S4. (2021山东聊城)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2.(1)当t=1s时,S的值是多少(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;(3)假设点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似请说明理由.5.(2021江苏淮安)如图,在Rt△ABC中,A D∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点EP出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB 向点B运动,点F运动到点B时停止,G点E也随之停止.在点E、F运动过程中,以EF为边BF C作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t秒〔t>0〕,正方形EFGH与△ABC重叠局部面积为S.〔1〕当t=1时,正方形EFGH的边长是.当t=3时,正方形EFGH的边长是.〔2〕当0<t≤2时,求S与t的函数关系式;〔3〕直接答出:在整个运动过程中,当t为何值时,S最大最大面积是多少CGHA BEPF备用图三、测试提高〔2021山东东营〕如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点〔D不与A,B重合〕,且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.〔1〕当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;〔2〕设DE=x,△ABC与正方形DEFG重叠局部的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.A第四讲A AD E中考压轴题十大类型之G F三角形存在性问题B CB备用图〔1〕C B备用图〔C2〕板块一、等腰三角形存在性1. 〔2021江苏盐城〕如图,一次函数y x 7与正比例函数y3x的图象交4于点A,且与x轴交于点B.〔1〕求点A和点B的坐标;〔2〕过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.是否存在以A、P、Q为顶点的三角形是等腰三角形假设存在,求t的值;假设不存在,请说明理由.〔备用图〕2.〔2021湖北黄冈〕如图,在平面直角坐标系xOy中,抛物线y1x24x10与189x轴的交点为点A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形请写出计算过程;(3)当0t9时,△PQF的面积是否总为定值假设是,求出此定值,假设不是,请说2明理由;(4)当t为何值时,△PQF为等腰三角形请写出解答过程.板块二、直角三角形3.〔2021四川眉山〕如图,直线y 1与y轴交于点A,与x轴交于点D,x12抛物线y1x2bxc与直线交于A、E两点,与x轴交于B、C两点,且B点坐2标为(1,0).〔1〕求该抛物线的解析式;4.〔2〕动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标.5.〔2021广东中山〕如下图,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动〔点M可运动到DA的延长线上〕,当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线上时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答以下问题:1〕说明△FMN∽△QWP;〔2〕设0 x 4〔即M从D到A运动的时间段〕.试问x为何值时,△PWQ为直角三角形当x在何范围时,△PQW不为直角三角形〔3〕问当x为何值时,线段MN最短求此时MN的值.板块三、相似三角形存在性D F2Cyax5.〔2021湖北天门〕在平面直角坐标系中,抛物线bx3与x轴的两个交点分别为A〔-3,0〕、B〔1,0〕,过顶点C作CH⊥x轴于点H.PW〔1〕直接填写:a=,b=的坐标为;,顶点C〔2〕在y轴上是否存在点MD,使得△ACD是以AC为斜边的直角三角形假设存在,求出点D的坐标;假设不存在,说明理由;QN BA〔3〕假设点P为x轴上方的抛物线上一动点〔点P与顶点C不重合〕,PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.〔备用图〕三、测试提高1. 〔2021广西钦州〕如图,抛物线y 3x2bxc与坐标轴交于A、B、C三点,4A点的坐标为〔-1,0〕,过点C的直线y3x3与x轴交于点Q,点P是线段4tBC上的一个动点,过P作PH⊥OB于点H.假设PB=5t,且0t1.〔1〕填空:点C的坐标是_____,b=_____,c=_____;〔2〕求线段QH的长〔用含t的式子表示〕;〔3〕依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似假设存在,求出所有t的值;假设不存在,说明理由.第五讲中考压轴题十大类型之四边形存在性问题1. 〔2021黑龙江齐齐哈尔〕直线y3x6与坐标轴分别交于A、B两点,动点P、4Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.〔1〕直接写出A、B两点的坐标;〔2〕设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;〔3〕当S48时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四5边形的第四个顶点M的坐标.2. 〔2021河南〕在平面直角坐标系中,抛物线经过A(4,0),B(0,4),C(2,0)三点.〔1〕求抛物线的解析式;〔2〕假设点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S 关于m的函数关系式,并求出S的最大值.〔3〕假设点P是抛物线上的动点,点Q是直线y x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.〔2021黑龙江鸡西〕直线y3x43与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.〔1〕试确定直线BC的解析式;〔2〕假设动点P从A点出发沿AC向点C运动〔不与A、C重合〕,同时动点Q从C点出发沿CBA向点A运动〔不与C、A重合〕,动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;〔3〕在〔2〕的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形假设存在,请直接写出N点的坐标;假设不存在,请说明理由.7〔2007河南〕如图,对称轴为直线x=2的抛物线经过点A〔6,0〕和B〔0,4〕.〔1〕求抛物线解析式及顶点坐标;〔2〕设点E〔x,y〕是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;3〕①当四边形OEAF的面积为24时,请判断OEAF是否为菱形②是否存在点E,使四边形OEAF为正方形假设存在,求出点E的坐标;假设不存在,请说明理由.5. 〔2021黑龙江大兴安岭〕如图,在平面直角坐标系中,函数y2x12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.1〕求直线AM的解析式;2〕试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标;〔3〕假设点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是等腰梯形假设存在,请直接写出点 H的坐标;假设不存在,请说明理由.三、测试提高y1. 〔2021辽宁抚顺〕:如下图,关于x的抛物线By=ax2+x+c〔a≠0〕与x轴交于点A〔-2,0〕、点B〔6,0〕,与y轴交于点C.〔1〕求出此抛物线的解析式,并写出顶点坐标;M〔2〕在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;AO x〔3〕在〔2〕中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.第六讲中考压轴题十大类型之线段之间的关系1. 〔2021天津〕在平面直角坐标系中,矩形OACB 的顶点O在坐标原点,顶点A、B 分别在x 轴、y 轴的正半轴上,OA 3,OB 4,D 为边OB 的中点.〔Ⅰ〕假设E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;y yBCB C〔Ⅱ〕假设E 、F 为边OA 上的两个动点,且EF2,当四边形CDEF 的周长最小温馨提示:如图,可以作点D 关于x 轴DD时,求点E 、F 的坐标.E ,的对称点 D ,连接CD 与x 轴交于点2.〔2021四川广安〕四边形ABCD 是直角梯形,BC∥AD,OEAxO AxBAD=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A 〔1,0〕,B 〔1,2〕,D 〔3,0〕.连接DM ,并把线段DM 沿DA 方向平移到ON .假设抛物线y ax 2bx c 经过点D 、M 、N .〔1〕求抛物线的解析式;〔2〕抛物线上是否存在点P ,使得PA=PC ,假设存在,求出点P 的坐标;假设不存在,请说明理由;〔3〕设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE-QC|最大并求出最大值. 3.〔2021四川眉山〕如图,在直角坐标系中,点 A(0,1),B( 4,4),将点 绕点A 顺时针方向旋转 90°得到点C ,顶点在坐标原点的抛物线经过点 B . (1) 求抛物线的解析式和点C 的坐标; B(2)抛物线上有一动点P ,设点P 到x 轴的距离为d1,点P 到点A 的距离为 d2,4.试说明d 2 d 1 1;5. (3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.6.〔2021福建福州〕,如图,二次函数yax 22ax3a(a0)图象的顶点为H ,与x轴交于A、B两点〔B在A点右侧〕,点H、B关于直线l:y3x3对称.3(1〕求A、B两点坐标,并证明点A在直线l上;(2〕求二次函数解析式;(3〕过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.5.〔2021湖南郴州〕如图1,正比例函数和反比例函数的图象都经过点M〔-2,-1〕,且P〔-1,-2〕为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.〔1〕写出正比例函数和反比例函数的关系式;〔2〕当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等如果存在,请求出点Q的坐标,如果不存在,请说明理由;〔3〕如图2,当点Q在第一象限中的双曲线上运动时,作以、OPOQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图1图26. 〔2021江苏苏州〕如图,以A为顶点的抛物线与 y轴交于点B.A、B两点y的坐标分别为〔3,0〕、〔0,4〕.〔1〕求抛物线的解析式;〔2〕设Mm、n Qm,n是抛物线上的一点〔AB为正整数〕,且它位于对称轴的右侧.假设xM的坐以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点O 标;M CP〔3〕在〔2〕的条件下,试问:对于抛物线对称轴上的任意一点P,PA2PB2PM228是否总成立请说明理由.三、测试提高〔2021浙江舟山〕如图,点A(-4,8)和点B(2,n)在抛物线y=ax2上.〔1〕求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;〔2〕平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短假设存在,求出此时抛物线的函数解析式;假设不存在,请说明理由.第七讲中考压轴题定值问题1.〔2021天津〕抛物y十大类型之86线C1:4y11x2x1,点F(1,2B2D C〔Ⅰ〕求抛物线C1的顶点-4-2O24x〔Ⅱ〕①假设抛物线C1与y-2-41).坐标;轴的交点为A,连接AF,并延长交抛物线C1于点B,求证:112;AF BF②抛物线C1上任意一点P〔x P,y P〕〔0x P1〕,连接PF,并延长交抛物线1于点Q〔x Q,y Q〕,试判断11CPF2是否成立请说明理由;QF〔Ⅲ〕将抛物线C1作适当的平移,得抛物线C2:y21(x h)2,假设2xm时,y2x恒成立,求m的最大值.22.〔2021湖南株洲〕如图,△ABC为直角三角形,ACB90,ACBC,点A、C在x轴上,点B坐标为〔3,m〕〔m0〕,线段AB与y轴相交于点D,以P〔1,0〕为顶点的抛物线过点B、D.〔1〕求点A的坐标〔用m表示〕;〔2〕求抛物线的解析式;〔3〕设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC EC)为定值.3.〔2021山东济南〕:抛物线yax2bxc(a≠0),顶点C(1,3),与x轴交于A、B两点,A(1,0).(1〕求这条抛物线的解析式;(2〕如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点〔P与A、B两点不重合〕,过点P作PM⊥AE于M,PN⊥DB于N,请判断PM PN是否为定值假设是,请求出此定值;BE AD假设不是,请说明理由;〔3〕在〔2〕的条件下,假设点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE、BE相交于点F、G〔F与A、E不重合,G与E、B不重合〕,请判断.PA EF是否成立.假设成立,请给出证明;假设不成立,请说明理由.PB EG〔2021湖南株洲〕孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线yax2(a0)的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:〔1〕假设测得OA OB 22〔如图1〕,求a的值;〔2〕对同一条抛物线,孔明将三角板绕点O旋转到如图2所示位置时,过B作BF x轴于点F,测得OF 1,写出此时点B的坐标,并求点A的横坐标;...〔3〕对该抛物线,孔明将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. 〔2021湖北武汉〕如图,抛物线y ax2bx 4a经过A 1,0、C0,4两点,与x轴交于另一点B.〔1〕求抛物线的解析式;〔2〕点Dm,m1在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;〔3〕在〔2〕的条件下,连接BD,点P为抛物线上一点,且 DBP 45,求点P的坐标.y三、测试提高C1. 〔2021湖南湘西〕在直角坐标系xOy中,抛物线y x2bx cA BOx1. 与x 轴交于两点A 、B ,与y 轴交于点C ,其中A 在B 的左侧,B 的坐标是〔3,0〕.将直线ykx 沿y 轴向上平移3个单位长度后恰好经过点B 、C .2. 1〕求k 的值;3. 2〕求直线BC 和抛物线的解析式;4. 3〕求△ABC 的面积;5. 4〕设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD=∠ACB,求点P 的坐标.6. 、7. 第八讲 中考压轴题十大类型之 8.几何三大变换问题9.〔2021山西太原〕问题解决:如图〔1〕,将正方形纸片ABCD 折叠,使点B 落在CD边上一点 〔不与点C,重合〕,压平后得到折痕MN .当CE1时,求AMEDCD2BN的值.方法指导:CE 1,那么AMF的 值 等类比归纳:在图〔1〕中,假设CD 3 BN A MD 为了求得AM的值,可先求BN 、AM 的长,不妨设:AB=2于 BN ;假设CE1 ,那么AM的值等于;假设CD4BNECE1〔n 为整数〕,那么AM的值等CD nBNB于.〔用含n 的式子表示〕NC联系拓广: 如图〔2〕,将矩形纸片ABCD图〔1〕折叠,使点B 落在CD 边上一点E 〔不与点C ,D 重合〕,压平后得到折痕MN ,设AB 1CE 1 AM的BCm1,,那BN么m CD n于.〔用含m,n的式子表A〔2021陕西〕如图①,在矩形ABCD叠,使B落在边AD〔含端点〕上,这时折痕与边BC或边CD〔含端点〕后再展开铺平,那么以B、E、F为顶B为矩形ABCD的“折痕三角形〞.〔1〕由“折痕三角形〞的定义可知,矩形个_________三角形;F值等MD示〕E中,将矩形折落点记为E,交于点F,然N C点的△BEF称图〔2〕ABCD的任意一个“折痕△BEF〞是一〔2〕如图②,在矩形ABCD中,AB=2,BC=4.当它的“折痕△BEF〞的顶点E位于边AD的中点时,画出这个“折痕△BEF〞,并求出点F的坐标;3〕如③,在矩形ABCD中,AB=2,BC=4,矩形是否存在面最大的“折痕△BEF〞假设存在,明理由,并求出此点E的坐;假设不存在,什么①②③〔2021江西南昌〕:两个重叠的正多形,其中的一个某一个点旋所形成的有关.与旋角∠A1A0B1=α〔α<∠A1A0A2〕,θ1,θ2,θ3,θ4,θ5,θ6所表示的角如所示.B3B2B2B3A3B4A3A2A4HB3H A2HB2B2A31〕用含α的式子表示:θ3=H B4A4A2A5A24θ5B1θ4B1B1B5θ6_________,θB1=_________,θ5=θ3A0αA0αA0αA0αA1A1A1A1_________;图1图2图3图4〔2〕1-4中,接A0H,在不添加其他助的情况下,是否存在与直A0H垂直且被它平分的段假设存在,其中的一个出明;假设不存在,明理由;与猜测正n形A0A1A2⋯An-1与正n形A0B1B2⋯Bn-1重合〔其中,A1与B1重合〕,。

初中数学:30个经典压轴题(附详解),细...

初中数学:30个经典压轴题(附详解),细...

初中数学:30个经典压轴题(附详解),细...
对于初三的同学们来说,现在已经正式进入了然中考倒计时阶段,各科新知识的学习掌握都已经告一段落,都开始准备中考复习了,但是在数学学科的复习过程中,很多同学都会对最后的一个压轴题产生畏惧心理,因为压轴题都十分复杂,很多同学根本不知道该从哪里入手去解决。

但我们都知道,数学高手之间的竞争往往都出现在压轴题上,能够在考场中从容应对各种类型的压轴题,是数学取得高分的关键所在,因此数学成绩要想优异,就必须要把最后的压轴题进行一个全面的突破提升。

很多同学都表示,数学压轴自己不会做,但是一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。

中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。

而压轴题要想实突破,就必须要多做多练,把一些典型的题例做一做练一练,去提升突破。

眼看距离中考的脚步越来越近,老师这次就把初中数学常考的30个经典压轴题分享给大家(附详解),都是中考中最常考的题型,同学们可以打印出来认真做一做,2020中考冲刺必练!。

中考数学解答题压轴题突破 重难点突破十 几何综合题

中考数学解答题压轴题突破 重难点突破十 几何综合题

(1)证明:∵四边形 ABCD 是矩形,
∴AB∥CD,AB=CD,∠A=90°.
∵点 E,F 分别是 AB,CD 的中点,
1
1
∴AE=2AB,DF=2CD,∴AE=DF.
∵AE∥DF,∴四边形 AEFD 是平行四边形,
∵∠A=90°,∴四边形 AEFD 是矩形.
(2)解:如解图①,连接 OA,AM, ∵点 A 关于 BP 的对称点为点 M, ∴BP 垂直平分 AM, ∴OA=OM. ∵四边形 AEFD 是矩形, ∴EF⊥AB. ∵点 E 是 AB 的中点, ∴EF 垂直平分 AB, ∴OA=OB,∴OB=OM.
(3)证明:如解图,连接 AC,过点 B 作 BP∥AC 交 AF 的延长线于点 P, ∴△BFP∽△CFA, ∴BCFF=BCPA, ∵四边形 ABCD 是平行四边形,AB=AD, ∴四边形 ABCD 是菱形, ∵∠ABC=60°, ∴∠PBC=∠ACB=60°. ∴∠ABP=120°,∴∠DAE=∠ABP,
在△ADE 与△BAP 中, ∠DAE=∠ABP, AD=AB, ∠ADE=∠BAF, ∴△ADE≌△BAP(ASA),
∴AE=BP,
又∵AC=AD, BF AE
∴CF=AD.
类型二:动点问题
(省卷:2017T23;昆明:2020T23)
(2020·岳阳)如图 1,在矩形 ABCD 中,AB=6,BC=8,动点 P,Q 分別从 C 点,A 点同时以每秒 1 个单位长度的速度出发,且分别在边 CA, AB 上沿 C→A,A→B 的方向运动,当点 Q 运动到点 B 时,P,Q 两点同时 停止运动.设点 P 运动的时间为 t(s),连接 PQ,过点 P 作 PE⊥PQ,PE 与边 BC 相交于点 E,连接 QE.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题十大类型题目Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-中考数学压轴题十大类型目录第一讲中考压轴题十大类型之动点问题 1第二讲中考压轴题十大类型之函数类问题 7第三讲中考压轴题十大类型之面积问题 13第四讲中考压轴题十大类型之三角形存在性问题 19第五讲中考压轴题十大类型之四边形存在性问题 25第六讲中考压轴题十大类型之线段之间的关系 31第七讲中考压轴题十大类型之定值问题 38第八讲中考压轴题十大类型之几何三大变换问题 44第九讲中考压轴题十大类型之实践操作、问题探究 50第十讲中考压轴题十大类型之圆 56第十一讲中考压轴题综合训练一 62第十二讲中考压轴题综合训练二 68第一讲中考压轴题十大类型之动点问题1.(2011吉林)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E方向运动,到点E停止;动点Q沿B-C-E-D方向运动,到点D停止,设运动时间为x s,△P AQ的面积为y cm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=_____ cm2;当x=92s时,y=_______ cm2.D CB A PQ K E D C B A(2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出154=y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.2. (2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;(2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(4)△PQE 能否成为直角三角形若能,写出t 的取值范围;若不能,请说明理由.备用图3. (2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值. 4. (2011山西太原)如图,在平面直角坐标系中,四边形OABC 是平行四边形.直线l 经过O 、C 两点.点A 的坐标为(8,0),点B 的坐标为(11,4),动点P 在线段OA 上从点O 出发以每秒1个单位的速度向点A 运动,同时动点Q 从点A 出发以每秒2个单位的速度沿A →B →C 的方向向点C 运动,过点P 作PM 垂直于x 轴,与折线O -C -B 相交于点M .当P 、Q 两点中有一点到达终点时,另一点也随之停止运动,设点P 、Q 运动的时间为t 秒(0t >),△MPQ 的面积为S .(1)点C 的坐标为________,直线l 的解析式为__________.(2)试求点Q 与点M 相遇前S 与t 的函数关系式,并写出相应的t 的取值范围.(3)试求题(2)中当t 为何值时,S 的值最大,并求出S 的最大值.(4)随着P 、Q 两点的运动,当点M 在线段CB 上运动时,设PM 的延长线与直线l 相交于点N .试探究:当t 为何值时,△QMN 为等腰三角形请直接写出t 的值.5. (2011四川重庆)如图,矩形O 是AB 的中点,点P 在AB 的延长线上,且1个单位长度的速度沿OA 返回;另一动点F 从P 点出发,以每秒1E 、F 同时出为边作等边△EFG ,使△EFG 和矩形ABCD 在射线P A 的同侧,设运动的时间为t 秒(t ≥0).(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形若存在,求出对应的t的值;若不存在,请说明理由.备用图1备用图2三、测试提高1.(2011山东烟台)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为41633y x=-+,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运动.动点Q 自点B出发,在折线BCD上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为S (不能构成△OPQ的动点除外).(1)求出点B、C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时S有最大值并求出最大值.备用图第二讲中考压轴题十大类型之函数类问题1.(2011浙江温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC ⊥x轴,垂足为C,记点P关于y轴的对称点为P′ (点P′不在y轴上),连结P P′,P′A,P′C,设点P的横坐标为a.(1)当b=3时,①直线AB的解析式;②若点P′的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a ,b ,使△P ′CA 为等腰直角三角形若存在,请求出所有满足要求的a ,b 的值;若不存在,请说明理由.2. (2010武汉)如图,抛物线212y ax ax b=-+经过A (-32)两点,1,0),C (2,与x 轴交于另一点B . (1)求此抛物线的解析式; (2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; (3)在同一平面直角坐标系中,两条直线x =m ,x =n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图3. (2011江苏镇江)在平面直角坐标系xOy 中,直线1l 过点A (1,0)且与y 轴平行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点E 为直线2l 上一点,反比例函数k y x=(k >0)的图象过点E 且与直线1l 相交于点F . (1)若点E 与点P 重合,求k 的值; (2)连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积2倍,求点E 的坐标;(3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等若存在,求E 点坐标;若不存在,请说明理由.4. (2010浙江舟山)△ABC 中,∠A =∠B =30°,AB=△ABC 放在平面直角x y P'D O C B A P坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(1)当点B时,求点B 的横坐标; (2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:①当a =,12b =-,c =A ,B 两点是否都在这条抛物线上并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B 两点不可能同时在这条抛物线上若存在,直接写出m5. (1(2)若点N 为线段BM Q .当点N在线段BM 上运动时(点N t ,四边形NQAC 面积为S ,求S 与t (3求出所有符合条件的点P(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).三、测试提高1. (2011山东东营)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E .(1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.第三讲 中考压轴题十大类型之面积问题1. (2011辽宁大连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C(0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△RPM 与△RMB 的面积相等,若存在,直接写出点R 的坐标;若不存在,说明理由.2. (2011A (1,0)和点B ,与y 轴交于点C (0,-3(1)求抛物线的解析式; (2)如图(1),己知点H (G (点G 在y轴的左侧),使得S △GHC =S △由:(3)如图(2),抛物线上点2,0),F 是OC 的中点,连接DF ,P 为线段PE 的长.3. (2010c +与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴的正半轴交于点C ,顶点为E .(Ⅰ)若2b =,3c =,求此时抛物线顶点E 的坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. (2011山东聊城)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.(1)当t =1s 时,S 的值是多少(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似请说明理由.5. (2011江苏淮安)如图,在Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿P A 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S .(1)当t =1时,正方形EFGH 的边长是 .当t =3时,正方形EFGH 的边长是 .(2)当0<t ≤2时,求S 与t 的函数关系式;(3)直接答出:在整个运动过程中,当t 为何值时,S 最大最大面积是多少B备用图三、测试提高1. (2010山东东营)如图,在锐角三角形ABC 中,BC =12,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长;A EB FC G D(2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之三角形存在性问题 板块一、等腰三角形存在性 1. (2011江苏盐城)如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形若存在,求t 的值;若不存在,请说明理由.(备用图)2. (2009湖北黄冈)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形请写出计算过程;BA D E F GC B 备用图A C B 备用图A C(3)当902t <<时,△PQF 的面积是否总为定值若是,求出此定值,若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形请写出解答过程.板块二、直角三角形3. (2009四川眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△P AE 是直角三角形时,求点P 的坐标.4. (2010广东中山)如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:(1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形当x 在何范围时,△PQW 不为直角三角形(3)问当x 为何值时,线段MN 最短求此时MN 的值.板块三、相似三角形存在性 5. (20113+与x 轴的两个交点分别为C 作CH ⊥x 轴于点H . (1)直接填写:a = ,b (2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.(备用图)三、测试提高1. (2009广西钦州)如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C 的坐标是_____,b =_____,c =_____;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. (2009黑龙江齐齐哈尔)直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. (2010河南)在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3. (2011黑龙江鸡西)已知直线y =+x 轴、y 轴分别交于A 、B 两点,∠ABC =60°,BC 与x 轴交于点C .(1)试确定直线BC 的解析式;(2)若动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿CBA 向点A 运动(不与C 、A 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,P 点的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当△APQ 的面积最大时,y 轴上有一点M ,平面内是否存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形若存在,请直接写出N 点的坐标;若不存在,请说明理由.4. (2007河南)如图,对称轴为直线x =27的抛物线经过点A (6,0)和B (0,4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形②是否存在点E ,使四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.5. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形若存在,请直接写出点H 的坐标;若不存在,请说明理由.三、测试提高 1. (20092=++y ax x c (a ≠0)与x 0),与y 轴交于点C .(1(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲 中考压轴题十大类型之线段之间的关系1. (2010天津)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点. (Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标; (Ⅱ)若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标. 2. (2011四川广安)四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得P A =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大并求出最大值.y B O D C A x E yB O DC A x 温馨提示:如图,可以作点D 关于x 轴的对称点D ',连接CD '与x 轴3. (2011四川眉山)如图,在直角坐标系中,已知点A (0,1),B (4-,4),将点B 绕点A 顺时针方向旋转90°得到点C ,顶点在坐标原点的抛物线经过点B .(1) 求抛物线的解析式和点C 的坐标;(2) 抛物线上有一动点P ,设点P 到x 轴的距离为1d ,点P 到点A 的距离为2d ,试说明211d d =+;(3) 在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.4. (2011福建福州)已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线:3l y x =+对称.(1)求A 、B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.5. (2009湖南郴州) 如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P (-1,-2)为双曲线上的一点,Q 为坐标平面上一动点,P A 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等如果存在,请求出点Q 的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.图1 图26. (2010江苏苏州)如图,以A 为顶点的抛物线与y 轴交于点B .已知A 、B 两点的坐标分别为(3,0)、(0,4).(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、M 的坐标; (3)在(2)的条件下称轴上的任意一点P ,22228PA PB PM ++>三、测试提高 1. (20092=y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题线1C :1. (2011天津)已知抛物21112y x x =-+,点F (1,1). (Ⅰ)求抛物线1C 的顶点坐标; (Ⅱ)①若抛物线1C 与y 轴的交点为抛物线1C 于点A ,连接AF ,并延长交B ,求证:112AF BF +=; ②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立请说明理由; (Ⅲ)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值. 2. (2009湖南株洲)如图,已知△ABC 为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示);(2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 4 x 2 2A 8 -2 O-2 -4 y 6 B C D-44并延长交AC 于点F ,试证明:()FC AC EC +为定值.3. (2008山东济南)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B 两点,(10)A -,.(1)求这条抛物线的解析式;(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,PN ⊥DB 于N ,请判断PM PN BE AD+是否为定值 若是,请求出此定值;若不是,请说明理由;(3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EF PB EG =是否成立.若成立,请给出证明;若不成立,请说明理由. 4. (2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a =<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于A 、B 两点,请解答以下问题:(1)若测得OA OB ==1),求a 的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B 作BF x ⊥轴于点F ,测得1OF =,写出此时点B 的坐标,并求点A 的横坐标...; (3)对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点A 、B 的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5. (2009湖北武汉)如图,抛物线24y ax bx a =+-经过()10A -,、()04C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(),1D m m +在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=︒,求点P 的坐标.三、测试提高 1. (2009湖南湘西)在直角坐标系c +与x 轴交于两点A 、B ,与y B 的坐标是(3,0).将直线y kx =沿y B 、C .(1) 求k 的值;(2) 求直线BC 和抛物线的解析式;(3) 求△ABC 的面积;(4) 设抛物线顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.、第八讲 中考压轴题十大类型之几何三大变换问题1. (2009山西太原)问题解决:如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,AM AM BN 的值等于 ;若等于 .(用联系拓广: 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压A D E F M 图B N图1 图2 图3 图4αθ4HB 2B 3A 3A 222B 1A 1A 011平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AMBN 的值等于 .(用含m n ,的式子表示)2. (2011陕西)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F ,然后再展开铺平,则以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”. (1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;(2)如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么 图① 图② 图③3. (2010江西南昌)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.1)用含α的式子表示:θ3=,θ4=_________,θ5=_________;(2)图1-图4中,连接A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1A 2…A n -1与正n 边形A 0B 1B 2…B n -1重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…B n -1绕顶点A 0逆时针旋转α(n1800<<α). (3)设θn 与上述“θ3,θ4,…”的意义一样,请直接写出θn 的度数;(4)试猜想在n 边形且不添加其他辅助线的情形下,是否存在与直线A 0H 垂直且被它平分的线段若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.4. (2009山东德州)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG . (1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45o ,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立通过观察你还能得出什么结论(均不要求证明)5. (2010江苏苏州)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,90°,B ∠=306cm °,;A BC ∠==图②中,90D ∠=°,45E ∠=°, 4cm DE =.图③是刘卫同学所做的一个实验:他将DEF △的直角边DE 与△ABC的斜边AC 重合在一起,并将DEF △沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在DEF △沿AC 方向移动的过程中,刘卫同学发现:F C 、两点间的距离逐渐_________.(填“不变”、“变大”或“变小”) (2)刘卫同学经过进一步地研究,编制了如下问题:A D E G图① F A D G图② FA E 图③ D。

相关文档
最新文档