电阻应变片温度误差及补偿.

合集下载

温度补偿应变片法

温度补偿应变片法

温度补偿应变片法
温度补偿应变片法是一种利用应变片进行温度测量的方法。

应变片是一种能够测量物体应变的敏感元件,其工作原理是利用材料的电阻变化来反映物体的应变状态。

在温度变化的情况下,应变片也会受到影响,导致温度测量出现误差。

为了解决这个问题,温度补偿应变片法应运而生。

该方法利用两个应变片来对温度进行补偿。

其中一个应变片被安装在需要测量的物体上,另一个应变片则被安装在一个稳定的参考物体上。

通过同时测量物体和参考物体的应变程度,可以计算出物体的实际应变,从而消除温度的影响。

温度补偿应变片法广泛应用于工业生产中的温度测量和控制领域。

它可以有效地提高温度测量的精度和可靠性,从而保证产品质量和生产效率。

- 1 -。

电阻应变传感器的温度误差及其补偿

电阻应变传感器的温度误差及其补偿
电阻应变传感器的温度误差及其补偿
➢ 由于温度变化引起电阻应变片阻值的变化与被测量引起的阻值的变化几乎 有相同的数量级。
➢ 若不采取适当的补偿措施,电阻应变传感器将无法工作。 ➢ 引起温度误差的主要因素有:
1. 应变片本身电阻随温度的变化引起误差。该项温度误差可用半桥或全桥 测量电路获得较好的补偿效果。
2. 应变片材料的线膨胀系数与基底材料的线膨胀系数不同引起温度误差。 为消除该项温度误差主要是采取应变片自补偿方法,在制造传感器时已 加以考虑。
对使用者来说,最好的补偿方法是采用半桥或全桥测量电路。
返回首页
3.1的弹性模量随温度变化引起的误差。 ➢ 电阻应变片制造好后,用粘合剂粘贴到测试件上成为电阻应变传感 器。被测量作用于测试件下,应变片跟着测试件产生机械变形,从 而形成电阻应变片阻值发生变化。 ➢ 由于测试件的弹性模量随着温度的增加而减小,在被测量不变的情 况下,应变片产生的应变量增加。
➢ 因此,传感器桥路输出电压随温度的增加 而增加,从而引起温度附加误差。该项误差 不能采用半桥或全桥测量电路加以克服,必 须采用适当的补偿措施。
Uo
U 2
k (1
)
U () k() C 2
图3-T8 弹性模量的温度补偿

电阻应变式传感器的温度误差及其补偿.

电阻应变式传感器的温度误差及其补偿.

电阻应变式传感器的温度误差及其补偿
一、温度误差及其产生的原因
1.温度变化引起应变片敏感栅电阻变化而产生附加应变
2.试件材料与敏感栅材料的线膨胀系数不同,使应变片产生附加应变
二、温度补偿方法
1.桥路补偿法
结构:补偿应变片粘贴于补偿块上(与试件相同的材料),补偿块不受应力。

电路:测量片与补偿片构成半桥(全桥)差动电路。

原理:温度变化引起的应变片电阻变化为相同方向,通过电桥消除影响。

2.应变片自补偿法
方法一
结构:特殊材料构成应变片。

原理:使温度与线膨胀产生的附加应变相互抵消或减小。

条件:
缺点:局限性大。

一种应变片只能用于一种试件材料。

方法二
结构:用两种不同材料构成应变片。

原理:两种不同材料的温度系数不同,选择适当的材料,使电阻变化减小或消除。

条件:。

电阻应变测试原理及温度补偿方法实验

电阻应变测试原理及温度补偿方法实验

电阻应变测试原理及温度补偿方法实验一、实验目的1.掌握电阻应变片的粘贴技术。

 2.初步掌握电阻应变片的绝缘处理、防潮、接线和粘贴质量检查等基本技术。

3.了解电测应力、应变实验原理与电桥接线方法。

二、实验设备及器材 1.电阻应变片。

2.试件。

 3.万用表、兆欧表。

 4.电烙铁、镊子、丙酮、细砂纸、药棉等工具和材料。

5.502胶水、连接导线、704胶。

6.烘干设备。

三、电测法基本原理电阻应变测量技术(简称电测法),就是将物理量、力学量、机械量等非电量通过敏感元件转换成电量来进行测量的一种实验方法,又称非电量电测法。

将电阻应变片粘贴在构件上,当构件受力变形时应变片也随之一起变形,应变片的电阻值发生变化,通过测量电桥将电阻变化转换成电压信号,经放大处理及模/数转换,最后直接输出应变值。

 电测法在工程中得到广泛应用,其主要特点: (1) 尺寸小、重量轻、安装方便,对被测构件的应力分布不产生干扰。

(2) 精度和灵敏度高,最小应变读数为1με=10。

 6−(3) 测量范围广、适应性强,既能进行静态测试也能进行动态测试,频率响应范围从零到几万赫。

还可以在高、低温及高压、水中等特殊条件下进行测量。

 (4) 可测量多种力学量。

采用应变片作为敏感元件制成各种传感器可测力、位移、压强、转角、速度、加速度、扭矩等。

 但电测法也有局限性,其缺点是: (1) 只能测构件表面的应变,并且是有限个点,测量数据是离散的,难以得到整个应力-应变场的分布全貌。

 (2)对于应力集中和应变梯度较大的部位,会引起比较大的误差。

 四、电阻应变片1.工作原理 由物理学可知,金属导线的电阻为:R=A L/ρ (2 - 1)式中:ρ为导线材料电阻率;L为导线长度;A 为导线截面积。

 当金属导线因受力变形引起电阻相对变化,对式(2-1)两边取对数再微分得:AALLRRd d d d −+=ρρ(2 - 2)式中:ρρd ≈ ⎟⎠⎞⎜⎝⎛+=LL AACVVCd d d ; ε=LLd ;⎟⎠⎞⎜⎝⎛−==LLDDAAd 2d 2d μC为与材料种类和加工方法相关的常数;V为体积;ε为应变;D为导线直径;μ为导线材料泊松比。

电阻应变式传感器误差原因以及补偿方法

电阻应变式传感器误差原因以及补偿方法

3.1 对于温度误差我们采用线路补偿法和应变 片自补偿
作者简介 袁明(1998-),男,江苏省盐城市人。大学 本科学历,就读于西北民族大学电气工程及其
(1)线路补偿法即采用电桥补偿法。我 自动化专业。
们将工作应变片 R2 和补偿应变片,二者完全 相同,且都贴在同样材料的试件上,并处于同 样的温度下,这样由于温度变化让工作片产生
• Power Electronics 电力电子
电阻应变式传感器误差原因以及补偿方法
文/袁明

本文主要讲述电阻式应变式
传感器在实际的应用当中产生误 要 差的原因以及提出针对性的解决
方 法, 电 阻 式 应 变 式 传 感 器 基 于
的 效 应 是 金 属 电 阻 的 应 变 效 应,
而在实际的应用当中由于温度对
3 补偿的方法
通过采用电子电路组成压力变送器和温 度变送器,再通过 A/D 转换,送计算机进行 处理,通过编辑程序可以使粘贴在试件上的应 变片,在不承受载荷的条件上,电阻可以不随 时间变化,从而解决零漂的问题。
4 结束语
电阻应变式传感器应用于很多领域,并 且随着科技的发展对于精度的要求越来越高, 而电阻式应变片存在的温度误差以及制造工艺 不精确存在的零漂这两个问题对于精度的影响 很大,因此本文针对性的提出了补偿方法,最 为广泛使用的就是电桥补偿法然后在配用计算 机处理从而对电阻式传感器精度进行提高,对 于电阻式传感器未来的发展有着重要的意义。
3.2 对于制造工艺不精确所引起的零漂现象, 我们可以通过计算机电路进行处理
【关键词】电阻应变传感器 零漂 温度误差 补偿方法
电阻应变式传感器是目前应用最广泛的 传感器之一,可以测量力,荷重,应变,位移, 速度,加速度等各种参数。电阻应变式传感器 具有结构简单,尺寸小,性能稳定可靠,精度 高,变换电路简单,易于实现测试自动化和多 点同步测量,远距测量,因此应用于很多领域, 然而温度对电阻的影响,所引起的温度误差以 及制造工艺上引起的零漂,为了测量的精确性 因此对于误差的研究是很有必要性的。 1 应变式传感器的工作原理

电阻应变片温度误差及补偿.

电阻应变片温度误差及补偿.

电阻应变片温度误差及补偿1.温度误差因环境温度改变而引起电阻变化的两个主要因素是:(1) 应变片的电阻丝具有一定的温度系数。

(2) 电阻丝材料与测试材料的线膨胀系数不同。

应变片电阻丝的电阻与温度关系为:t R R t R R t ∆+=∆+=αα000)1( (2.24)式中,t R 为温度t 时的电阻值,0R 为温度t 0时的电阻值;t ∆为温度变化值;α为敏感栅材料电阻温度系数。

应变片由于温度变化产生的电阻相对变化为:t R R ∆=∆α01 (2.25)另外,如果敏感栅材料线膨胀系数为与被测构件材料线膨胀系数不同,当环境温度变化时,也将引起应变片的附加应变,这时电阻的变化值为:t K R R g e ∆⋅-⋅=∆)(02ββ (2.26) 式中,e β为被测构件(弹性元件)的线膨胀系数,g β敏感栅(应变丝)材料的线膨胀系数。

因此,由温度变化造成的总电阻变化为:0])([R t K t R g e ∆⋅-⋅+∆=∆ββα (2.27)而电阻的相对变化量为: t K t R R g e ∆⋅-⋅+∆=∆)(0ββα (2.28) 由式(2.28)可知,试件不受外力作用而温度变化时,粘贴在试件表面上的应变片会产生温度效应,它表明应变片输出的大小与应变计敏感栅材料的电阻温度系数α、线膨胀系数g β,以及被测试材料的线膨胀系数e β有关。

2.线路补偿(1) 零点补偿电桥的电阻应变片虽经挑选,但要求四个应变片阻值绝对相等是不可能的。

即使原来阻值相等,经过贴片后将产生变化,这样就使电桥不能满足初使平衡条件,即电桥有一个零位输出(00≠U )。

为了解决这一问题,可以在一对桥臂电阻乘积较小的任一桥臂中串联一个小电阻进行补偿,如图2.8所示。

例如当4231R R R R <时,初始不平衡输出电压0U 为负,这时可在1R 桥臂上接入0R ,使电桥输出达到平衡。

图2.8 零点补偿电路(2) 温度补偿环境温度的变化也会引起电桥的零点漂移。

应变片温度补偿

应变片温度补偿

应变片温度补偿摘要:1.应变片的定义与作用2.应变片温度补偿的必要性3.温度补偿的原理与方法4.应变片温度补偿的实际应用5.结论正文:一、应变片的定义与作用应变片是一种由敏感栅等构成的元件,用于测量应变。

其工作原理是基于应变效应,即当导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化。

应变片广泛应用于各种测量应变的场景,如力学试验、结构健康监测等。

二、应变片温度补偿的必要性应变片在使用过程中,其电阻值会受到温度的影响而发生改变。

当温度发生变化时,应变片的电阻值也会随之发生变化,这会对应变测量结果产生误差。

为了确保应变测量的准确性,需要对应变片进行温度补偿。

三、温度补偿的原理与方法温度补偿的原理是通过测量温度并根据应变片的温度特性来调整电阻值,从而消除温度对电阻值的影响。

温度补偿的方法主要有两种:1.线性温度补偿:通过设置一个线性的温度- 电阻关系,实现对应变片的温度补偿。

这种方法简单易行,但补偿效果受到温度范围的限制。

2.二次多项式温度补偿:通过设置一个二次多项式的温度- 电阻关系,实现对应变片的温度补偿。

这种方法的补偿效果较好,但计算复杂度较高。

四、应变片温度补偿的实际应用在实际应用中,应变片温度补偿技术的作用至关重要。

例如,在某些结构健康监测系统中,应变片用于测量结构的应变变化,而温度变化会对应变片的电阻值产生影响。

通过采用温度补偿技术,可以有效地消除这种影响,从而提高应变测量的准确性。

五、结论综上所述,应变片温度补偿技术对于确保应变测量的准确性具有重要意义。

测量中应变片的误差分析

测量中应变片的误差分析

温度系数不同, 一个为正, 一个为负的特
性, 将两者串联绕制成敏感栅 。
若 两 段 敏 感 栅 R1 和 R2 由 于 温 度 变
化而产生的电阻变化为大小相等而符号相
反, 就可以实现温度补偿。电阻 R1 和 R2 的
比值关系由下式决定:
R1 R2

△R2t/R2 △R1t/R1
(15)
其中( R1t) =-( R2t)
作者单位: 中南大学土木建筑学院
参考文献 [1]王 化 祥 , 传 感 器 原 理 及 应 用[M], 天 津 :天
津大学出版社, 1988.9.30- 31。 [2]栾 桂 冬 , 传 感 器 及 其 应 用[M], 西 安 :西 安
电子科技大学出版社, 2002.1.26- 27。 [3]张 建 民 , 传 感 器 与 检 测 技 术[M], 北 京 :机
引起的电阻变化为
△Rt!=R0S!t!=R0S( !2- !1) △t
( 11)
3、由于温度变化△t 而 引 起 的 总 电 阻
变化为:
△Rt= △Rt"+ △ Rt!= R0 " △t+R0S( !2- !1)
△t
( 12)
这样, 由于温度变化产生的总的虚假
应变量为:
"t=( △Rt/R0) /S=α△t/S+( !2- !1) △t ( 13)
化于人以外的各种设备中, 并由这些设备 与办公人员构成服务于某种目标的人机信 息处理系统。其目的是尽可能充分的利用 信 息 资 源 , 提 高 生 产 率 、工 作 效 率 和 质 量 , 节省时间, 辅助决策、求取更好的经济效 果, 以达到既定的目标。目前的办公自动化 系统是以知识管理为核心, 建立在企业 Intranet 平台上, 旨在帮助企业实现动态的 内容和知识管理。办公自动化表现出以下 特点: 第一, 其应用背景由单纯的模拟手工 办公环境的运用, 向一个要求更高的电子 化协同工作环境转化, 其环境必须为用户 提供一个打破部门界限的网络互动式办公 作业环境; 第二, 对于办公自动化的理念有 了新的定义, 由原先作为企业行政办公信 息化服务的概念, 逐步扩大延伸到企业的 各项业务管理环节, 成为企业运营信息化 和数字化的一个重要组成环节; 第三, 其外 延部分得到了迅速的扩展, 其中知识管理 理念的渗透表现尤为突出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电阻应变片温度误差及补偿
1.温度误差
因环境温度改变而引起电阻变化的两个主要因素是:
(1)应变片的电阻丝具有一定的温度系数。

(2)电阻丝材料与测试材料的线膨胀系数不同。

应变片电阻丝的电阻与温度关系为:
式中,R t为温度t时的电阻值,R Q为温度t o时的电阻值;t为温度变化值;为敏感栅材料电阻温度系数。

应变片由于温度变化产生的电阻相对变化为:
R1R Q t (2.25)另外,如果敏感栅材料线膨胀系数为与被测构件材料线膨胀系数不同,当环境温度变化时,也将引起应变片的附加应变,这时电阻的变化值为:
R
2 R Q K
(e g)
t
(2.26)
式中,e为被测构件(弹性元件)的线膨胀系数,g敏感栅(应变丝)材料的线膨胀系数。

因此,由温度变化造成的总电阻变化为:
R [ t K(e g) t]R o (2.27)而电阻的相对变化量为:
R
—t K(e g)t(2.28)
R Q
由式(2.28 )可知,试件不受外力作用而温度变化时,粘贴在试件表面上的应变片会产生温度效应,它表明应变片输出的大小与应变计敏感栅材料的电阻温度系数、线膨胀系
数g,以及被测试材料的线膨胀系数e有关。

2•线路补偿
(1)零点补偿
电桥的电阻应变片虽经挑选,但要求四个应变片阻值绝对相等是不可能的。

即使原来阻
值相等,经过贴片后将产生变化,这样就使电桥不能满足初使平衡条件,即电桥有一个零位输出(U Q Q)。

为了解决这一问题,可以在一对桥臂电阻乘积较小的任一桥臂中串联一个小电阻进行补偿,如图2.8所示。

例如当R1R3 R2R4时,初始不平衡输出电压U。

为负,这时可在R1桥臂上接入
R Q,使电桥输出达到平衡。

R t R o(1 t) R Q R o t (2.24)
图2.8零点补偿电路
(2) 温度补偿
环境温度的变化也会引起电桥的零点漂移。

产生漂移的原因有:电阻应变片的电阻温度
系数不一致;应变片材料与被测试件材料间的膨胀率不一致;
电阻应变片的粘贴情况不一致。

温度补偿的方法一般采取用补偿片法和热敏元件法。

所谓补偿片法,即用一个应变片作工作片,
贴在试件上测应变。

在另一块和被测试件结
构材料相同而不受应力的补偿块上贴上和工作片规格完全相同的补偿片, 使补偿块和被测试 件处于相同的温度环境,工作片和补偿片分别接入电桥的相邻两臂,如图 2.9所示。

由于工
作片和补偿片所受温度相同,则两者所产生的热应变相等, 因为是处于电桥的相邻两臂,所
以不影响电桥的输出。

对于温度所引起的零漂移也可认为是由四个桥臂电阻的温度系数不一致所引起的, 因此
可以在某一桥臂中连接一个温度系数较大的金属电阻。

如图 2.10所示,在桥臂R 2中串入一
个铜电阻R T 。

(3) 弹性模量补偿
弹性元件承受一定载荷且温度升高时,
弹性模量要减小,因此导致了传感器输出灵敏度
变大,使电桥输出增大。

补偿的方法可使电桥的输出随温度升高而减小。

通常将R E /2分别
图2.9温度补偿电路
接入桥路两个输入端,以保证桥路对称,见图
F
2.10所
图2.10零漂移补偿电路。

相关文档
最新文档